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1 INTRODUCTION
The history of the F# programming language is an arc drawn from the 1970s to the present day.
Somewhere, back in the early 1970s, an idea was born in the mind of Robin Milner and his colleagues
Lockwood Morris and Malcolm Newey of a succinct, fully type-inferred functional programming
language suitable for manipulating structured information [Gordon 2000]. Building on the tradition
of LISP (and indeed using LISP as their implementation vehicle), this language became ML—Meta
Language—and is the root of a tradition of “strongly typed functional programming languages” that
includes Edinburgh ML, Miranda, Haskell, Standard ML, OCaml, Elm, ReasonML and PureScript.
F# is part of this family.
The history of Standard ML has been told elsewhere [MacQueen 2015]. ML-family languages

are often associated with formalism, a theme I explore later in this article. However, a primary
concern of Milner and co. from the outset was pragmatic usability. This group needed their language
for a specific purpose: to succinctly and accurately program the proof rules and transformations
(“tactics”) of a theorem proving system called LCF, at that time on PDP-10 machines. Pragmatic
choices included the use of mutable state (to allow proof state to be stored in an interactive system)
and a type inference system (later called Hindley-Milner or Damas-Milner type inference), allowing
the code for derived tactics to be both succinct and automatically generalized. A similar theme of
pragmatism ran through later ML dialects as well, including OCaml [Leroy 2014], witnessed by
both the language design and tooling such as the OCaml C Foreign Function Interface (FFI).

Rolling forward, to the present day, key ideas stemming from the 1970s are at the core of the F#
language design and central to the day-to-day experience of using the language. Like all ML-family
languages:

• The core paradigm supported by F# is still strongly typed functional programming;
• The core activity of F# is still defining types (type X) and functions (let f x = ...) and
these declarations are type-inferred and generalized automatically;

• F# still aims to support a mode of programming where the focus is on the domain being
manipulated rather than on the details of programming itself.

Today, books are published which extoll the virtues of F# for “Domain Driven Design” [Wlaschin
2018]. This is not so far removed from the early role of ML where the “domain” was the symbolic
representation of terms and theorems of the LCF logic. The “spirit” of ML is very much alive in F#,
as it was always intended to be.
The leap from 1970s to the present day spans a period of massive change in the computing

industry: we have shifted from PDP-10s to cloud systems, from punch cards to mobile phones,
from edit-line to tooling-rich IDEs, from small to massive storage, from no-network to ubiquitous
network. This article tells the story of how F# developed, the industry and academic contexts in
which this occurred, the immediate influences on the language and its distinctive contributions.
The story intersects with many other histories in programming language design, including the
complex histories of functional programming, object-oriented programming, type systems, runtime
design, operating systems and open source software, and emphasis is placed on the genesis of
F# as one of several reactions to the “object-oriented tidal wave” of the early 1990s. The story is
necessarily incomplete and told largely from the personal perspective of the author, the designer
of the language, and I apologize for that. Where references are not provided the text is offered as
source material based on the recollection of the author.1

I have started with the core idea of the ML-family of programming languages: type-safe, succinct,
accurate, domain-oriented functional programming. From my perspective, this idea has “held
1Additional historical material on F# and the ML family of languages has been collected and presented by Rachel Blasucci,
see [Blasucci 2016].
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strong, held true” throughout this era of change. Whether that is through obstinacy, coherence or
coincidence is something I leave the reader to assess.

2 WHAT IS F# IN 2020?
In 2020, F# is described on its documentation pages as “a functional programming language that
runs on .NET.” The F# language guide [Carter 2020] calls out the following major features of the
language, providing useful clarity about what the language is today:

• functions and modules
• pipelines and composition
• lists, arrays, sequences
• pattern matching
• active patterns
• type inference
• recursive functions
• quotations
• record types, discriminated union types
• option types
• units of measure
• object programming
• asynchronous programming
• computation expressions
• type providers

The documentation continues with an explanation of the main tooling and libraries available for
F# programming, including

• cross-platform compilation and execution;
• the primary F# and .NET libraries;
• web, mobile and data programming toolkits;
• editing tools from Emacs to Visual Studio, VSCode and JetBrains Rider;
• how to use F# with the cloud platform of the company providing the documentation.

Other resources for F# follow a similar order of explanation, e.g. Fable is a packaging of F# for
client-side web programming compiling to JavaScript [García-Caro 2018], andWebSharper [Granicz
2020] and SAFE-Stack [Abraham 2020] emphasize the use of F# as a “full-stack” language where
both client and server components are written in the same language.

That’s what F# is today: an open-source, cross-platform, strongly-typed, succinct programming
language with broad applicability to many different programming scenarios and much loved by its
users.2 The language community centers around the F# Software Foundation (FSSF, a US non-profit,
page 46) and social media such as Twitter. F# has had influence—most directly on C# but also more
broadly—I discuss this in the retrospective at the end of this paper. But how did we get there?

3 BACKGROUND: LANGUAGES, PROGRAMMABILITY AT MICROSOFT AND THE
CREATION OF .NET

The 1970s-80s saw continual, rapid expansion of the computing industry, from transistor design
and chip fabrication to software development and applications. Software development tooling both
boomed and consolidated with the development and adoption of many different programming
paradigms and languages, including BASIC, PASCAL, Prolog, Modula 2 and C. Accompanying each

2Succinctness is discussed on page 40, for user testimonials see [FSSF Contributors 2020].
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were commercial variations (Visual Basic, Turbo Pascal, Borland C for example). Languages such as
Logo served to spark the imagination of a new generation that programming could be “different”3
and a bold new era of “fourth generation languages” was promised.

At this time, Microsoft also saw massive expansion as an operating system and applications com-
pany.Microsoft started by building programming tools in 1975 and the importance of programmability—
both as a commercial and technical undertaking—was “in the bones” of the company and its CEO
Bill Gates [Wikipedia 2020b]. Through the 1980s his primary concern with regard to programma-
bility was commercial: how to support the creation of applications and a commercial ecosystem of
independent software vendors (ISVs) for the DOS and Windows ecosystems. What mattered most
was the sheer number of developers using these platforms, for developers would feed the growth
of these ecosystems. The company created tools such as Visual Basic to satisfy the mass-developer
market, and versions of C for more hard-core developers, a distinction that later got characterized
as tools for “Mort” (Visual Basic) and “Einstein” (C++) [Wikipedia 2019d].4 Such tooling was pitted
against a myriad of rapid development environments such as HyperCard [Wikipedia 2019b] and
[Wikipedia 2019e], and Microsoft succeeded hands-down, becoming dominant in application devel-
opment worldwide and achieving a monopoly position in operating systems. Microsoft also made
numerous other programming tools including FoxPro [Wikipedia 2000] and a FORTRAN compiler,
later discontinued [WinWorld 2016].
The late 1980s saw a new wave of thinking coalesce around “object-oriented” programming,

and this became increasingly influential in applied software development and academia. Indeed,
object-orientation moved from the margins to be central to the conceptualization of software
development. The pattern of languages with commercial toolchains repeated: examples include
the first C++ commercial compiler in 1985, Borland C++ in 1992 and IBM Smalltalk in 1993.
Foremost amongst the drivers towards OO was the rising prevalence of user interface elements
in software: applications were now interactive and made of “buttons” and other “widgets”, these
widgets were easily conceptualized as “objects” combining state and behavior, and these widgets
could be hierarchically classified. Procedurally-oriented languages were unable to express such
abstractions directly in code, and languages without subtyping found it hard to express the necessary
relationships between widgets. People assessed new languages by asking two primary questions:
“does it support inheritance?” and “is everything an object?”. Any newly proposed language that
did not meet these criteria quickly became marginalized into relative obscurity.
The prospect of an industry-shifting nexus between this new wave of software development

methodology and an operating system company drew tantalizingly near. For example, the launch
of NEXTStep 3.0 in 1993 featured heavy focus on “objects” as a concept that the NEXTStep OS
somehow supported (in practice this meant that NeXTStep application development was based on
Objective C—the OS itself, was written in C). This was used by Jobs to demonstrate its sophistication
and technical maturity. When Java was developed in 1991-95, and released in 1996, it was a deep
challenge to Microsoft in at least six ways:

• Java was object-oriented and “modern”;
• Java promised Write Once Run Anywhere software development that could in theory cut the
dependence on a particular operating system;

• Java was developed by a direct rival in the upper-end operating system market;
• Java was positioned as a web-technology at the dawn of the web, potentially capable of
delivering end-user applications via the browser;

3I recall my primary school librarian telling me about Logo on a school walk in 1981, when I was 10. It was my first exposure
to diversity in the world of programming languages.
4The term “Elvis” was used later for C# programmers.
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• Java used a set of technical devices such as a virtual machine (VM) and garbage collection
(GC)5; and

• Java was recognized as a contribution to applied academic computer science6, bringing on
board a constituency who had been largely ignored by Microsoft. As a result, Java became
embraced as a de-facto standard for typed object-orientation.

Microsoft was initially slow to respond. Internally, the company was committed to C for imple-
menting its flagship products but had plenty of assembly code as well. Given the target hardware
specs it was unrealistic to write Windows or Microsoft Word in a heap-allocating “toy” language
like Java, so Java was not going to become the major language of internal use at Microsoft quickly.
Further, external-facing RAD environments like Visual Basic didn’t immediately benefit from the
structured approach to OO found in class-oriented languages. With a tidal wave of Java hype flood-
ing the industry, Microsoft responded by embracing Java, licensed from Sun in 1996 (Microsoft J++),
but subsequently faced legal action for extending the language. This formed part of the background
to United States v. Microsoft Corp, a legal case running from formally from 1998 to 2001 though
with its roots in earlier actions. In this case the U.S. government accused Microsoft of illegally
maintaining its monopoly position in the PC market, through restrictions on PC manufacturers
relating to internet browser software and other programs such as Netscape and Java. The initial
trial recommendations were to break-up Microsoft as a company, later settled to lesser remedies.

In 1997, Microsoft changed tack and started the internal development of a new programmability
platform which could address the fundamental challenge of Java, while also addressing the needs
specific to Windows programmability. Initially called COM+ 2.0 or Lightning, and eventually .NET,
the founding principles of the runtime environment were as follows:

• It would support multiple programming languages, including Visual Basic, C++ and Java.
Additionally, a new language was started, under the design of Anders Hejlsberg, initially
called COOL and later C#.

• It would support a bytecode, garbage collection, JIT compilation and “middleware” features
such as stack-based security checks and remoting. Additionally, the runtime would support
unsigned integers, unboxed representations and install-time compilation.

• It would be made specifically for application development on Windows, including native
interoperability to C-based Win32 APIs and built-in support for COM. However, it would
also be sufficiently general that porting to other operating systems would be theoretically
possible.

• Its SDK would be offered free and aligned with emerging efforts in academic relations, then
managed by Microsoft Research, founded in 1992.

The decisions around Lightning were regularly reviewed by Bill Gates. Through the efforts of two
“developer evangelists”—Peter and James Plamondon7—a key decision was made: Lightning would
be a multi-language runtime rather than just a fixed set of languages decided by Microsoft. An
outreach project called “Project 7” was initiated: the aim was to bring seven commercial languages
and seven academic languages to target Lightning at launch. While in some ways this was a
marketing activity, there was also serious belief and intent. For help with defining the academic
languages James Plamondon turned to Microsoft Research (MSR).

5Garbage collection was present in Visual Basic. However it was not present in the highly influential Microsoft COM
programming architecture, which used reference counting for memory management.
6For example, [Alves-Foss 1999].
7Known as “The Flying Plamondon Brothers”
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From the perspective of the history of F#, this is a moment when largely unrelated traditions in
the history of computer science began to merge and intertwine: the worlds of Robin Milner and
Bill Gates began to meet.

MSR had been founded in 1992 and expanded to Cambridge UK in September 1997. Andy Gordon
(a high-profile young researcher in programming language theory) and Luca Cardelli (author of
one of the first ML implementations and prolific researcher) were hired, followed in September
1998 by Simon Peyton Jones (a leading Haskell contributor), Nick Benton (a theorist and initiator
of MLj, discussed later), Cedric Fournet (a core member of the OCaml team), Sir Tony Hoare (world
famous computer scientist) and Don Syme (the author of this paper; undergraduate student of early
ML contributor Malcolm Newey in Australia; PhD student of Mike Gordon; with a background
in functional programming, formal verification and Java). MSR eventually employed over 500
researchers and engineers in various locations.

Suddenly Microsoft was brimming with academic computer scientists, though in a separate “org”
to the “product teams”. Many were eager to make an impact on Microsoft’s product range, and there
was cultural memory from Bell Labs (Cardelli), DEC-SRC (Cardelli), Compaq (Gordon) and Intel
(Syme) that this was how such labs “paid the bills”. Each researcher was in their own way deeply
evangelical about one point-of-view or another in computer science and often held tribal allegiances
to their corresponding communities in academia, both of which shaped their interactions with
product teams and the projects they chose. Many in the formal verification and theory areas had
experience of strongly-typed functional programming. Robin Milner, the originator of the ML
family of languages, was head of department at Cambridge University “across the road” and was
held in high esteem as a pioneer in the field of research.
On the other side, Microsoft was entering a phase where it was becoming deeply committed

to a multi-language runtime and wanted to be seen to innovate positively. Lightning already had
many of the core elements of a typical functional language implementation (GC, JIT, bytecode),
and promised to unite disparate themes in programming, though initially within the confines of
the Windows operating system. The scene was set for interesting things to happen. The Lightning
effort was renamed NGWS and then finally called .NET on launch in 2000.

4 BACKGROUND: STRONGLY TYPED FUNCTIONAL PROGRAMMING THROUGH
THE 1990S—CALCULI, MIRANDA, OCAML, HASKELL AND PIZZA

While Microsoft was establishing its monopoly position in the early 1990s, and object-orientation
was sweeping the globe, the world of strongly typed functional programming was small and
marginalized yet active and vibrant. This world overlapped with other fields of activity, which
we would now call “PL research” but at the time included formal verification, type theory and
programming logics and an increasing dose of category theory. This world was heavily influenced
by foundational calculi, most obviously the Lambda Calculus and its variations such as System F,
followed by concurrent calculi such as CCS and the Pi Calculus [Sangiorgi andWalker 2001]. Efforts
to identify unifying object calculi were well underway [Abadi and Cardelli 1996] and workshops
such as FOOL—Foundations of Object-Oriented Languages searched for foundational formalisms for
new constructs being added to existing languages [Leavens 1995].

“Formal methods” was an overlapping field in its hey-day in the 1980s, with major government
initiatives in formalized hardware and software. Controversies [Restivo 2004] and the relatively
modest successes of formal methods in industry saw researchers in the 1990s look to more pragmatic
techniques for bug-finding including model checking and static analysis tools. Systems such as SMV,
Z, ACL, HOL88, PVS, HOL90, Isabelle and commercial offerings were used to model, formalize and
verify aspects of software and hardware designs. Functional languages were often used to implement
and script these systems, e.g. Edinburgh ML (HOL88), Standard ML (HOL90, Isabelle), OCaml (Coq,

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.



75:8 Don Syme

NuPRL), Caml Light (HOL-Lite), LISP (ACL2, PVS). These systems thus formed a core constituency
of adoption of strongly-typed functional languages and held functional programming close to
more theoretical communities. The Formal Definition of Standard ML [Milner et al. 1990] and its
commentary were seen by some as almost holy texts, enshrining the virtues of standardization,
cooperation, formalism and theory. At the same time, some functional programming systems were
closely aligned to research on parallel programming, e.g. Parallel ML [Rabhi and Gorlatch 2003]
and parallel versions of Haskell. Together these formed the context in which I first encountered
strongly typed functional programming and ML in my undergraduate research work [Syme 1993].
The FDIV bug at Intel, discovered in 1994 [Athow 2014], led to a significant increase in formal

verification investment on the part of hardware manufacturers. Intel turned to academia for help
and among the projects brought in was Forte, led by Carl Seger, a toolchain using BDDs and theorem
proving to verify the data paths of floating point circuits with respect to an IEEE model. The Forte
toolchain was built around a strongly typed functional language called Forte FL. Although not
otherwise influential on programming language design, this is mentioned because I was employed
as an intern on this project in 1996-97 and in this context experienced the extreme effectiveness of
strongly-typed FP as a “glue language” for symbolic manipulations in applied formal verification,
an early application domain for F# [Seger et al. 2005]. Forte FL also made many pragmatic choices,
for example when interoperating with external data and the inclusion of quotations in the design
of a strongly-typed language. This experience had significant impact on the later design of F#.
Strongly-typed FP also saw significant use through Miranda, first released in 1985.8 During

the 1990s the small world of strongly-typed functional programming also split and diverged in
ways typical of active research communities. Haskell 98 united the streams of lazy, pure functional
programming, precursors included HOPE and Miranda. Standard ML from 1989 remained the
unifying effort for mixed functional-imperative languages. However, the INRIA Project Cristal
group saw the standardization as premature, and instead created Caml Light and then OCaml
[Leroy 2014]. Standard ML itself was heavily associated with its innovative module system and
saw practical implementations in Poly ML, Standard ML of New Jersey and MLton.

Strongly-typed FP languages and compilers saw an ongoing trickle of interest, adoption and use.
While not enough to challenge the massive adoption of C, C++ and Java, and largely unnoticed by
industry, they were enough to sustain the languages, promote research and create small cohorts of
dedicated advocates of OCaml, Standard ML and Haskell.9 People who had the good fortune to
use these languages in practice (including myself) experienced dramatic increases in productivity
as well as some frustrations. As with the original ML implementation, the domain of use was
typically symbolic programming of some kind. The experience of productivity was due to the
peculiar effectiveness of the combination of features on offer: the “magic” of Hindley-Milner type
inference (Figure 1) to support safe, compositional programming; the effectiveness of parametric
polymorphism (generics) and discriminated unions to describe and manipulate domain data; the
correctness benefits of programming without pervasive null values; the close correspondence
between code and formal models. These were in addition to the elegance and expressive power of
expression-oriented programming, well-known from LISP but newly rediscovered with joy and
delight by user after user. There was a strong feeling that these languages had the potential to be

8While the author hadn’t used Miranda, early adopters of F# (e.g. Ralf Herbrich) and internal supporters within Microsoft (e.g.
Andrew Blake, head of MSR Cambridge 2008-2016) had positive exposure to Miranda during their education. Interestingly
these people were outside the programming language theory or formal verification domain, active in machine learning and
vision, and valued Miranda for its pragmatism and productivity.
9As a curious side note, one of those dedicated to OCaml was Julian Assange, later famous for WikiLeaks, see [Assange
2000].
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used much more broadly, and that valuable programming techniques were being lost through the
widespread embrace of Java.

Fig. 1. A formal description of Hindley-Milner type
inference, a core idea in ML family languages (from
[Wikipedia 2020a])

The tidal wave of interest in object-
orientation in the early 1990s had significant
impact in academia, just as in industry. By the
mid-1990s many in the world of FP and PL were
genuinely shocked, bewildered, disoriented and
in some cases disillusioned by the rise of C++,
Java and OO in general. Reactions varied, and
I now examine responses to the OO tidal wave
that are key to understanding the genesis of F#,
Scala and other languages in the 2000s.
One response to object-orientation was to

“give in” and work on Java implementations.
Others worked on formalisms around Java, and
indeed I initially did just that for my PhD thesis
[Syme 1999a] and others formulated and published foundational object calculi. Some responded
by integrating object-oriented features into FP languages: LISP had already added CLOS, the
Common LISP object system and OCaml saw the introduction of new forms of genericity (“row-
polymorphism” and “column polymorphism”) used as the basis for a fascinating object system
[Garrigue 2001]. Around the same time the Standard ML designers and implementers started an
initiative called ML2000, whose aim was to use formal, theoretically-founded approaches to build a
language to rival object-orientation. This effort foundered and stopped in the late 1990s.

Another response was to propose to integrate specific technical features associated with strongly-
typed functional languages into “mainstream” OO languages. Wadler and Odersky led the charge
with the development of Pizza, a variation of Java that incorporated parametric polymorphism
(generics), discriminated unions and first-class function values [Bracha et al. 1998]. This was
subsequently trimmed-down to the proposal Generic Java (GJ), and later heavily influenced C#,
Scala and F#. Ultimately GJ became the basis for Java generics, though its use of “erasure” and lack
of accurate runtime type information were significant compromises.
An alternative angle was to “deconstruct” functional programming itself and examine the un-

derlying problems (as exhibited by implementations of Haskell or Standard ML for example). One
instance of this was the paper Why no one uses functional languages [Wadler 1998]. This paper
was central to my understanding of the programming language landscape as I started at Microsoft
Research in 1998. Instead of blaming the unwashed masses for their ignorance, Wadler’s paper
outlines seven problems of strongly-typed FP implementations at the time: Libraries, Portability,
Availability, Packagability, Tools, Training, Popularity. It also listed Performance and Ignorance as
non-reasons. The early development of F# was essentially an effort to address each of these.

Further, some responded by trying to compete via new commercial implementations of strongly
typed FP languages including Poly ML and Harlequin MLWorks. However, these saw little adoption
and left the community with the feeling that the support of a “big player” in the industry was
needed.
A final response was to attempt to use the JVM as a substrate for implementing established

functional programming languages, and thereby as a delivery vehicle for FP into the browser and
the web (the nascent driving force behind Java at the time). Foremost in these efforts was MLj,
a research/commercial implementation of Standard ML by Benton, Kennedy et al. at Persimmon
[Benton and Kennedy 1999]. MLj was a whole-program compiler which allowed interop with the
Java ecosystem through object programming extensions. When the research arm of Persimmon
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folded in 1998, Benton moved to MSR Cambridge, followed later by Kennedy, bringing experience
highly relevant to .NET and later F#. Despite these various responses, there was also strong
anathema to object-orientation in theoretical communities: proponents of OO were too readily
labelled with the tar-brush of heresy: “unprincipled nonsense”, “lacking theoretical foundations”
and similar.

That completes our summary of the general surrounding context as I joined Microsoft Research
in 1998 and began precursor work leading to F#. For completeness, the background influences I am
aware of were as follows:

• I had used strongly typed functional programming, mostly in the context of theorem proving
systems (Edinburgh ML in HOL88, Standard ML of New Jersey in HOL90, Caml-Light in
HOL-Lite, ForteFL at Intel). I had come to love them, while appreciating their weaknesses.
In my undergraduate work I had been supervised by one of the originators of ML, Malcolm
Newey. Through my PhD work, the OCaml community and MSR Cambridge, I was involved
in overlapping communities that saw strongly typed functional programming as the norm.

• I had used object-oriented languages (C++, Java) including studying Java and the JVM formally
as part of my thesis work. My experience with C++ at university in 1992 had been negative,
particularly through the over-use of hierarchical classification in student projects—both as a
modelling technique and its encoding in class hierarchies.

• As a child, from 1980-87, I had used BASIC and Logo (Apple II) and Turbo Pascal (Windows).
As a student, I used Prolog, C, Scheme, Modula 2. A comparative programming languages
course provoked interest in a range of languages. In early employment I had used Prolog on
Windows for an Australian software company (SoftLaw, 1990-1993).

• I had implemented several strongly-typed language, proof and compilation systems as part of
my PhD thesis work using various ML dialects and toolchains including SMLNJ, MoscowML,
Caml-light and OCaml. Additionally, I had, somewhat unusually for the times, also imple-
mented some visual tooling for these systems, notably a graphical proof editing IDE for
HOL90 [Syme 1995] and a proof editing workbench for the theorem prover DECLARE [Syme
1999b]. I had a positive disposition to IDE tooling and understood the interaction between
IDE tooling and language design.

• In 1996-98, I had been exposed to the work of academic leaders such as Drossopoulou, Leroy,
Wadler and Odersky to synthesize OO and functional programming [Alves-Foss 1999].

• I was part of discussions trying to reimagine how we deliver strongly-typed functional
programming to “the masses”.

5 PROJECT 7 AND .NET GENERICS
When Project 7 kicked off at Microsoft, the researchers at MSR Cambridge recommended the follow-
ing languages for inclusion on the academic stream: Eiffel, Mercury, Standard ML, OCaml, Scheme,
Alice and Haskell. The biases of the research group at MSR are clear here: 6 of 7 recommendations
were strongly typed languages, and 3 of 7 were firmly “strongly typed functional languages” in a
specific sense of the term, e.g. incorporating Hindley-Milner type inference and having functions
as first-class values. Commercial languages in Project 7 included Perl, Python, Cobol and Ada.
Academic or commercial partners were found for each, funding was provided by Microsoft and
workshops were arranged at MSR Cambridge and elsewhere.

In retrospect Project 7 was flawed but not catastrophically—some of the researchers didn’t
engage, few of the language implementations saw much use, and the costs to maintain them
were high. While you can still buy and use Cobol.NET today, .NET programming is dominated by
two Microsoft-supported languages C# and F#, and the JVM has a more vibrant multi-language
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ecosystem. However Project 7 did have definite technical impact: for example, at this stage, Gordon
and Peyton Jones engaged with the designers of .NET, and argued successfully for the inclusion
of tailcalls as a first class operation (the “tail.” instruction in the .NET bytecode), both to support
some of these languages and as a way of differentiating the .NET bytecode from the JVM. This
started .NET down a long technical path of innovation and differentiation led by the demands of
the languages being brought to the platform.10
Project 7 also had an impact by raising the question of “language interoperability”: it was one

thing to get languages targeting a common substrate, another to get them to interoperate. In 1999,
I and colleagues wrote the internal whitepaper “Proposed Extensions to COM+ VOS” [Syme 2012]
which argued that

a primary objective of the COM+ Runtime is to deliver services and performance that
are clearly technically superior to those provided by other potential backend runtime
environments.11

and that Microsoft should “get serious about language innovation”. Five technical features were
proposed, of which “generalized delegates” (i.e. functions as first-class values) and “enhanced
parametric polymorphism” were the more serious. The influence of Pizza and GJ is strong here
and these are explicitly mentioned as competitors. I also developed ILX, an prototype extension to
the .NET bytecode incorporating these features, which I hoped might be adopted by other Project
7 languages. ILX was implemented on .NET by erasure and compilation to the existing .NET IL
[Syme 2001d].

This whitepaper served as the start of the “.NET Generics” project, specifically designed to bring
a form of generics to .NET that could work for both C# and other Project 7 languages such as Eiffel,
OCaml and Haskell. .NET Generics and its history is covered elsewhere [Warren 2018] and over the
next 4 years, Syme, Kennedy and Russo worked with enormous dedication to deliver .NET Generics
in C# and .NET [Kennedy and Syme 2001]. The feature encountered enthusiasm, reluctance and
indifference from various parts of Microsoft, though a review to Gates in 2001 was well received
and started to turn things around [Syme [n.d.]b]. Anders Hejlsberg was a key decision maker and
my recollection is that much of the C# language design work involved second-guessing how to
shape the feature so it would meet approval. Ultimately the feature was delivered as part of the
2005 .NET 2.0 “Whidbey” release. At the same time, Microsoft began to make its first very tentative
steps towards embracing open source, and a “shared source” release of the .NET codebase was made
called Rotor along with a corresponding extension containing the .NET Generics implementation
called Gyro. A poster from MSR’s internal tradeshow “Tech Fest” is shown in Figure 2.

The key premise of .NET Generics is that generic instantiations can be “managed” by the runtime
environment, inclnuding the management of runtime type information and the JIT-compilation of
fresh code for newly encountered instantiations. This avoids the need to either tag or box integers
and other “unboxed” values—a technique normally needed when combining polymorphism and
separate compilation, because the runtime is able to specialize code on-demand.

This means the end-programming model in, say, C#, can support a form of generics that is very
complete and smooth from the programmer’s perspective: runtime type information is accurate,
the process of making and managing instantiations unobtrusive, the code for instantiations is
automatically shared based on a policy. .NET Generics has been successful: it is widely adopted by
millions of C# and F# programmers; it is seen as a key differentiating factor of C# over Java; and

10Support for the “tail.” instruction remained patchy in .NET implementations for many years: convincing a team to
“innovate” is one thing, but delivering and maintaining the results requires ongoing commitment and costs.
11At this time, Project Lightning (i.e. .NET) was called “COM+”. VOS is for Virtual Object System, the name of the .NET
object system at the time.
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Fig. 2. .NET Generics poster at TechFest 2002, Microsoft Building 33, Redmond (photo by author)

has been the basis for many later innovations delivered in F#, C# and .NET. For example, generic
collections (C# 2.0), LINQ (C# 3.0), tasks (C# 4.0), async/await (C# 5.0) and Span (C# 7.2) all use .NET
Generics heavily, as do all F# features. .NET Generics put .NET years ahead and even today systems
such as Java and Go struggle with the implementation of aspects of genericity such as supporting
instantiation at both reference and value types [Cox 2019; Motroc [n.d.]].12 Equally, generics is a
technical feature that imposed significant costs on Microsoft’s .NET implementation going forward.
Generics is most easily implemented via a JIT and attempts to do fully static compilation of .NET
code have struggled with the feature.

From the perspective of the history of F# (which did not yet exist), the successful delivery of .NET
Generics intentionally made .NET a suitable substrate for a “direct” compilation from a strongly
typed functional language into .NET bytecode: this was by design, not by accident. For example,
it allowed a simple, direct compilation of genericity inferred via Hindley-Milner type inference
into .NET Generics with little or no runtime overhead. Consider simple code such as this in some
ML-like dialect:

let keyAndData getKey x = (getKey x, x)
let data = [| 1 .. 100 |]
let add x = x + 1
let y = Array.map (keyAndData add) data

Here the generic code has been instantiated at integer type. In many systems of generics such
as GJ, values of generic type such as parameter x to keyAndData would be represented in boxed
(heap-allocated) form. Thus, in the absence of other optimizations, the code above would cause the
boxing of the integers as they enter the (generic) keyAndData function, and then unboxing as they
are passed on to the (non-generic) add function. Such implicit costs for basic collection types would
be unbearable and make any Hindley-Milner type-inferred language intrinsically low-performance
on .NET. With .NET Generics these specific performance problems go away. In crucial ways .NET
Generics laid a foundation for later work on F#.
12In Alsh [2019] the designer of Go, Rob Pike, is quoted The time has come to change Go, given what we have learned over the
past decade of using it in production. It’s going to take a long time to sort this out. It could be years before anything is really
resolved so...Please be patient.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.



The Early History of F# 75:13

6 THE DECISION TO CREATE F#
At MSR, Project 7 also led to the SML.NET project [Benton et al. 2004]. SML.NET was a continuation
of MLj, mentioned earlier, retargeted to .NET. SML.NET used a sophisticated whole-program opti-
mizer and was a faithful implementation of Standard ML with extensions for object programming.
The system was of high quality but didn’t gain significant external mindshare. During 2001, I grew
frustrated with SML.NET, which was not yet released even though .NET itself was now public.
While respecting the research goals of my colleagues, I was keen to see strongly typed FP delivered
in a way that could be readily adopted by large numbers of programmers, and on a path to address-
ing the seven major themes identified by Wadler in 1998 [Wadler 1998]. The implementation of
OCaml was influential on me here: OCaml used a relatively direct and simple compilation strategy,
and it was not clear that a whole-program compilation strategy was needed to achieve acceptable
and reliable performance. Further, SML.NET didn’t target .NET Generics, and there was no definite
plan to make it do so: the compiler was predicated on the benefits of whole-program compilation
and pervasive monomorphization, with the aim of recovering performance and compact code. As
commonly happens in research labs, a divergence of opinion occurred.
Initially, in late 2000, in conjunction with Reuben Thomas, I attempted an implementation of

Haskell for .NET, using a direct translation from the “Core” intermediate representation of the
Glasgow Haskell Compiler (GHC) to the .NET bytecode. This experience was partly successful:
small programs ran. However, the advice of Simon Peyton Jones led me to believe that Haskell.NET
couldn’t be successful for several technical and cultural reasons:13

• As with other Project 7 languages, running Haskell on .NET “in isolation” was not enough
in itself: a primary goal was to make a functional language that was fully part of the .NET
ecosystem, with full interop with .NET libraries.

• Full interop means that every .NET function would need a rendering in Haskell with a Haskell
type, so type translation is needed. The type systems were not the same, so the translation is
onerous or simply impossible in many cases.

• Moreover, to ease the translation, Haskell itself would need to be adapted to incorporate
some form of subtyping and object programming and would eventually need the ability to
extend an existing .NET class. The Haskell community was reluctant to contemplate such
substantial language changes driven by the requirements of a particular platform.

• At the time, almost all Haskell code (if you include libraries) needed technical features that
lacked corresponding .NET support, including higher-kinded type variables, lightweight
concurrency, exceptions (with Haskell’s exception semantics), ephemerons and software
transactional memory. So, even interop aside, it would be hard to claim that any Haskell
program would run well on .NET; only a subset would do so.

So, work on Haskell.NET stopped in late 2000.
The question of OCaml and JVM/.NET was also being discussed on the Caml mailing list around

this time. An example is the following message from myself, on February 6, 2001 [Syme 2001a]:

Subject: OCaml on CLR/JVM? (Was RE: OCaml <−−> ODBC/SQL Server)

> What I cannot find around is a way to easily interrogate and interface
> in OCaml with an ODBC data source...

13See also the later summaryWhy isn’t GHC available for .NET or on the JVM? [Haskell Contributors 2017].
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Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either Java or the .
NET Common Language Runtime seamlessly so we wouldn't have to keep facing these kinds of
questions and problems, and could just leverage existing libraries?

I'm very interested to know if there are people with some time to spare who would be keen to work
with me toward a .NET version of OCaml. I've talked this over from time to time with Xavier, and
have done a lot of foundational work for the core language when building a .NET compiler for
Haskell. If you think would be interested, or would simply like to join a mailing list devoted to
talking about getting Caml running and interoperating on .NET, then please let me know!

This was the first explicit public indication of my desire to create a version of OCaml targeting
.NET. Leroy replied on February 8, 2001 [Leroy 2001]:

I've been working on and off (mostly off, lately) on an OCaml/Java interface that works by coupling
the two systems at the C level via their foreign−function interfaces (Java's JNI and OCaml's C
interface). This was strongly inspired by the work of Erik Meijer et al. on a similar Haskell/Java
interface. (These Haskell guys sure are at the bleeding edge of language interoperability. This is the
second interop idea I steal from them, after the IDL/COM binding.)

The low−level coupling is surprisingly easy, including making the two garbage collectors cooperate:
both the JNI and OCaml's C interface provide enough functionality to get the coupling to work
without ∗any∗ modification on either of the implementations. How nice! The only limitation is that a
cross−heap cycle (a Java object pointing to a Caml block pointing back to the Java object) can never
be reclaimed... (Thanks to Martin Odersky for pointing this out.)

Of course, the low−level interface is type−unsafe, so the real fun is to build a type−safe view of Java
classes and objects as Caml classes and objects, and conversely. I'm still struggling with some of the
issues involved. For instance, it turns out to be much simpler (for the implementation, not for the
final user!) to map Java objects to values of abstract Caml types, and treat methods as functions over
these abstract types, than mapping Java objects to Caml objects. That was quite unexpected!

One thing I learnt is that the real problem with language interoperability is not how to compile
language X to virtual machine Y (this can always be done, albeit more or less efficiently), but rather
how to map between X's data structures and objects and those of all other languages Z1 ... Zn that
also compile down to Y. This is obvious in retrospect, but I think many (myself included) often
overlook this point and believe that compiling to the same virtual machine is necessary and sufficient
for interoperability. It is actually neither necessary nor sufficient...

While this work started with the JVM, I'm pretty sure it can be made to work with the .NET CLR, as
soon as it will have a foreign−function interface with features comparable to those of the JNI. (And I'
m sure this will happen eventually, not only because it makes sense, but also because Java has it, so .
NET must too :−)

Stay tuned for further developments.

This lays out the basic question many languages have faced since: should a language have its own
runtime and interoperate indirectly with .NET and/or the JVM, or should it target those runtimes
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directly?14 Leroy’s response represented a divergence of opinion: Project 7 had envisaged very
close interoperability, sharing one virtual machine including memory, code, reflection, JIT, GC
and library capabilities, and potentially bringing the object system of the host ecosystem into
the language. The approach described by Leroy was, technically, highly sensible for the existing
OCaml implementation, however it didn’t feel right once .NET could be assumed. To me, it would
intrinsically run into performance, interoperability, tooling and other issues at boundaries between
the languages, and adoption would be limited to the intersection of those willing to rely on both
the .NET and OCaml implementations.
The discussion also brought contributions from Dave Berry, based on his prior experience of

implementing Harlequin’s MLWorks [Wikipedia 2019a], a proprietary implementation of Standard
ML (Dave later contracted with MSR Cambridge on an open source version of .NET Generics), on
February 9, 2001 [Berry 2001a]:

> > Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either
> > Java or the .NET Common Language Runtime seamlessly so we wouldn't have to
> > keep facing these kinds of questions and problems, and could just leverage existing
> > libraries?

Although this view is understandable, I think it is rather naive. ... To look at it another way, OCaml
already shares a platform with C (at least with the native−code compiler), so all the C libraries are
already available... Yet it can still be a lot of effort to link with a C library. Why should Java and .
NET be any easier? Also, look at the effort that went into making an ML/Java system with MLj...
Threads are another area of potential problems. In fact they can be a total minefield.

To which I replied on February 10, 2001 [Syme 2001b]:

There's hard work to be done to realise this vision, but in principle a clean interop story sure beats the
endless rehashing of other people's code in language X as a library in language Y. Myself and others
involved in the Project 7 are working on one approach to achieve this interop, i.e. compiling
languages directly to .NET MS−IL, in the style of MLj, often adding extensions to the language in
order to improve the interop. We are also working on improving the .NET infrastructure, proposing
support for features such as parametric polymorphism in MS−IL.

Xavier is also working on a solution for OCaml, as he mentioned, though the problem of how to
reflect the constructs of an object model into ML, Haskell or OCaml remains similar whichever
approach you take to actually running the stuff.

There are several reasons why it is easier: exceptions, for example, can be propagated across the
interop boundary, without any effort at all if you compile to MS−IL or Java bytecode. If you're
compiling to bytecode you can also ensure more compatibilities of representations, e.g. make sure ML
int64's are exactly representationally equivalent to C's int64s. Note if you don't compile to a bytecode
then you even have to marshal integers across the interop boundary in Caml, though this could be
automated.

You can also transfer objects more consistently, as the semantics of the object models of Java and .
NET are fairly simple in contrast to C, e.g. no need to have an IDL to help interpret pointers as "in−
out", "in", "out" parameters.

14Interestingly, this discussion arose directly in the context of data integration, an area that would drive much of the C# and
F# design work in the 2000s.
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While at a certain level I like Xavier's approach, i.e. maintaining two runtimes, garbage collectors etc
., I have troubles seeing it scaling to the multi−language component programming envisioned as part
of .NET approach (and indeed currently in practice with C\#, C++, VB.NET and other .NET
languages). Two GC's are already trouble enough (performance might suck as they will both be tuned
to fill up the cache), but if you have components from 10 languages in one process? 10 GCs
competing for attention? Maybe it can be made to work, but there's a certain conceptual clarity in
just accepting that a GC should form part of the computing infrastructure, and share that service.
These are the aspects of the .NET approach that I find quite compelling.

As an aside, I think it would be an interesting question to say "OK, let's take it for granted that the
end purpose of our language is to produce components whose interface is expressed in terms of the
Java or .NET type systems, but which retains as many of the features and conceptual simplicity of
OCaml and ML as possible." I'm not sure exactly what you'd end up with, but whatever it was it
could be the language to take over from C\# and/or Java (if that's what you're interested in...) But
without really taking Java/.NET component building seriously right from the start I feel you're
always just going to end up with a bit of a hack − an interesting, usable hack perhaps, but not a
really good language.

Probably the greatest recurring technical problem that I see in this kind of work is that of type
inference, and the way both the Java and .NET models rely on both subtyping and overloading to
help make APIs palatable. Type inference just doesn't work well with either subtyping or overloading.
This is a great, great shame, as it's obviously one of the main things ML has to offer to improve
productivity.

P.S. As for threads − I don't think the story is half as bad as you might think. After all, OCaml
threads map down to Windows threads at some point, and I just don't see that there are that many
special logical properties of typical ML and Caml threading libraries that make it semantically
ridiculous to share threads between languages (though it is true asynchronous exceptions can make
things hard when compiling to a bytecode). But I'll admit I'm not an expert on this.

Finally, there was techno-political controversy too, this time in a reply from Fabrice le Fessant on
February 12, 2001 [le Fessant 2001]:

Is the .NET VM open source ? Which part is Microsoft−independent ?...

If Microsoft wants its new product to be used, it is Microsoft problem to port more languages to its
VM, and not only say: "We have ported our homemade languages to it (C\#, C++, VB.NET) [because
it was designed for them], so, you see, we have proved it's the universal VM. Now, do the same for
your languages, or your language will not be used anymore by our customers..."

So, why do we really need a .NET port of OCaml ? OCaml is working fine on Windows, and on many
other OS ...

A discussion thread followed on the merits of open source, standards, interoperability and cross-
platform execution, issues which weren’t resolved for F# for another 13 years, when F#, C# and
.NET Core were finally open source and cross-platform. A contribution by Dave Berry on February
16, 2001 was more positive [Berry 2001b]:
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I think Microsoft should be congratulated on their outreach to programming language researchers. I
for one would certainly welcome a widely distributed VM that is a good target for compiling ML.
Interoperability with other languages on the same VM would be a bonus... That said, interoperability
is still hard...

There were many valid arguments and sensitivities here, and I proceeded from this point determined
to be highly respectful towards OCaml and its existing user base: I genuinely loved the language
and the approach to programming it represented.

Predicting the future trajectory of software infrastructure like .NET and architecture was also an
important factor in making decisions, e.g. in this final response by Arturo Borquez on March 3,
2001 [Borquez 2001]:

Perhaps I am wrong, but let me state what I believe about this stuff.... C\# is not really important as it
will never reach the 'mass' of VB... The real issue is ... the Client/Server model ... In my opinion this
model has no future, ...clients would become minimal.... with a diverse and broad family of client
devices (terminals). My conclusion is CLR/JVM ... are not important for the future of Caml, as all will
die. Caml will need only some library updates to match the communication tech upgrades.

In hindsight, predictions like these were both right and wrong: the structure of applications evolved
extensively, and .NET and the JVM ultimately de-emphasized their role as “middleware”, but
neither .NET nor the JVM have died. Languages and runtimes seem to endure longer than software
architectures.

In mid-2001 the itch remained: how was MSR going to bring strongly typed functional program-
ming to .NET in a way that could be readily adopted by large numbers of programmers? By October
10, 2001 I felt firm enough in this conviction to reply as follows:

When time permits I plan to implement a .NET CLR compiler for Caml. Initially I will implement
only the core language, and perhaps first−order modules, and then to assess things after that. I will
be coding the implementation up from scratch rather than using the sources for the existing OCaml
compiler...

My first reason for doing this is because I have an existing OCaml code base that I would like to
make available as a .NET library... Plus I love Caml, and would like to see it supported on .NET, and I
'm interested in proving that interoperability between functional languages is practical in .NET.

This implementation path would give object introspection capabilities for free. However it would no
doubt be slower than the existing native code Caml implementation: you don't get something for
nothing.

I don't know of any other active efforts to do a .NET compiler for Caml. SML.NET will, hopefully, be
available publicly soon.

So, by late 2001, a viable path appeared possible: to bring a variant of the OCaml language to target
.NET itself. The Project 7 effort around OCaml had led to the above approach by Leroy and didn’t
look likely to continue. This left a space for a new Caml.NET initiative, though one targeting the
.NET IL itself, and in December 2001 I decided to move ahead with an “Caml.NET”. This was later
rebranded “F#” after private discussion with Cedric Fournet and Georges Gonthier, to allow for
greater divergence from OCaml and to bring language experimentation into scope.15

15The “F” in “F#” comes from both “Functional” and “System F”, an elegant variant of simply typed lambda calculus. Today
an F# community saying “F is for Fun”.
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7 EARLY F#—2002–2003
The early conception of F# was simple: to bring the benefits of OCaml to .NET and .NET to OCaml: a
marriage between strongly typed functional programming and .NET. Here “OCaml” meant both the
core of the language itself, and the pragmatic approach to strongly-typed functional programming
it represented. The initial task was relatively well-defined: I would re-implement the core of the
OCaml language and a portion of its base library to target the .NET Common Language Runtime.
The implementation would be fresh, i.e. not using any of the OCaml codebase, for legal clarity.

The first lines of the F# implementation were written in December 2001, a front-end for a re-
implementation of the core Caml syntax targeting ILX as a back end, and thus to .NET. The initial
compiler was written using OCaml (later bootstrapped using F# in 2006).
The initial design choices were subtle. By far the most wide-ranging design decision is easy to

miss in retrospect: after choosing OCaml as a starting point, the most significant design choice made
for F# was that it be a .NET language. Everything else was to be subservient to that goal. In particular,
.NET types are F# types, .NET values are F# values, .NET exceptions (and their semantics) are F#
exceptions (and their semantics), and .NET threads are F# threads. The same was true in reverse
and “two-way interop” was always a design goal. There’s no type translation, no marshalling from
one representation to another. Strings in F# were to be strings in .NET and vice-versa. Types and
functions defined in F# could be used from other .NET languages. This decision gave F# less room
to innovate—more often than not, F# is stuck with whatever .NET does—but it guaranteed two-way
interop. This was a huge reason for starting a new language design, rather than trying to map an
existing language onto .NET. This full identification of types and data goes beyond the question of
having one runtime vs two: even if you have one runtime, a language could still have chosen to use
different representations for (say) a list of integers, represented internally as .NET objects of some
kind, but marshalled when passed to a .NET method: one runtime, but two representations. F#
doesn’t do that: it uses one runtime and, where possible, identical representations. This influenced
many small decisions: for example, from the outset a function declared in F# had a guaranteed,
stable representation in .NET code as a static member of a class with a stable name, and could be
used directly from .NET languages. This also meant F# code could always be accessed via .NET
reflection. Although the first version of F# was initially presented as “Caml-for-.NET”, in reality it
was always a new language, designed for .NET from day 1. F# was never fully compatible with any
version of OCaml, though it shared a compatible subset, and it took Caml-Light and OCaml as its
principal sources of design guidance and inspiration.

In addition, there was the question what not to implement. A notable omission from the design
was the functorial module system of OCaml. Functors were a key part of Standard ML and a
modified form of the feature was included with OCaml, a source of ongoing controversy amongst
theoreticians. I was positively disposed towards functors as a “gold standard” in what parame-
terization could be in a programming language, but was wary of their theoretical complexities.
Furthermore, at the time there were relatively few places where functors were used by practicing
OCaml programmers. One part of the OCaml module system—nested module definitions—was
eventually included in the design of F#. However, functors were perceived to be awkward to im-
plement in a direct way on .NET and it was hard to justify their inclusion in a language design
alongside .NET object programming. Another decision was not to include any OCaml 3.0 features,
specifically neither the object system nor the recently added “named arguments” feature. Leroy’s
email above explains the issues regarding the object system: there was sufficient disparity and
mismatch between the object systems of .NET and OCaml that the latter couldn’t be used for the
former. The OCaml pre-processor CamlP4 was also not supported, though CamlLex and CamlYacc
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could be used. The question of the object system would be dealt with later. However, this meant
that F# and OCaml diverged as of the core language of OCaml 2.0.

The first release (v0.1, soon replaced by 0.5) was made near-silently on June 4 2002 as an addition
to the ILX project, making the following claims on the website [Syme 2002]:

Mixed functional/imperative programming is a fantastic paradigm for many programming tasks....
You can access hundreds of .NET libraries using F#...F# is an implementation of the core of the Caml
programming language for the .NET Framework, along with cross−language extensions. ...The aim is
to have it work together seamlessly with C#, Visual Basic, SML.NET and other .NET programming
languages...Types and values in an ML program can be accessed from some significant languages (e.g.
C#) in a predictable and friendly way. ...F# provides an implementation of a subset of the OCaml
libraries as well as the ability to access .NET libraries. Using the .NET libraries is optional.... F#
supports features that are often missing from ML implementations such as Unicode strings and
dynamic linking... Tooling consists of a simple command line compiler, supporting separate
compilation, debug information and optimization... F# is, as far as I know, the first ML compiler to
have good binary−compatibility and versioning properties....

Some hurdles had been cleared along the way. MSR granted permission to allow commercial use
of programs compiled with ILX and this permission was recycled for the F# implementation. Next,
at a conference I asked Leroy for tacit approval in putting out a variant of Caml for .NET, including
making changes to the language design. Leroy approved—OCaml itself was part of a long history
of adapting and modifying the core ML—and what was research if we didn’t experiment? In a later
email reply Leroy said:

Don Syme and his Microsoft Cambridge colleagues did a great job with adding parametric
polymorphism to the .NET framework −− something that was initially overlooked in .NET −−, and I'
m very happy that they chose core Caml to demonstrate this extension in action. https://caml.inria.fr/
pub/ml−archives/caml−list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html

To which I replied [Syme 2001c]

And I'm even more grateful to Xavier and the team for doing such a great job with OCaml over the
years, and for providing a solid core language, an excellent runtime system and the very interesting
set of language features they've added to the core. Core Caml provides a great starting point for work
of all kinds: I used it in my PhD thesis, for example, as the term language for a theorem prover.

I chose to implement a core Caml compiler for .NET partly to test out generics, but also because I
want to be able to program against .NET libraries using the language I love to program in, and reuse
the libraries and techniques I've developed. I guess it's possible I'll get a bit of flak from the Caml
community about F#. Being at Microsoft Research I presume I'll be writing a fair bit of .NET code
sooner or late, and personally I'd rather do that in Caml/F# than C#... I hope the Caml community
won't mind me making that opportunity available to others via the public release of F#.

The first real design-work began with the addition of the ability to access .NET object types via the
dot-notation.:

C# and other .NET languages can be directly accessed from F#... Types are accessed using the "
Namespace.Type" notation. You may simply use "Type" if an "open Namespace" declaration has been
given. Instance members are accessed using "obj.Method(arg1,...,argN)" or "obj.Property" or "obj.Field".
Static members are accessed using "Namespace.Type.Method(arg1,...,argN)" or "Type.Method(arg1,...,
argN)", similarly for properties and fields.
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While seemingly innocuous, this design decision broke with OCaml and a long tradition of ML
language design: it used inferred type information in name resolution. A name like M in obj.M
was now resolved immediately using the partially inferred type of obj rather than by adding a
new inference constraint. This meant that type annotations would now sometimes be needed,
compromising one of the traditional “rules” of ML (i.e. that type annotations are strictly optional),
and that inference becomes “algorithmic” or “left-to-right”:

Typing. Sometimes extra annotations are needed to get the program to typecheck, e.g. casts using "(
cast <expr> : <type>)" and type annotations to help resolve overloading.

I decided that if the inference algorithm was well-defined and kept stable, this would be sufficient
for interoperability purposes. In practice, the use of partially inferred type information in name
resolution proved effective and stable and was kept throughout the evolution of F#. Type inference
was eventually specified algorithmically in the language specification.

Another design question was about nulls. The question was not one of safety: like the JVM, the
.NET runtime would itself perform null checks when values were accessed. Instead, it was a matter
of program correctness. The SML.NET system had “sanitized” all interop calls by inserting the
Standard ML “option” type with tags SOME/NONE at all relevant points. In F#, I decided not to do
this:

Null. Null objects returned by the .NET assemblies are NOT checked by the process of importing the
assemblies or by the F# type system. This may be addressed in the future, but for the moment use the
"nonnull" function from Pervasives to check if values are null and the "null" value from Obj to create
a new null value. https://web.archive.org/web/20020814185220/http://research.microsoft.com:80/
projects/ilx/fsharp−manual−import−interop.htm

Instead, the rule adopted was that .NET-declared types would allow the use of “null”, while F#-
declared nominal types would not. This kept a strict approach to nullness within F#-only code, in
keeping with OCaml but allowed the use of null in interop scenarios with .NET types. This was
partly because of ergonomics: the insertion of the option type was highly intrusive on programming
and nulls were not used as pervasively in the .NET libraries as in Java, so in balance the need for a
pleasant programming experience outweighed the need for null-safety at interoperability. Further,
I felt that the topic of null-safety should be dealt with systematically across all .NET languages, as
we had done with .NET Generics.16

Initially, early F# avoided adding object programming declarations:

Currently you cannot declare new classes or implement interfaces in F#. For the moment workaround
this by declaring a new class in C# that accepts delegate parameters to implement the virtual/
interface members, and then pass function values from F# to the C# class. You will only need to write
this C# class once.

Further, contrary to the warnings from Dave Berry and others in the email threads shown earlier,
no design work was needed for threading: F# simply assumed the same threading model as .NET
itself, which essentially mapped .NET threads to operating system threads.

8 EARLY F#—RELEASE
F# “0.5” was little noticed at first, deliberately: the initial implementation was lacking in many ways
and needed time to settle. Initially, the plan was as follows:
(1) Make the language viable for adoption and use.

16This position eventually bore fruit in 2018 when C# 9.0 finally began the transition to assuming non-nullness by default
for reference types, discussed in the retrospective.
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(2) Use it to stress-test .NET Generics.
(3) Get it out to the public.
(4) See where things led.
I had been influenced by my time at Intel Strategic CAD Laboratories, which used a structured

“maturity model” for research projects and technology development: projects at Intel would proceed
from “concept” to “proof of concept” to “prototype” and then through a product delivery phase.
Thus there was no Microsoft “buy-in” at this stage: few at the company knew of F# apart from
those in MSR Cambridge and their .NET team contacts. 6 months later, after several iterations, the
project got noticed by Internet news sites, always keen for the latest scoop, and I decided to make a
clarification on the OCaml mailing list in case things “got out of hand” before the implementation
was fully ready, and in case accusations of “embrace, extend, extinguish” emerged [Boulton 2003].

There have been some utterly speculative (and entirely off−the−mark!!) internet press reports about
this project in the last few days (e.g. see internetnews.com).... I thought it wise to add the following
clarification to the F# website and to post it to this list.

...Despite reports suggesting otherwise, F# is a relatively small research project designed to
demonstrate that it is possible to easily implement ML−like languages for use on the .NET
Framework. There are no current plans to commercialize F#.... F# is public, on−going research, and
Microsoft Research regularly and openly collaborates with universities on programming languages

The fact that F# needed to be down-played initially was partly due to the sensitivities around
launching anything “product-like” at the time from MSR.17 At the time, all public software by
MSR had an awkward legal/commercial status: publication of software was primarily to support
a research/publication agenda. Despite a budget nearing $1B, the organization was not at that
stage permitted to make and release commercial products. MSR strongly encouraged open research,
but open software was more problematic. However, designing and delivering new programming
languages was an essential part of any PL research agenda, and indeed the whole rationale behind
Project 7. Further, external “proofing” of these technologies was critical to refine them.
External perceptions were also tricky to manage: from the perspective of computer science

academia and hacker culture, corporations in general—and Microsoft in particular—were often
seen as structural adversaries. Offerings from MSR were even feared, and one leading researcher
suggested that F# would “kill off” language research. In retrospect such ideas seem laughable—PL
research has bloomed in the last 15 years and hundreds of new languages have been developed—but
these views stemmed from anti-commercial biases, fear of a perceived monopolist, and Microsoft’s
opposition to open source software at the time.

Either way, my belief was that, in the area of programming languages, you had to go public and
be commercially usable in order to influence programming practice, and to be true to both the
spirit of research and the original goals of Project 7. Later, other cutting-edge MSR projects would
not reach their full potential, because they didn’t make the commercially usable releases necessary
to proof the technologies and gain evidence of their utility in sufficient time to occupy a market
niche, examples include Accelerator and Dryad LINQ. On the other hand, MSR provided a good
“institutional home” for a language, given its concentration of expertise and its long-term mission
to change computing. Lab directors and managers such as Andrew Herbert, Andrew Blake, Luca
Cardelli and Byron Cook would be consistently supportive of the work on F# over a long period of
17One reviewer queried whether the final statement about “no current plans to commercialize” was accurate when written.
I can confirm this was the case: there was no plan at the time to commercialize F#, either as part of Visual Studio nor any
other path. There were a vague aspirations on the part of the author (and the MSR managers who approved the release) that
it might prove commercially relevant.
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Fig. 3. Two posters for F# 1.0 at MSR TechFest 2005 (photos by author)

time. However, doing a public, commercially usable language offering via MSR was not going to be
plain sailing, and the support of the product teams would ultimately be needed.

9 F# 1.0, 2004–2006—OVERVIEW
After completing .NET Generics in mid-2004, the rest of the year saw intense work on improving
F#. At this stage, .NET was on the ascendency inside Microsoft and it achieved widespread external
success on the back of a huge evangelization effort: most programming for the Windows platform
moved over to C# and .NET worldwide. A massive shift towards .NET also happened internally: the
Windows team started major initiatives, including a rewrite of the Windows “shell” and the creation
of many major .NET projects such as Windows Presentation Foundation, Windows Communication
Foundation and Windows Workflow Foundation.

On January 5, 2005, a pre-release of F# 1.0 was declared in my first MSDN (Microsoft Developer
Network) blog entry [Syme 2005].18 In March 2005, F# 1.0 was first demonstrated at “TechFest”, an
internal MSR trade-show in Redmond.
F# developed in crucial ways during 2004-06. Based on successful trials, and with the support

of Byron Cook, MSR manager Luca Cardelli agreed to add developer support to the project. On
February 10, 2005 we were able to advertise and on 24 March 2005, James Margetson joined to form
a small team with interns (Dominic Cooney, May-July 2004, Gregory Neverov June-August 2006).
Small internal and external user communities grew and trust in the project began to form. The
technical additions made to F# during this time were as follows:
(1) Completion of the core Caml-like language programming model (2004)
(2) Targeting .NET generics (2004)
(3) Addition of initialization graphs (2004)
(4) Addition of method overload resolution and object-expressions for interoperability with .NET

(2004)
(5) Addition of “statically resolved type parameters” for handling overloaded arithmetic in a

way that fits with Hindley-Milner type inference (2005)
(6) Addition of class/interface constructs for object programming (2005)
(7) Addition of implicit class construction (2006)

18At the time, individual blogging on MSDN was encouraged by management and proved a positive way for those involved
with F# to utilize Microsoft’s positive brand with developers.
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(8) Addition of the “light” indentation-aware syntax (2006)
(9) Addition of a treatment of subtyping within Hindley-Milner type inference (2006)
(10) Addition of runtime meta-programming via quotations (2006)
(11) Addition of F# Interactive, a REPL for F# (2006)
(12) Initial Visual Studio tooling (2006)
(13) Bootstrapping (2006)
(14) Execution on Linux using Mono (2006)

Fig. 4. The “DirectX 3D” demo used in early F# evan-
gelism (screenshot by author)

To “proof” the language we turned to some
existing OCaml codebases at MSR including the
SPiM (Stochastic Pi Machine), Static Driver Ver-
ifier and Terminator projects. These tests were
successful, for example allowing the addition
of a Windows-based GUI to SPiM. During this
time, James Margetson was responsible for per-
formance testing and supporting the internal
use of F# on these projects by Andrew Phillips,
Jakob Lichtenberg and Byron Cook. Marget-
son also implemented the first REPL for F# and
created numerous compelling demonstrations
of interactive development using F# scripting
and the REPL, including the famous “DirectX”
scripting showing playful interactive construc-
tion of a 3D graphics scene, see Figure 4. The
author and Margetson were responsible for documentation and releases. Andrew Herbert and Luca
Cardelli were the responsible MSR managers at this time.

During this time F# was not the result of a “meeting of minds” amongst MSR Cambridge language
researchers, but rather myself and collaborators pursuing a series of design additions to the initial
implementation, with the help of some feedback from colleagues, users, researcher networks
such as WG2.8 and an emerging worldwide community. The design conversations in the external
community on mailing lists and in blog responses were encouraging, and internal and external
adoption was growing steadily.

9.1 F# 1.0—Pipelines
One of the first things to become associated with F# was also one of the simplest: the “pipe-forward”
operator, added to the F# standard library in 2003:

let (|>) x f = f x

In conjunction with curried function application this allows an intermediate result to be passed
through a chain of functions, e.g.

[ 1 .. 10 ]
|> List.map (fun x -> x *x)
|> List.filter (fun x -> x % 2 = 0)

instead of

List.filter (fun x -> x % 2 = 0)
(List.map (fun x -> x *x) [ 1 .. 10 ])
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Despite being heavily associated with F#, the use of the pipeline symbol in ML dialects actually
originates from Tobias Nipkow, in May 1994 (with obvious semiotic inspiration from UNIX pipes)
[archives 1994; Syme 2011].

... I promised to dig into my old mail folders to uncover the true story behind |> in Isabelle/ML, which
also turned out popular in F#...

In the attachment you find the original mail thread of the three of us [ Larry Paulson; Tobias Nipkow;
Marius Wenzel], coming up with this now indispensable piece of ML art in April/May 1994. The mail
exchange starts as a response of Larry to my changes.

...Tobias ...came up with the actual name |> in the end...

The use of the pipeline symbol is particularly important in F# because type-inference is propagated
left-to-right and name resolution occurs based on information available earlier in the program. For
example, the following passes type checking without an explicit type annotation:

let data = [ "one"; "two"; "three" ]

data |> List.map (fun s -> s.Length)

In contrast the following requires an explicit type annotation:
let data = [ "one"; "two"; "three" ]

List.map (fun (s: string) -> s.Length) data

The F# library also defined two and three-argument pipeline operators, e.g.
let (||>) (x1, x2) f = f x1 x2

(0, data) ||> List.fold (fun count s -> count + s.Length)

9.2 F# 1.0—Tackling Object Programming
From the outset, F# consumed class and interface definitions from .NET. Being a functional language,
it was natural to begin by supporting an expression-based form of object implementations akin to
function closures. F# 1.0 described these as follows:19

An object expression declares an implementation and/or extension of a class or interface. For example,
the following specifies an object that implements the .NET IComparer interface:

{ new IComparer with Compare(a,b) = compare a b }

After attempts to allow .NET classes to be declared using OCaml-like record types, on April 27,
2005 I began the process of designing the object-programming extensions for F#, through an email
to Dominic Cooney (no longer an intern, but experienced in using F# and a sounding board for
private discussions):

We're continually coming across the need to be able to present F# APIs in a more OO way...I'm
wondering if I could run some drafts of both the language mechanisms and the API itself by you for
your comments, since you are so familiar with both the library and the standards expected of .NET
libraries.

In the next iteration of the discussion on May 19, 2005 the F# object programming syntax took its
near-final form (with the exclusion of implicit constructors, added later):
19Surprisingly this feature is yet to make it into any version of C#.
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type X =
override x.ToString() = "abc"

member x.InstanceProperty = "fooproperty"

member x.MutableInstanceProperty
with get() = "fooproperty"
and set(v) = System.Console.WriteLine("mutated!")

member x.InstanceIndexer
with get(v) = v+1

member x.InstanceMethod(s1) = "baz"

static member StaticProperty = "fooproperty"

static member MutableStaticProperty
with get() = "fooproperty"
and set(v) = System.Console.WriteLine("mutated!")

static member StaticMethod(s1,s2) = "static method"

In this syntax, “x” is the name of the “this” or “self” parameter and its use in declarations such as
member x.InstanceProperty represent binding occurrences. The decision to use a user-defined
explicit name for this parameter was partly driven by similar decisions in the OCaml system,
and partly by the feeling of horror I had experienced while refereeing an academic paper on the
subtleties of the resolution of “this” in Java inner classes. Since nesting of such constructs would
eventually be required, and considered normal in an ML-family language, it would be better to
require an explicit name.
In retrospect, the addition of object programming to F# was a process of “deconstruction” of

object-orientation into its essential elements of roughly 20 individual features: dot-notation, classes,
method-overloading and so on. I later formalized this list in a private email as follows.

(1) Object programming features acceptable in F#:
(a) Instance properties and methods and type-directed name resolution
(b) Implicit constructors
(c) Static members, i.e. using type names as qualifiers
(d) Indexer notation arr.[x]
(e) Named and optional arguments on methods
(f) Non-hierarchical interface types
(g) Object expressions
(h) Explicit interface implementation on object, record and union types

(2) Object programming features in F# that are “ok when really necessary for performance or API
design”:

(a) Mutable data
(b) Defining events
(c) Defining operators on types
(d) Auto properties
(e) Implementing IDisposable and IEnumerable
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(f) Tasteful uses of type extensions
(g) Structs (for performance)
(h) Delegates (for interop)
(i) Enums (for interop)
(j) Method overloading
(k) Additional primary constructors (a form of overloading)

(3) Object programming features in F# that “avoid where possible”:
(a) Implementation inheritance
(b) Nulls and Unchecked.defaultof<_>

(4) Object programming features that are not supported at all:
(a) Protected members (they encourage implementation inheritance)
(b) Anything to do with aspect oriented programming

Through this process features were progressively incorporated into F# in a way that preserved the
essence of the core expression language and emphasized delegation over inheritance. I summarize
this today by stating that “F# embraces ‘object’ programming and de-emphasizes ‘object-oriented’
programming, especially implementation inheritance” [Syme 2018]. For example, the “protected”
accessibility modifier is not supported even to this day in F#, since it is perceived to encourage
implementation inheritance.
F# 1.0 included the ability to write let mutable x = ... declarations in expressions, class

bindings and module-level bindings. Initially such values could not be accessed in closures and
were only for writing interoperability code. Later, in F# 3.1 this restriction was lifted thanks to
work by Matthew Parkinson to implement a compiler transformation to implicitly convert these to
reference cells.

F# was by no means the only language deconstructing object-oriented programming around this
time. Some of this has been discussed in the prior section on the reactions to object-orientation
by the academic programming language design community, including the GJ and Pizza languages.
Other examples include Effective Java [Bloch 2001], emphasizing composition over inheritance.

9.3 F# 1.0—Improving the Functional Core: Initialization Graphs
The first novel feature added to F# was an adjustment to initialization and recursion of a kind not
previously used in strongly typed functional languages. At the time OCaml already supported
recursive definitions of functions (as with all functional languages), and definitions of recursively-
referential data such as the following:

let xs = 1 :: xs

Here “::” is the OCaml “cons” operator, and the declaration gives an infinite list of ‘1’ values. This
is implemented by creating a single allocate cons-cell and “fixing up” the tail pointer to point back
to the value itself. However this technique only applies when allocating values. It doesn’t support
functional abstraction, and doesn’t apply when any computation is involved in value construction.

The F# approach to this problem area was designed and implemented initially in mid-2004 and
presented internally at MSR Cambridge on September 4, 2004 then at the MLWorkshop 2005 [Syme
2006f]. This feature was inspired by the above OCaml feature, and hallway conversations with
Georges Gonthier and the idea of giving “co-inductive” interpretations to recursive definitions
wherever possible. Co-inductive techniques—including co-inductive algebras as an interpretation
of object-orientation—was a popular research topic at the time. In the 2004 presentation, I focused
on how to define networks of “reactive objects”:
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Forget subtyping. Forget inheritance. The restrictions on self−referential and mutually−referential
objects is what makes ML a poor GUI programming language....At least when driving reasonable
libraries such as System.Windows.Forms, and the problem gets worse the more "declarative" a library
gets.... C# "solves" this through a mishmash of implicit nulls and/or "create−and−configure" APIs.
ML "solves" it in a similar way. F# permits the above techniques, but offers another solution...

The solution offered was to extend the “let rec” construct to allow the definition of not just functions
and directly-allocated recursively-referential data, but also a graph of values and objects produced
via computation, described as follows:

F# permits you to write values (and not just functions) whose specifications appear to refer to
themselves, but where the recursive references are hidden inside delayed values such as inner
functions, other recursive functions, anonymous 'fun' lambdas, lazy computations, and the 'methods'
of object−implementation expressions.

The recursion is 'runtime checked' because there is a possibility that the computations involved in
evaluating the bindings may actually take the delayed computations and execute them. The F#
compiler inserts delays and thunks so that if runtime recursive reference does occur then an exception
will be raised.

The recursion is 'reactive' because it only really makes sense to use this when defining automaton
such as forms, controls and services that respond to various inputs and make self−referential
modifications as a result. A simple example is the following menu item, which prints out part of its
state as part of its action:

let rec menuItem =
new MenuItem("Say Hello",

EventHandler(fun e -> printf "Hello %s\n" menuItem.Text),
Shortcut.CtrlH)

A compiler warning is given because in theory the "new MenuItem" constructor could evaluate the
callback as part of the construction process, in which case a self−reference would have occurred −
and F# can't prove this won't happen.

The ML Workshop paper describes the historical precursors to this feature and its technical basis—
“recursive use exceptions” can be produced during initialization but once initialization succeeds
no further exceptions are possible. The feature is still used occasionally in F# today, and it later
influenced aspects of the design of F# object programming: in F# 2.0 class definitions, virtual calls
that “recursively” invoke object members in sub-classes during object construction are checked for
initialization safety and will raise an exception if reentrancy occurs before initialization is complete.

9.4 F# 1.0—Improving the Functional Core: Overloaded Arithmetic
Among the obvious problems of OCaml was the question of overloaded arithmetic. OCaml had
avoided adding type classes in the style of Haskell (discussed below) and had instead adopted a
syntax-disambiguated approach to integer and floating-point arithmetic, e.g.

let x1 = 1 + 1 (* an integer*)
let x2 = 1.0 +. 2.0 (* a floating point number, note the +. instead of + *)

This approach was practical for symbolic programming, which did not use numeric types
extensively, but impractical in the context of .NET, which had its own standards in this area.
For example, a type supporting overloaded arithmetic would indicate this by supporting a static
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member call op_Addition. The F# approach to solving this problemwas inspired by work on HM(X)
and G’Caml, a proposal for treating these issues in OCaml [Furuse 2002]. Specifically, “method
constraints” were added, introduced by a deliberately baroque syntax:

let inline (+) (x: ^T) (y: ^U) : ^V =
((^T or ^U): (static member op_Addition : ^T * ^U -> ^V) (x, y))

This definition says that any use of “+” is implemented via inlining a call to an appropriately-
typed op_Addition method, defined on the type T̂ or Û, i.e. the type of either the left-hand or
right-hand argument. The T̂ notation for type variables indicates statically resolved type parameters
(SRTP), i.e. type parameters which are resolved to a nominal type at compile-time. The inline
keyword was added to F# only to support this construct: by inlining, the constraint would be
resolved according to the types available at point of use. This allows overloaded arithmetic to
integrate neatly with Hindley-Milner type inference, and code to take a more natural form:

let x1 = 1 + 1 // an integer
let x2 = 1.0 + 2.0 // a floating point number
let x3 = DateTime.Now + TimeSpan.Years(1.0) // a date

SRTPs subsequently got used more generally in F# as a mechanism for constrained generics,
though originally it was only specifically designed to cope with overloaded arithmetic.
Many alternative approaches to overloaded arithmetic existed at this time, including Haskell

type classes [Hudak et al. 2007; Peyton Jones et al. 1997; Wadler and Blott 1989] and C++ templates
[Stroustrup 2013], both of which were well known to the author. The use of inline for code that
is generic with respect to SRTP constraints was inspired by the process of inlining, flattening
and specialization used by nearly all C++ compilers. Haskell-style type classes were rejected as a
solution because they add a new kind of top-level declaration to the language used for categorizing,
organizing and structuring code—in Haskell this is called a “class” but a new term would be needed
due to conflict with object-programming terminology. Further, there would be many technical
design interactions to resolve with the object-programming constructs included in F# 1.0. Another
concern was performance: type classes are normally implemented via “witness-passing”, which
can cause situations where smaller changes to code give significant changes in performance for
arithmetic code due to indirect calls to witnesses: this kind of performance discontinuity is not
present when using C++ templates nor the code-inlining approach of SRTP. Finally, type classes
were undergoing considerable research and evolution at this time, including research by Simon
Peyton-Jones looking at combining themwith object-programming features. This work only seemed
to require significant additional complexity. Type classes are, however, an oft-requested feature for
F# today, discussed in the retrospective at the end of this paper.

9.5 F# 1.0—Improving the Functional Core: Active Patterns
Since the 1980s, one of the best-loved features of strongly-typed functional programming languages
has been pattern matching, represented in F# and OCaml by the match ... with ... construct. Since
Wadler’s work on views [Wadler 1987] it had been recognized that pattern matching suffered a lack
of abstraction: you couldn’t write new pattern matching constructs for existing or abstract data
types. During the “proofing” of F# in 2005 the importance of this problem in real-world OCaml
codebases like SPiM and Static Driver Verifier became obvious to me: there were many cases in
those codebases where implementation details of types were “leaking out” into code through pattern
matching, making changes of core representations difficult. In early 2006 I began the process of
deciding what to do about this for F#. One of the contributing influences in my mind at this time
was the experience of desiging and using a “proof decomposition” construct to the proof language
of the DECLARE theorem prover [Syme 1999b]. The decomposition construct plays a similar
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role as pattern matching but arbitrary decomposition steps can be performed with a subsequent
proof obligation. This convinced me that programming languages were fundamentally missing an
extensible decomposition construct and that such a construct needed to be simple and easy to use.

The idea of “active patterns” or “views” had featured in academia but had never been implemented
in a practical strongly-typed FP system [Erwig 1996]. Since F# had to interoperate with .NET object
types whose representations were private, it became natural to add extensible pattern matching. In
May 2006, Gregory Neverov joined as an intern and was assigned this topic. A prototype emerged
quickly, and was presented at WG 2.8, July 16-21, Boston [Hinze 2019]. Simon Peyton Jones gave
very helpful advice for F# at this time, recounting the various attempts to add view patterns to
Haskell, an emphasizing the need for “bang for buck” in such a feature, i.e. simplicity of declaration
and use. An initial implementation of F# active patterns was released in August 2006, an ICFP paper
followed [Syme et al. 2007], and the feature remains a very widely used part of the F# language
[Syme 2006i].
F# active patterns allow for partial, complete and multi-case patterns. Here is an example of

defining partial active patterns to parse a string into an integer or boolean:

// create an active pattern
let (|Int|_|) str =

match System.Int32.TryParse(str) with
| (true, i) -> Some i
| _ -> None

// create an active pattern
let (|Bool|_|) str =

match System.Boolean.TryParse(str) with
| (true, b) -> Some b
| _ -> None

Once these patterns have been set up, they can be used as part of a normal “match..with” expression.

// create a function to call the patterns
let testParse str =

match str with
| Int i -> printfn "The value is an int '%i'" i
| Bool b -> printfn "The value is a bool '%b'" b
| _ -> printfn "The value '%s' is something else" str

// test
testParse "12"
testParse "true"
testParse "abc"

The design quickly had influence beyond F#. One attendee of the WG2.8 workshop mentioned
above was Martin Odersky, and on July 25, 2006 he replied:

I enjoyed a lot discussing with you at the WG 2.8. I have been thinking how to do active patterns in
Scala. It seems I can replace existentials by dependent types. It is less clear to me at present is how to
do GADT like behaviour.
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From this email and the first EPFL paper [Emir et al. 2007], it seems that the addition of active
patterns to F# had some impact on the design of Scala. The final versions of the respective mecha-
nisms for F# (active patterns) and Scala (extractors) were designed and implemented around the
same time.

9.6 F# 1.0—Improving the Functional Core: First-Class Events
Early F# applications included GUI programming for systems like SPiM, and inevitably reactive,
asynchronous and event-based programming received greater emphasis in F# than in previous
ML-family language designs. .NET metadata and C# included a built-in notion of “event”. However,
this concept sits uneasily in a typed functional language design, for two reasons:
(1) C# events are “built-in” to the language and .NET metadata, when the intuition is that they

belong in a library
(2) C# events can’t be treated as first-class values.
In the process of designing the F# object system—and in order to simplify and regularize it—“first-

class events” were designed as an F# language and library extension and released on March 23, 2006
[Syme 2006b].20 The aim was to make .NET events look and feel as if they were just library-defined
values, and further allow the combination of events as first-class event values. A representative
code sample for first-class events was:
let mouseMove =

form.MouseMove
|> Event.filter (fun e -> e.Button = MouseButtons.Left)
|> Event.filter (fun _ -> inputMenuItem.Checked)

Here form.MouseMove is a first-class event allowing registration and de-registration of handlers.
The event composition filters triggers of form.MouseMove to generate a new event that only fires
when the Left mouse button is down and a particular menu item is checked. Common patterns
of event composition, filtering, combination and transformation can now begin to be abstracted.
The addition of this feature directly influenced Wes Dyer, leading to the creation of the Reactive
Extensions (Rx) project with Erik Meijer [Dyer 2009]. Registering event handlers has implications
for memory leaks, later dealt with by converting this part of the F# programming model to use the
IObservable type from Rx. This topic also led to an F#-related publication by Petricek and Syme on
garbage collection in reactive systems [Petricek and Syme 2010].

9.7 F# 1.0—Improving the Functional Core: async/await
In April 2007, I spent a six-week sabbatical at EPFL with Martin Odersky in Lausanne. Odersky
was then developing Scala, an exciting time for that language and group. Partly through this
visit another important idea was seeded and eventually added to the core F# design: computation
expressions and their application to asynchronous programming. This would still be influencing
C# years later, in C# 5.0 (async/await) and 8.0 (async sequences), and in turn influence many other
languages.
The problems addressed by computation expressions and “async” were as follows. First, from

2003 there was an increasing focus on multi-core and parallel processing in commodity computing
systems. Further, the rise of web-programming put server-side concurrency and client-side long-
running web-requests to the fore. Additionally, in the context of Windows, it could be assumed
that “operating system threads were expensive”, thus ruling out approaches to concurrency based
purely on OS threading. This combination of factors gradually led languages and frameworks to
20Note, F# first-class event values are not directly related to “event” values in Concurrent ML, a concurrent programming
framework implemented in Standard ML in the 1990s.
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take a strong point of view on concurrency and user-level threading. For .NET the focus of C# work
at the time was on shared-memory primitives and locking [Duffy 2008]. While good for low-level
high-performance primitives, the .NET community were crying out for better, more productive
abstractions. For many other languages, the focus was on actor-like message queueing systems,
futures or continuations.

From the theoretical side, it had long been recognized:
(1) Async was a form of monadic programming [Wadler 1995] implemented via continuation

passing;
(2) Adding “syntactic sugar” for monadic computations would make an expressive addition to a

programming or specification language [Hudak et al. 2007].
At EPFL in 2007, I noticed that Philipp Haller had added a react { ... } construct for message

processing in Scala [Haller and Odersky 2009], and realized that some kind of primitive construct
to deal with asynchronous programming was going to be needed in F#. C# had added “iterators” in
C# 2.0 (again initiated by MSR) and this also featured an implicit inversion of control-flow which
was of interest in the context of async programming.

Ideas around async programming had also been floating around the OCaml community and
its mailing lists, especially through the async implementation used in the system MLDonkey by
Fabrice le Fessant, begun in 2001 [Wikipedia 2019c]. Haskell had added monadic syntax.21 At
that time, however, no strict functional language had a suitable extensible syntax allowing the
re-interpretation of all control constructs in asynchronous form, and in OCaml and Standard ML
libraries of functional combinators were generally used instead.
On returning from EPFL, I discussed these problems with Margetson around May 2007, who

emphasized the importance of monads in implementing async programming. This led me to finally
experiment with adding a monadic syntax to F# and apply it to asynchronous programming,
leading to the addition of async { ... } to F# in 2007 [Syme et al. 2011]. On October 10, 2007 we
announced these features in the blog post Introducing F# Asynchronous Workflows [Syme 2007b].
Representative async code samples used in the blog posts at the time were as follows:

let task1 = async { return 10+10 }
let task2 = async { return 20+20 }
Async.Run (Async.Parallel [ task1; task2 ])

Here:
• async { return 10+10 } generates an object of type Async<int>.
• Async.Parallel [ task1; task2 ] composes two task specifications generating a new
value of type Async<int[]>

• Async.Run takes this and runs it, returning the array [20; 40].
The notation async { ... } refers to an async expression. Within such an expression a syntax

let! can be used, so the interpretation of code such as:
async {

let! x = p1
let! y = p2
let z = x + y
return z + y

}

is
21The addition of monadic “do” notation to Haskell derives from its addition to Gofer by Mark Jones in 1994, who credits
influence from [Launchbury 1993].
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async.Bind(p1, (fun x ->
async.Bind(p2, (fun y ->

let z = x + y in
async.Return(z + y))))

This raised the question of generalizing the notational mechanism to be suitable for more than just
“async” programming, and in F# the generalization is called computation expressions.

9.8 F# 1.0—Improving the Functional Core: Computation Expressions
F# computation expression notation began with “async“, however other important background
included Haskell list comprehension syntax [Haskell Contributors 2019], Haskell “do notation”
[Haskell Contributors 2020a] and Haskell’s experimental “arrow” syntax [Paterson 2020]. In Haskell
these are separate syntactic mechanisms. Other background includes C# LINQ expressions [Mi-
crosoft 2019] and many theorem proving systems had generic notational extensions.

There were important methodological differences at work here. Traditionally Haskell methodol-
ogy had focused on identifying objects of semantic interest (e.g. “monads”, meant semantically not
syntactically), including semantic axioms that characterised these as closely as possible. In Haskell,
type classes were then defined that correspond to the operations for these objects, along with the
(unchecked) equational properties expected of any instance of that type class. Finally, notation
was added (e.g. do-notation) usable with any instance of the type class. In this way of working,
semantic analysis was prioritised, and “expressivity” focused on the semantic theory of the objects
of study, not the notation in the language.
An important exception to this way of working was Wadler and Peyton Jones’ paper Com-

prehensive Comprehensions [Peyton Jones and Wadler 2007] which “adds expressive power to
comprehensions”, i.e. adds power to the notation, not to the semantics of lists, thus emphasizing in
my mind that notation itself could be the subject of genuine improvement. This paper (and my
own 1:1 discussions with Peyton Jones at Microsoft Research during 2004-2010) had a significant
influence on the development of F# CEs and the range of expression they needed to cover. Whether
notational expressivity is regarded as a significant subject of discussion in programming language
design is a matter of emphasis, and the academic tradition from which F# stems largely shies
away from the topic. My own personal experience as a programmer was that it mattered greatly
from a human usability perspective, especially when aligned with other ergonomic issues such
as the ease with which code can be converted from “non-monadic” to “monadic” form (e.g. from
synchronous to asynchronous). This ease-of-transition of code formed a key part of the design ethos
and training material for F# async programming—see for example Luca Bolognese’s well-received
2008 presentation on F# [Bolognese 2008]. To achieve ease-of-transition, F# emphasises notational
similarity between regular code, list comprehensions and asynchronous code. In contrast, the
design of C# LINQ notation, Haskell list comprehensions and Haskell do-notation all emphasise
notational difference: they are designed to be visibly different notational forms compared to their
respective host languages.
From a technical point-of-view, F# computation expressions (CEs) are specified as a syntactic

de-sugaring of language elements [Syme 2020]. The de-sugaring is done for an overall expression
builder { ... } where the builder is, for example, seq or async, which are bound to objects
with specific methods, used as described below. The following F#/OCaml control syntax elements
can be used in the body of the expression:
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let! 𝑝𝑎𝑡 = 𝑒1 in 𝑒2 (requires Bind method)
for 𝑝𝑎𝑡 in 𝑒0 do 𝑒1 (requires For method)
while 𝑒1 do 𝑒2 (requires While method)
𝑒1; 𝑒2 (requires Combine method)
try 𝑒1 with exn -> 𝑒2 (requires TryWith method)
try 𝑒1 finally 𝑒2 (requires TryFinally method)
return 𝑒 (requires Return method)
return! 𝑒 (requires ReturnFrom method)
yield 𝑒 (requires Yield method)
𝑒 (implicit yield, requires Yield method)
yield! 𝑒 (requires YieldFrom method)
let 𝑝𝑎𝑡 = 𝑒1 in 𝑒2 (always enabled)
match 𝑒0 with 𝑝𝑎𝑡1 -> 𝑒1 | ... (always enabled)
if 𝑒1 then 𝑒2 else 𝑒3 (always enabled)
if 𝑒1 then 𝑒2 (requires Zero method for empty branch)

The different syntax elements are enabled by having the builder support different object methods
as indicated (let, match and if .. then .. else are always enabled). A particular builder can
support any or all of them. The names of the methods matter, because different method names light
up different source syntax. The full de-sugaring of these constructs is in Syme [2020]. As examples,

let! 𝑝𝑎𝑡 = 𝑒1 in 𝑒2 is de-sugared to builder.Bind(𝑒1, fun 𝑝𝑎𝑡 -> 𝑒2)
𝑒1; 𝑒2 is de-sugared to builder.Combine(𝑒1, 𝑒2).

Some further examples are given below.22 Each builder of F# computation expressions is typically
intended for use as either monadic syntax or as comprehension syntax by providing the appropriate
methods: For the former you typically need the following members on the builder:

member Bind: M<'T> * ('T -> M<'U>) -> M<'U>
member Return: 'T -> M<'T>

The presence of the “Bind” method means let! is allowed in the syntax, and so your CE uses let!
for monadic binding. For those familiar with Haskell, it is natural to think of this as offering a
syntax for ‘Monad‘ instances. Here’s how the Haskell terminology maps across:

• the Monad »= (bind) method corresponds to the let! syntax, mapping to the Bind method
• the Monad return method corresponds to return x syntax mapping to the Return method

This allows async and other monadic code to desugar as shown in the previous section. There are
additional optional elements to enrich the syntax. For example you can optionally have try/with,
try/finally, while and for.

F# CEs can also be intended for use as comprehension syntax. In this case, the minimal operation
signatures are typically this form:

member For: M<'T> * ('T -> M<'U>) -> M<'U>
member Combine: M<'T> * M<'T> -> M<'T>
member Yield: 'T -> M<'T>
member Zero: M<'T>

The minimum needed to warrant the name “comprehension” is For and Yield. Note these have a
For method, which means for is allowed in the syntax. The CE does not use let! for binding: the
computational structure is not being treated as a monad (let!), but a comprehension (for). This

22One aspect of computation expressions has been skipped here for simplicity, namely the (optional) insertion of computa-
tional delays to ensure strict evaluation semantics is followed. These are covered in Syme [2020].
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allows F# to achieve notational similarity between the process of iterating a list and generating re-
sults (imperatively), and a list comprehension that iterates a list and combines results (functionally),
an example is given below.

For those familiar with Haskell, it is natural to think of this as offering a corresponding notation
for MonadPlus [Haskell Contributors 2020b] instances. Here’s how the Haskell terminology maps
across:

• The MonadPlus >>= (bind) corresponds to the for syntax and de-sugars to the For method;
• The MonadPlus mplus corresponds to sequential composition 𝑒1; 𝑒2 syntax (perhaps on two
aligned lines with no semicolon), and de-sugars to the Combine method;

• The MonadPlus return corresponds to yield syntax and de-sugars to the Yield method;
• The MonadPlus mzero is implicit, e.g. on the empty else branch of an if/then and de-sugars
to the Zero method.

As an example, consider the use of the mechanism for the “seq” computation expression, for
(on-demand) sequence comprehensions.

seq {
let data = [ 1 .. 5 ]
yield "zero"
for a in data do

match a with
| 2 -> yield a.ToString()
| 3 -> yield "hello"; yield "world"
| _ -> ()

}

Note the notational similarity to the imperative code:
let data = [ 1 .. 5 ]
printfn "zero"
for a in data do

match a with
| 2 -> printfn "%d" a
| 3 -> printfn "hello"; printfn "world"
| _ -> ()

To change from imperative side-effects to functional data generation has required just the addition
of seq { .. } and replacing the I/O operation printfn by yield (the yield can be implicit). The
data-generating code is de-sugared to:

let data = [ 1 .. 5 ]
seq.Combine(

seq.Yield "zero",
seq.For(data, (fun a ->

match a with
| 3 ->

seq.Combine(
seq.Yield "hello",
seq.Yield "world")

| 2 ->
seq.Yield (a.ToString())

| _ ->

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.



The Early History of F# 75:35

seq.Zero ())))

which evaluates to an overall sequence:
[ "zero"; "1"; "2"; "hello"; "world"; "4"; "5"]

An optimizing phase is applied in the F# compiler to reduce this to a state machine. As a second
example, the F# equivalent of the Haskell list comprehension

[ N | x <- L; y <- M ]

is
seq { for x in L do

for y in M do
yield N }

The yield can be left implicit, giving this:
seq { for x in L do for y in M do N }

In either case it de-sugars to
seq.For(L, (fun x -> seq.For(M, (fun y -> seq.Yield(N)))))

Often a term can be written as a single computation expression in F#, but would require nesting if
written as a Haskell comprehension or do expression. For example, consider the F# computation
expression:

seq { 3
for x in xs do (x+1)
4
for x in xs do (x+2); 5 }

In Haskell this would be:
[ 3 ] ++ [ x+1 | x <- xs ] ++ [ 4 ] ++ [ y | x <- xs, y <- [ x+2, 5 ] ]

which requires multiple nested instances of the notation.
F# CEs can also be configured in other ways and this is done in practice, e.g. for web programming

DSLs or asynchronous sequences. The various families of control constructs that could utilize
computation expressions were eventually characterized by Petricek and Syme [Petricek and Syme
2014] and in 2010 they developed an experimental monadic generalization of pattern matching
called Joinads [Petricek and Syme 2011]. Extending the notation for applicatives [McBride and
Paterson 2008] is scheduled for addition to F# in 2020. The introduction of computation expressions
to F# greatly increased the notation expressivity of the language and the mechanism is widely used
in F# today.

9.9 F# 1.0—Meta-programming
F# 1.0 saw the addition of “quotation meta-programming” to F#. Quotations had been a significant
feature in LISP since its inception. However, they had rarely found their way into strongly-typed
functional or OO languages.23

In 2005, the C# team found new uses for expression quotations in their early prototypes of LINQ,
which added a comprehension syntax and runtime expression quotations to C# to express both
in-memory and database queries. Under-the-hood, LINQ used a combinator encoding of queries
heavily inspired by functional programming. A key contributor to LINQ was Erik Meijer who was
an avid evangelist for functional ideas in general and innovative in their application. LINQ was
highly successful and is a widely used feature of C# today. Additionally, I had previously used
23SML/NJ had a string quotation feature used by theorem proving systems such as HOL, supporting both quotation and
anti-quotation, it differs substantially from the feature described here.
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ForteFL at Intel, a strongly-typed functional language that included expression quotations. Further,
systems such as Mathematica and R allowed expression quotations and made interesting use of
these facilities to mix symbolic and computational elements. When early versions of LINQ were
announced in 2006, I decided to experiment with adding quotations to F#, initially with the aim of
interoperating with the query mechanisms available in LINQ.
This work released on January 26, 2006 in prototype form under title F# meets LINQ, and great

things happen (Part I) [Syme 2006d]. A sample code fragment was as follows:
let q =

db.Customers
|> where <@ fun c -> c.City = "London" @>
|> select <@ fun c -> c.ContactName @>

Some of the details changed in later releases, but here <@ ... @> is an expression quotation literal,
forming a quotation of the expression tree. These parts of the program were re-interpreted at
runtime and executed as part of an SQL query. This mechanism was also applied to a broader range
of “heterogeneous execution” problems, running F# code on the GPU by utilizing the Accelerator
library from MSR. Collectively this work was published at the ML Workshop [Syme 2006g]. Later,
in F# 2.0, the design of the API for F# quotations was extensively revised and simplified.

In early 2006, Tomas Petricek at Charles University, Prague began work on a JavaScript compiler
and web programming system utilizing F# quotations [Petricek 2008]. He joined the F# team as an
intern in April 2007, working on extending the use of F# for JavaScript and GPU compilation, and
returned as an intern in 2009, making many contributions to F# 2.0 including its IDE tooling.

9.10 F# 1.0—Improving the Functional Core: Indentation-Aware Syntax
Another addition during the F# 1.0 timeframe was the addition of an indentation-aware syntax,
released on September 23, 2006 [Syme 2006h].

The F# indentation−aware syntax option is a conservative extension of the explicit language syntax,
in the sense that it simply lets you leave out certain tokens such as in and ;; by having the parser take
indentation into account. This can make a surprising difference to the readability of code.

Note: This feature is similar in spirit to the use of indentation by Python and Haskell, and we thank
Simon Marlow (of Haskell fame) for his help in designing this feature and sketching the
implementation technique. We also thank all the F# users at MSR Cambridge who've been helping us
iron out the details of this feature.

The origins of this feature are from my experience looking at samples of Python code with
Darren Platt around 1999, who first showed me Python, and from frequently being asked “why
does F# require the ‘in’ token for ‘let x = ... in’” by non-functional-programming audiences. I made
a private judgement that the presence of these extra tokens was a limiting factor in F# adoptability.
The feature was refined over future iterations and became the default for F# code in F# 2.0 in 2010.

9.11 F# 1.0—IDE Tooling
A significant factor in F# 1.0 was the inclusion of IDE tooling that would integrate with Visual Studio
2005 and 2008. The early implementation of this tooling was done by myself based on prototypes for
extensible, language-neutral toolin by Daan Leijen, stemming from Project 7, and referencing some
of the prototype implementation of Visual Studio tooling for SML.NET [Benton et al. 2004]. The
early versions were adequate for demonstration purposes and adoption by enthusiasts. However,
during the implementation of this tooling many mistakes were made, for example,
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• the accuracy and completeness of autocomplete was not initially good, and only corrected by
adding numerous adhoc cases to the implementation;

• the tooling was not designed to scale to incremental editing of large projects;
• the tooling was not incremental in the context of incremental edits to a single file;
• the tooling did not work well with multi-project codebases involving both C# and F# projects
• the implementation of the tooling was not designed with the most recent advances in code-
editing features in mind (e.g. rename refactoring, code structure highlighting and rich-text
code inspection hints)

Some of these limitations stemmed from the samples originally used as the basis for the imple-
mentation and were not corrected sufficiently quickly. Overall the “compiler service” part of the F#
compiler codebase became poorly implemented, though sufficiently effective in use for common
scenarios to justify its ongoing development. These problems dogged F# tooling until 2010 in terms
of accuracy, quality and completeness (resolved much later through the creation of the F# Compiler
Service components in 2015 and subsequent improvements in 2017).

From the language design perspective, the assumption of IDE tooling had strongly affected the
C# design. For example, the syntax of the C# LINQ design was influenced by the basic question
“will we be able to give good IDE assistance as people type LINQ queries”. This assumption was
not generally a driving factor of the F# design itself, however it was an occasional consideration.

10 FINANCE AND FUNCTIONAL: MICROSOFT COMMITS TO F#, 2007
During 2006-07, external adoption of F# began to grow, partly on the base of steady blogging about
the features and utility of the language. Social media and “scalable” communication was emphasized
over conference publications, and the blogging was used to highlight the practical nature of the
F# feature set and its adoption. The online developer video portal Channel 9 opened their doors,
allowing us to reach a broader audience [Syme 2006e]. There was a lack of practical alternatives
for functional programming on Windows and .NET, and F# received growing attention. .NET user
groups existed worldwide, and some began to give presentations on F#. Download rates were about
18,000/year in early 2007: far from mainstream, but relatively substantial for an MSR project, and
F# was the most visited site on research.microsoft.com, somewhat unexpectedly. The language
developed a strong community feel and some related technologies began to emerge: in 2006 Jon
Harrop started his F# Journal followed by F# for Visualization and F# for Numerics, and later made
his influential OCaml for Scientists book available as F# for Scientists [Harrop 2006, 2008]; in 2007
WebSharper was initiated by Adam Granicz, including a transpiler from F# to JavaScript and the
ability to use F# for both client and server components [Bjornson et al. 2010, 2011; Granicz and
Denuziere 2019]; in 2007 IntelliFactory began offering consulting services in F# [Granicz 2011;
Peake and Granicz 2009]. In 2006, James Huddlestone, an editor at Apress, approached myself
and Robert Pickering to author the first two books on F#: Beginning F# and Expert F#, the latter
joint-authored with Adam Granicz and Antonio Cisternino [Syme 2006a].

By March 2007 the language and implementation had matured to “F# 1.9”, and I presented an F#
update and lecture at the internal tradeshow MSR TechFest in Redmond [Syme 2007a].

In 2 hours I'm flying off to TechFest 2007 in Redmond. ... James Margetson, myself and other
members of the F# community will be presenting a booth on F#, highlighting how the language has
both matured to be an incredibly useful tool and how it is also acting as a vehicle for innovative
applied functional programming research.

Among other things, Bill Gates visited the booth. Like all research organizations, MSR needed
its successes, and giving backing to F# at this stage was an obvious choice. I and my collaborators
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at MSR took a “drip, drip” approach to increasing awareness of the language amongst Vice Presi-
dents in Microsoft, forwarding emails and information at a steady rate, and giving presentations
opportunistically.24 On May 31, 2007 the head of the Microsoft Developer Division (“DevDiv”, the
makers of Visual Studio), S. Somasegar replied:

It is exciting to see F# continue to gain excitement, buzz and real adoption in the world. There is also
a growing excitement for functional languages in general. What do you think we should do if
anything on functional languages and specifically with F#? Have you thought about whether we
need to do some level of deeper VS integration for F#. I would love to hear your thoughts on this.

Some influential enterprise customers began to look at the language. Notably:
• Credit Suisse trialed and adopted early versions of the language successfully in 2006-07, in
the context of the Global Modelling and Analytics Group, to author models for financial
instruments and orchestrate existing Windows COM components;

• Morgan Stanley initiated a large project to convert large portions of their analytics toWindows
and F#, to replace a legacy APL codebase.25

In the summer of 2007 the influence of Wall St was at its peak worldwide. Among other things,
one F# customer committed to a large purchase of “Windows HPC”, a new high-performance
computing product based around Windows Server. Emails about F# from these companies were
forwarded to management, including Craig Mundie, then Chief Research and Strategy Office, and
presentations given to Mundie, Anders Hejlsberg and Steve Ballmer. In August 2007, the Applied
Games Group at MSR Cambridge featuring Ralf Herbrich, Thore Graepel and Phil Trelford won
a company-wide machine learning competition for predicting ad clicks using F#. Burton Smith
and Dave Wecker were strong advocates in Redmond. On August 30, 2007, Craig Mundie sent this
email [Somasegar 2007b]:

Thanks. We are going to proceed with the productization of F#. S. Somasegar will drive that to
happen now.

F# was to be “productized”, i.e. enter the stable of officially supported Microsoft languages.

11 F# 2.0—2007 TO 2010
In practice, the prospect of becoming a Microsoft-supported language was both exhilarating and
terrifying. What did it mean? Who had committed to what? Who would manage the project? How
long would we have to refine the language from a research prototype? Who would be on hook for
“supporting” the language? What promises had been made to whom?Who was on-board internally?
What criteria would we be measured against? None of these things were initially clear.

Some things soon became clear: the process would be run out of Redmond (despite initial talk
of hiring equal people in Cambridge); DevDiv would provide funding via dedicated “headcount”
(there were no budgets for individual projects); we would have 1-2 years to complete a sustainable,
long-term supportable version of the language; we would have an application focus on “functional
programming for the enterprise” and “technical computing”. A whirlwind tour of New York financial
institutions was arranged in December 2007, and I found myself giving presentations on functional
programming to core quantitative finance groups in institutions such as Morgan Stanley, Bank of
America and Credit Suisse.26

24Sometimes this gave mixed results: at one presentation a technical assistant of Bill Gates told the author and Ralf Herbrich
firmly “you should be focusing on the 250,000 programmers still using Visual Basic 6”.
25Of these, the first adoption succeeded and saw considerable use of F# over multiple years.
26In retrospect these quant groups had much bigger things to worry about in late 2007. On one occasion in New York, when
the author asked about the structural problems in the global market, an F# quant said “yes, I should have spotted that” and
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Over the next 6 months, an initial team was formed at in Redmond, including program manager27
Luke Hoban (Nov 1, 2007 – June 2010), developers Jomo Fisher (2008 – 2010) and Dmitry Lomov
(2010 – 2011), engineering lead Tim Ng, and QA staff Matteo Tavaggi, Anar Alimov, Daniel Quirk
and Chris Smith. Laurent Le Brun helped test code in Cambridge as an intern in 2011, and James
Margetson continued to work on the compiler and tools in Cambridge until March 2011. Mads
Torgerson, Luca Bolognese and Raj Pai from the C# team were involved in initial planning. I spent
4 weeks with the Redmond team in February 2008.

However, not all was plain sailing. Developing a new language is controversial and a driver of
potential negative responses. DevDiv were pushing forward many innovative projects. For example,
teams were formed to drive forward dynamic languages on the .NET platform with the “Dynamic
Language Runtime”, including Iron Ruby and Iron Python: these projects were both compatriots but
also competitors for development resources. Likewise, a large project to add Software Transactional
Memory to .NET had started, partly at the instigation of MSR. Amidst the Global Financial Crash
and its aftermath, Microsoft cut its workforce by 5,000 in January 2009, and projects across the
board were at risk, and many were cancelled, right through to 2014.28 29 30 31.
In addition, .NET itself began to be seen less purely positively as it reached some limits of its

applicability, discussed below.
Further, Microsoft programming products appealed to a relatively conservative end of the

programming industry: would these people accept a functional programming language? C# had
a very active user base with very strong tooling. In such a context, where Microsoft came under
surprising pressure after years of growth, landing F# as an industry-applicable language was not
out of the question, but couldn’t be taken for granted.

So, what was F# for, at least as far as Microsoft was concerned? As a general-purpose language,
the answer was and remains obvious: “F# is for programming”. However, as an addition to an
established product range that wasn’t going to cut it: F# couldn’t realistically be presented as a
replacement for C#, C++ and Visual Basic with their millions of existing customers. A key factor
was the “designer” tooling in these toolchains: this tooling was expensive to build and maintain and
undergoing continual churn as user interface technologies changed. It was decided early that it was
not realistic to make this tooling available for F# 2.0. Management had communicated early that F#
would be a “first-class language in Visual Studio” , implying to some that all Visual Studio tooling
would be made to work with F# on par with C# [Somasegar 2007a]. The dissonance between these
positions caused frustration amongst users dependent on Microsoft for tooling.32

In this context I coined the term “functional-first” programming to characterize the methodology
associated with F# in practice: functional prototyping followed by elements of object programming
(for software engineering and interop) and imperative programming (for performance). A guid-
ing mantra at the time was “F# is functional-first programming for the enterprise”. In addition,
despite the prevailing economic conditions, Microsoft invested in a new “Technical Computing
Initiative” (TCI), starting in 2010. This eventually employed 300 people and included an entirely

added that he felt “personally responsible” for the global financial crash—a rare admission of personal responsibility unique
in my entire experience of working with the finance sector.
27At Microsoft in 2008, program managers had broad responsibilities, including product delivery, customer interaction and
specification. This was often summarized by saying the PM “represents the customer” to the development organization and
is largely responsible for productization strategy and ensuring the product is successfully positioned within the company.
28Microsoft’s Experiments with Software Transactional Memory Have Ended [Allen 2010]
29Microsoft cuts loose Iron languages, [Clarke 2010]
30Microsoft drops Dryad; puts its big-data bets on Hadoop [Foley 2011]
31Microsoft to close Microsoft Research lab in Silicon Valley [Foley 2014]
32This issue was only really properly resolved by the major improvements in F# tooling in 2017 and a reduction in emphasis
on “Visual” programming in the Microsoft product line-up around the same time.
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new programming language called Exie, never released. F# was not directly involved in this, and
the TCI was subsequently reorganized three years later without producing a major product, but
F# was loosely associated with some of its public content, and thus the meme was born that “F#
is for technical computing” or even just “F# is for that math stuff”—something which was both
true and false simultaneously. Many examples of successful use of F# had been in technical areas,
especially for implementing “computational engines” within larger systems, and F# could be used
directly as a MATLAB or Python-like language when equipped with suitable libraries. Books such
as F# for Scientists by Harrop were excellent early material and F# had existing adoption with
the finance industry. Universities such as DTU and University of Copenhagen started adopting F#
for their functional programming courses, and Michael Hansen authored a coursebook Functional
Programming Using F# [Hansen and Rischel 2013]. In bio-tech, F# was being used for DNA analysis
at the Joint Genome Institute [Syme 2006c]. The association between functional languages and
“mathematical-style programming” has long held currency, and, while I tried hard to avoid it, this
epithet continued to apply to F# for some time.33

The writing of the first two editions of Expert F# was crucial in refining the exact details language
between 2007 and 2010, as did the authoring of the F# 2.0 Language Specification, written as an
informal but rigorous 200 page document in the style of the C# Language Specification and used
as the basis for much QA work [Syme 2020]. While writing this book and through the process of
“proofing” the language I’d formed the strong impression that F# code was succinct: F# code was
consistently 3x-10x shorter than corresponding C# code at that time – experienced when simply
translating across code samples, using the same .NET libraries.34

During this time, literally thousands of design suggestions poured in via fsbugs@microsoft.com,
a very direct channel between team and customers for Microsoft at the time. On the one hand, this
meant that the language had been proofed in detail by time of launch, on the other it caused the
team to be reactive to user demands. Hundreds of bugs were fixed, many design improvements
were made and multiple “beta” versions released. Roles in the team also changed. I had to become
more of a “product architect”, making definitive final, detailed decisions about the composition of
the language. From 2008 the center of gravity of the project moved to Redmond (and the USA), and
both online working and face-to-face visits with the Redmond team were crucial. The importance of
quality increased greatly, and we began to look for features to cut. Ultimately the F# 2.0 feature set
resembled that of F# 1.9 closely, but the quality of the language specification, design, implementation
and tools had increased drastically.

On April 12, 2010, with a volcano in Iceland, and after an arduous two years that put considerable
strain on all involved, the first officially supported version of “Visual F# 2.0” was released as
part of Visual Studio 2010 [Wlaschin [n.d.]]. In practice “Visual” F# was a misnomer: we had
supplied a strongly-typed, code-oriented functional programming language suitable for adoption
in the Windows ecosystem. This was a great step forward and raised the profile of strongly-typed
functional programming in the industry. However, more was going to be needed.

12 F# 2.0—UNITS OF MEASURE
One significant feature was added to the language in 2009: units of measure checking and inference.
This work was initiated by Andrew Kennedy, a researcher at MSR Cambridge whose PhD thesis
had shown how to integrate unit inference with Hindley-Milner type inference [Kennedy 1995]. In

33It was finally de-emphasized around 2015 once F# developed as an open source, cross platform language with a strong
web and cloud programming story. F# today is for programming of all kinds.
34Fully controlled comparisons of succinctness are difficult but one later analysis of two teams using F# and C# to implement
similar systems was performed by Simon Cousins, revealing a reduction in implementation size from 350,000 lines of code
(C#) to 30,000 (F#) in the context of a delivered project [Cousins 2016].
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late 2007 Kennedy began to prototype, and on December 10, 2007 sent links internally to a working
version, refined over the next year and made available in preview release on August 29, 2008 [Syme
[n.d.]a]. In the context of the Microsoft TCI, adding unit inference aligned with other goals, and it
is also an elegant, powerful and non-intrusive feature yet to be rivalled in other languages.

As an overview of this feature, consider the following definition:
[<Measure>] type cm
[<Measure>] type ml = cm^3
[<Measure>] type L

let convert_ml_l (x : float<ml>) = x / 1000.0<ml/L>

The code declares two fresh units (cm and L) and a unit abbreviation (ml). The conversion
function defines a conversion between ml and L. In practice, a library of SI unit definitions is
provided in the F# standard library. Code that is generic with respect to units is also supported:

// Distance, meters.
[<Measure>] type m

// Time, seconds.
[<Measure>] type s

let genericSumUnits (x: float<'u>) (y: float<'u>) = x + y

let v1 = 3.1<m/s>
let v2 = 2.7<m/s>
let x1 = 1.2<m>
let t1 = 1.0<s>

let result1 = genericSumUnits v1 v2 // A valid function call

let result2 = genericSumUnits v1 x1 // Error reported: mismatched units

New data structures can also be made generic with respect to units:
type vector3D<[<Measure>] 'u> =

{ x : float<'u>
y : float<'u>
z : float<'u>}

// Create a position vector.
let xvec = { x = 0.0<m>; y = 0.0<m>; z = 0.0<m> }

// Create a velocity vector.
let v1vec = { x = 1.0<m/s>; y = -1.0<m/s>; z = 0.0<m/s> }

From a technical perspective, the major challenge with the units of measure feature is its integration
with F#’s version of Hindley-Milner type inference [Kennedy 2009].

13 TYPE PROVIDERS AND F# 3.0
With F# 2.0 essentially completed by December 2009, the attention of the F# group at Microsoft
rapidly turned to “what’s next” for F#. Since 2005, C# had not stood still: the experience of adding
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generics and iterators to C# 2.0 (2005) had cultivated a surprising and ongoing taste for innovation
in language design through the addition of new features. In C# 3.0 (2008), the C# team introduced
LINQ (Language Integrated Queries), mentioned earlier. In C# 4.0 (2010) the C# team turned their
attention to dynamic programming, adding a set of weakly-typed features that are less widely
adopted. This culture of innovation also played well with a Microsoft Research agenda and some
looked towards F# to supply new ideas that could later influence C#. Likewise, C# could influence
F#, and support for LINQ was brought in to F# 3.0.
Separately, the process of “productizing” F# had exposed me to a wide range of applied pro-

gramming scenarios. A common theme was data integration: many applications of F# and .NET
involved programming against external information sources. Further, F# had a REPL called F#
Interactive, which, together with Visual Studio made an interactive editor environment suitable for
data scripting. Putting these themes together it became obvious that F# could expand its capabilities
in data programmability.

The work on F# type providers began at Microsoft Research from an internship in mid-2008 with
Adrian Moors, where we discussed supporting diverse data-oriented user experiences such as:

• “referencing a database” (and having its types and contents be immediately accessible in an
F# scripting context, with both editor/autocomplete and REPL execution)

• “referencing a spreadsheet” (and likewise having its “types” and contents be immediately
accessible)

• “referencing a web service” (with similar effect)
• “referencing a CSV file” (with similar effect)

Together we called this “referencing the planet”. However, while that framed the problem, those
initial explorations didn’t lead to something usable, and it was clear that a major technical challenge
needed to be solved: we needed to think again about a general mechanism to “bring data into the
language, in a strongly-typed way”. Essentially, we needed a meta-programming mechanism to
bring arbitrary schematized data into the language. Prototyping with Jomo Fisher led to a compile-
time meta-programming mechanism initially called extended static typing and then awesome types35

and finally type providers.
In brief, an F# type provider is a compile-time meta-programming plug-in component which

is added to F# editor, compiler and REPL tooling in the same way as a library. A type provider
provides information about a programmatically-generated space of nominal object type definitions
and associated properties and methods. It also provides macro expansions for the implementations
of these properties and methods. The mechanism works in an “on-demand” way, so that a type
provider could supply an infinite sea of related nominal types. This enables an astonishing range of
applications and led to fascinating discussions about applications with people from many different
parts of the industry. Curiously, few of these conversations were with programming language
researchers!
The early demos were developed by Fisher and communicated internally on February 17, 2010.

It felt exhilarating—we were demonstrating what we felt to be entirely new experiences like:
• The immediate integration of the data and structure of Excel spreadsheets into F# program-
ming with auto-complete and type-checking;

• The immediate integration of scalable semantic-web information sources such as the entity
graph called Freebase [Bollacker et al. 2008], again with auto-complete and type-checking,
see Figure 5a;

• Directly referencing multiple databases in a single data script in a strongly-typed way, see
Figure 5b.

35The name is courtesy of Chris Smith.
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(a) Using the Freebase type provider. (b) Using a SQL type provider.

Fig. 5. Two examples of integrating information sources into F# using type providers, with strong typing and
autocomplete.

This was F# 2.0 but suddenly connected to immensely rich data sources, with IDE-integrated
tooling. Further, we were doing these prototypes in the context of a language and tooling we could
deliver “for real” to industry. By June 2010 we felt that we’d hit on somewhat of a goldmine for F#.
The feature addressed pragmatic customer concerns; was simple to demonstrate; was innovative;
avoided the need for bespoke tooling for different data sources; and allowed F# to leap-frog other
languages in terms of data integration. Further, this feature could “transcend the divide” between
research and product and enable continued cooperation between MSR and the Microsoft product
teams.

In 2011 both MSR and Microsoft management committed to making type providers a major part
of F# 3.0. The period between 2010 and 2012 was spent refining the mechanism and delivering a
set of type-providers to work alongside F#. An online demonstrator called Try F# was produced,
funded by Tony Hey in Microsoft External Relations. F# 3.0 also included enhanced support for
LINQ queries and a range of other improvements and fixes. Sarika Calla, Donna Malayeri and
Layla Driscoll took on program management responsibilities during this time and Donna acted as
team lead. Joe Palmer, Brian Macnamara, Dmitry Lomov, Wonseok Chae and Vlad Matveev were
development staff, and Matteo Taveggia, Tao Liu and Jack Hu were QA staff (Figure 6). In 2011, Tao
Liu presented the “F# design patterns” on Channel 9. Keith Battocchi (2011-13) and Ross McKinlay
(2013) worked as contractors for Microsoft Research on applications of type providers, developing
applications of type providers potentially relevant to the Microsoft product line-up including
integrating Microsoft Dynamics CRM and Windows WMI computer management information and
presenting at MSR TechFest 2012 and 2013.36

On release of F# 3.0 on September 12, 2012, F# type providers immediately became a significant
part of the F# ecosystem, confirmed with the later creation of the FSharp.Data library of commonly-
used type providers for XML, CSV and HTML data by Tomas Petricek and Gustavo Guerra. Other
applications of type providers include:

• Database integration (SQL)
• Language integration (T-SQL, RProvider)

36Ross McKinlay is also famous in the F# community for humorous applications of F# type providers including encoding
“choose your own adventure” games in the autocomplete-menus made available to the programme via the compile-time
meta-programming machinery that integrates with the IDE [McKinlay 2013].
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Fig. 6. Left: The F# 3.0 Team,May 2012 (Don Syme, Jack Hu, BrianMacnamara, VladMatveev, Matteo Taveggia,
Tao Liu, Wonseok Chae, Donna Malayeri). Right: The F# 4.0 Team, November 2014 (Lincoln Atkinson, Vlad
Matveev, Kevin Ransom, Wonseok Chae), holding photos of ’community heroes’ and open source contributors
including contributors Steffen Forkmann and Robert Jeppesen. (photos by Microsoft staff)

• Configuration information integration (FSharp.Configuration)
• Web APIs (via JSON and schematizations such as WSDL and Swagger)
• Schematized “big-data” sources including Hadoop

The paper Types from data—Making structured data first-class citizens in F# [Petricek et al. 2016]
received a Distinguished Paper award at PLDI 2016 and was selected as one of three CACM Research
Highlight in 2018.

14 .NET, F# AND THE SHIFT TO CLOUD ANDMOBILE COMPUTING
The focus of this paper is the early history of F#, particularly up to F# 3.0 in 2012 and the core set
of innovative features that have formed the backbone of all future versions of the F# language. In
the remainder of this paper, I continue the more recent history since 2012, but in slightly less detail,
particularly focusing on themes that were present in the early history but where major changes
have occurred.
Not all was plain sailing for F#, C# and .NET at Microsoft in the F# 3.0 period. This stemmed

largely from seismic shifts within the industry itself, with the rise of mobile and cloud computing.
The iPhone was launched in 2007 and a massive change began in the industry. Around 2011,
.NET hit serious hurdles inside Microsoft. For Windows 8, the Windows team needed to reassess
programmability in the light of the “consumer app” model being so successful on the iPhone and
iPad. As part of this, the Windows team decided to embrace HTML5 and JavaScript as a first-class
language for Windows programmability, and Windows 8 eventually supported C#, JavaScript and
C++ as the main programming languages for “Windows Store” apps. This was seen bymany external
observers as a “retreat” from .NET, even thoug C# was the most popular language for Windows
Store app development. This perception was reinforced when the development of Silverlight, the
browser-hosted version of .NET, was halted. Further, seeing the threat from the iPhone, iPad and
Android, the Windows team wanted to focus on consumer applications rather than enterprise.

For F# at Microsoft this posed a series of challenging issues. Within the company’s product
range, F# was positioned as “functional programming for the enterprise” at a time where enterprise
programming became less important to company strategy, despite the enterprise sector sustaining
up to 95% of company profits through “platform pull-through”. For internal political reasons, DevDiv
didn’t feel able to push F# as a choice for app programming on to the powerful Windows team.
Fortunately, F# continued to receive good backing from DevDiv. While a reduction in resourcing
occurred, and the pressure was considerable, the team were given the resources to deliver the
F# 3.0 feature set at high quality, and subsequently F# 3.1 and so on. Kevin Ransom joined the
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Visual F# team along with team in February 2013, bringing depth of experience, having worked
on .NET and Visual Studio since its inception, and other team members were Wonseok Chae and
Vlad Matveev (development), Layla Driscoll (PM), Lincoln Atkinson (QA) and Gordon Hogenson
(docs), and the team delivered F# 3.1 plus multiple updates during 2013. However, things were
undoubtedly changing in the computing landscape and many projects at Microsoft were affected.
There was a causal connection from Apple’s success with the iPhone resulting on pressure on
teams at Microsoft.

Fortunately, around this time a major structural shift at Microsoft occurred with the development
of the Azure cloud platform, originally created in 2010 but achieving maturity and increasing
commercial success from 2012. A similar shift to commodity computing on the server-side happened
with platforms such as Amazon Web Services and Google Cloud Platform. Cloud programmability
is highly suited to both high-level languages and functional programming, and from 2012 it became
clear that Azure and cloud computing was a critical part of the future of F#. The same applied to
.NET more generally, and Azure became increasingly influential in the technical strategy for .NET,
C# and F#. Azure also drove a sea-change in Microsoft as the company fully embraced open source
for its programming languages, SDKs and tools used to access Azure. At this time Microsoft also
fully embraced the use of Linux within Azure—unthinkable a decade before. Microsoft now “loved”
Linux and it formed a core part of one of its growth businesses.

During this time, the consultancy Nessos in Athens developed an innovative cloud programming
system called MBrace implemented in F# [Dzik et al. 2013]. Originally conceived as a distributed
programming system, later iterations emphasized cloud computing and big-data processing, and
was used internally at Microsoft to demonstrate the relevance of F# for cloud programming.

15 A NEW DAWN FOR F#, C# AND .NET: OPEN AND CROSS-PLATFORM, AT LAST!
F# faced its most important and seemingly insurmountable challenge since its inception. Open-
source software had become the norm, and .NET, F# and C# were now definite outliers in the world
of programming languages and runtimes: largely closed source—or at least not accepting external
contributions.
At Microsoft there were many who advocated embracing open source, and the question had

been lurking in the background since the inception of .NET. In 2004 a “shared-source” version of
.NET had been released. The source for F# had also been included with early MSR releases but on
a non-commercial basis. However open source was still controversial, and, in several instances,
projects had been open-sourced only to be stopped soon after. “Going open” was thus still risky
and needed to be explained carefully.

On November 11, 2010, Microsoft made the first release of the F# source under an OSI-approved
license (Apache 2.0), placing F# in the vanguard of changes that would soon be embraced more
widely [Syme 2010]. Even more importantly, on April 3, 2014 Microsoft started accepting contri-
butions to F#, which again “led the way” in embracing a full open-engineering process [Hoban
2014]. At Microsoft, Kevin Ransom and Lincoln Atkinson were key team members who made
the transition to open source, open engineering and open design possible. This also enabled a
corresponding shift towards open-design and, with F# 4.0, the language shifted to an open and
transparent design process 37 The language design process and RFCs are now run through the FSSF
under the guidance of myself, Phillip Carter (program manager for F# at Microsoft) and Chet Husk.
The shift to openness had other effects too: in 2013 the .NET community finally developed a

modern, effective way to deliver packages through the creation of the NuGet package manager and

37F# Language Design RFCs, [FSSF Contributors 2019a].
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the nuget.org package repository. Prior to this, the poor packaging story for .NET components was
a major inhibitor to the growth of both .NET and F#.
Today, open-source is the norm for nearly all language and cloud tooling at Microsoft. The

primary driving factor behind this change is the increased focus on the Microsoft Azure cloud
platform at Microsoft, with an economic basis in selling services, rather than on selling packaged
software and tools. C#, .NET and F# tooling accepts contributions and has many contributors.
Currently hosting over 120,000 packages, with nearly 10 billion package downloads, the NuGet
package ecosystem is rapidly growing to be one of the largest and most comprehensive in the
world. The open source “Paket” client has been a popular way to access this ecosystem for F#
developers [Forkmann 2019], and the open source FAKE build scripting tool—where the build
scripts are written in F#—has been a “gateway drug” for the adoption of the language, allowing its
incremental adoption without rewriting the core of the project code [Forkmann and Dittrich 2019].

16 THE F# COMPILER AS A COMPONENT
In 2014 a technical breakthrough was made with the creation of the FSharp.Compiler.Service (FCS)
package by Tomas Petricek, Ryan Riley, and Dave Thomas with many later contributors [Syme
et al. 2019]. This contains the core implementation of the F# compiler, editor tooling and scripting
engine in the form of a single library and can be used to make F# tooling for a wide range of
situations. This has allowed F# to be delivered into many more editors, scripting and documentation
tools and allowed the development of alternative backends for F#. Key editor community-based
tooling includes Ionide, by Krzysztof Cieślak and contributors, used for rich editing support in the
cross-platform VSCode editor, with over 1M downloads at time of writing [Cieślak 2019].
The FSharp.Compiler.Service component is a key enabler for consistent, performant cross-

platform F# language tooling in many different settings and has few parallels amongst statically-
typed functional languages even today. It enables the F# community to have the same set of language
features working similarly across different editors and on all platforms and also acts as a basis for
tooling innovation in Ionide.
In 2018 the F# community collaborated extensively with Microsoft on engineering processes,

aligining code-repositories and achieving efficient engineering practices. Kevin Ransom, Phillip
Carter, Brett Forsgren and Will Smith participated on the Microsoft side, and many contributors
from the broader F# community. The company Jet Brains also become extensive contributors to the
F# compiler and tools. In 2019 Phillip Carter and Will Smith did extensive core performance work
on the tooling to allow its use with very large F# code bases.

17 THE F# COMMUNITY AND THE F# SOFTWARE FOUNDATION
The F# community was initially sustained through hubFS.net forums (2005), created by Chris
Barwick under the pseudonym “optionsScalper”. The online Community for F# (2007) was created
by Ryan Riley which runs the an F# Heroes program [Riley 2019a]. SkillsMatter London meetup
in 2012 propelled the growth of the F# community in the UK and Europe, and by 2018 over 50
F# meetup groups have been created worldwide [Riley 2019b]. Community-run F# conferences
include openfsharp, F# Exchange, F# Europe and fableconf, and F# material is regularly presented
at both .NET-friendly and functional-friendly conferences. In 2011 the hubFS forums were replaced
by FPish.net, implemented by Adam Granicz and others at IntelliFactory.
In 2014, Tomas Petricek, Phil Trelford and myself met in a café in Cambridge and decided to

start the F# Software Foundation (FSSF), commonly known as “fsharp.org”. Initially this was an
informal organization along the lines of the Python Software Foundation. An online meeting of
potential community members was initiated, and Petricek and Trelford explained their goals: a
fun, open web-based organization that could represent the interests of F# users. Membership was
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free, requiring only agreement with the mission statement of the organization, and grew quickly to
about 500 members. In 2016 the FSSF incorporated as a U.S non-profit under the guidance of Reed
Copsey and Mathias Brandewinder, and now holds yearly board elections.

Fig. 7. The F# Logo of the F# Software Foun-
dation

The formation of the FSSF was a highly significant mo-
ment for F#. Until then, a strong “culture of dependence”
had existed in large parts of the .NET and F# communi-
ties, where users (including paying customers) expected
Microsoft to solve all problems, provide all resources and
make all public communication about these technologies.
For example, many of those leading or participating in
F# community activities were also Microsoft MVPs (Most
Valued Professionals), and Microsoft ran either an F#-
specific or .NET-specific MVP program from 2010 to the
time of writing. The F# MVP program was both a major
positive—for example, the community was worldwide—
but also amajor negative, because it was not initially truly
independent. Parts of the F# community had, however,
successfully shifted to OSS and this led to the creation
of the FSSF: the F# community now had a strong self-
defining voice that could collect social proof, advocate for the use of F# and help guide community
engineering efforts. As a result, F# evangelism began to be more effective. One result of the com-
munity’s more active role in evangelizing F# was the creation of “F# for Fun and Profit” by Scott
Wlaschin, an impressive collection of didactic material about functional programming concepts
and practical F# topics that has been very influential in the F# community [Wlaschin 2019].

The FSSF now has over 2000 members and owns fsharp.org and github.com/fsharp. The FSSF is
now at the heart of the F# community and works with community stakeholders on F# education,
diversity, tooling, governance, mentorship, conference and software initiatives. The suggestions,
RFCs and other documents related to the F# language design process are hosted by the FSSF [FSSF
Contributors 2019a,b].

18 .NET CORE: MICROSOFT TAKE C#, F# AND .NET CROSS-PLATFORM
The question of cross-platform support for .NET was present from the start: even the Rotor shared
source release of 2004 was cross-platform. In 2001, the Mono project had been launched by Miguel
de Icaza [de Icaza 2016] and others to implement a fully open-source and cross-platform version of
.NET. F# ran successfully on Mono since 2006.

In 2016, Microsoft released a fully open-source and cross-platform implementation of .NET called
.NET Core. Since 2017, F# support is included directly in the .NET Core SDK and included in the
standard Linux packages. With v2.0 released, .NET Core has been increasingly successful, and
the use of F# on Linux and Docker is now mainstream within the community. Cloud providers
including Amazon and Google now support F# through .NET Core, which forms the backbone
of .NET support in cloud-hosted services such as Azure Functions, Amazon Lambda and Google
Cloud Platform.

The inclusion of F# directly in the .NET Core SDK is one the most significant long-term event in
the history of the language: F# is now supported everywhere that the .NET Core SDK is installed,
in a simple, consistent way and with full backing from both an open source community and major
commercial interests. Further, .NET Core has enabled the programming framework to throw off
some of the very tight constraints that came with backwards compatibility within the Windows
ecosystem, allowing rapid introduction of new features into the runtime layer. .NET Core allows
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side-by-side (i.e. non-interfering, local) installations so installing updated runtimes does not affect
existing applications on the samemachine. This allows co-evolution of the runtime and its languages
(always one of the strong points of OCaml, which originally inspired F#) and has already had impact
on the design of C# and F#, with the recent “Span” feature of C# 7.2 and F# 4.5 (allowing safe
on-stack references to interior sub-ranges of data such as strings) including both runtime and
language elements.

19 F# FOR MOBILE
The industry shift to mobile and cloud computing saw a huge rise in the importance of Android
and iOS as platforms from 2009 onwards. With millions of people using .NET, a startup called
Xamarin was formed to allow C# and F# developers to use their existing skills to program apps for
Android, iOS and Windows devices. The Xamarin toolchain runs .NET IL code to interoperate with
Java (for Android) and Objective-C (for iOS). Xamarin also provided cross-platform user interface
programming options including Xamarin.Forms.
Xamarin was eventually acquired by Microsoft and, as of 2018, F# is a supported language in

Microsoft’s mobile programming offerings.

20 F#, JAVASCRIPT AND FULL STACK PROGRAMMING
Since 2005 JavaScript has risen in importance as a delivery platform for programming languages.
In 2007, Tomas Petricek experimented with the first Javascript transpiler for F#. In 2008 the first
version of WebSharper was released, including a more accurate and performant Javascript transpiler.
Innovative for its time, WebSharper is now a complete open-source full-stack programming toolkit
using F# as its primary programming language.
In 2015 the F# community also developed Fable, another JavaScript implementation of F#, for

web development in the JS/Node ecosystem [García-Caro 2018]. At the time of writing, Fable is
seeing increasing adoption for web programming. Fable became a key part of SAFE-Stack, a “full
stack” solution for F# that incorporates web client, server and cloud computing [Abraham 2020].

21 RETROSPECTIVE
In telling the genesis and early history of F#, I positioned it as one of several “reactions” by those
experienced in strongly-typed functional programming to the tidal wave of Java and object-oriented
programming that engulfed the industry in the mid-1990s and the rise of the JVM and .NET. In
this light, F# was in the vanguard in changing how we deliver functional languages: F# and Scala
were among the first languages to be explicitly designed and implemented on the assumption of an
industry-standard runtime substrate such as the JVM or .NET. With hindsight this decision was
a good one and has subsequently been followed by many languages including Clojure, Nemerle,
Kotlin and Swift (the latter targeting the Objective-C runtime as substrate, with influence on the
design of the language). A more recent wave of languages has assumed JavaScript as a substrate,
e.g. Elm, TypeScript and PureScript. This approach is now so common as to be industry-standard
for new language efforts.
Programming languages get used for many purposes, and it would be impossible to do justice

to the many fascinating things people have done with F#. A key aspect of the early work of
the FSSF was to collect and communicate “social proof” about the effectiveness of F# through
testimonials [FSSF Contributors 2020]. Three uses are, however, particularly striking. First, F# was
used to implement LIQUi|> (“Liquid”), a quantum simulator for F#, by Dave Wecker and Microsoft
Quantum Computing.[Wecker 2019]. Second, F# was used in conjunction with Rhinoceros3D to
construct the digital 3D model used in the manufacturing of the cladding of the Louvre Abu Dhabi
Dome, a picture of which is included in Figure 8. Thirdly, F# was the primary language used at
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Fig. 8. The Louvre Abu Dhabi—F# was used for the digital 3D model to manufacture the roof (credit: Wikiemi-
rati, Wikimedia, 29 April 2018, licensed under CC BY-SA 4.0, cropped)

Jet.com, a start-up subsequently acquired by Walmart at a valuation of over $3B, and the first
“unicorn” built using the Azure cloud platform. These alone constitute success for strongly-typed
functional programming of a scale undreamt of in 1998.

Since around 2007 strongly-typed functional programming has shifted from relative obscurity to
be a central paradigm in programming. C#, Java, C++, Scala, Kotlin, Swift, Rust and TypeScript
now all include elements of strongly-typed FP, and Apple executives extolled functional features
at the launch of Swift in 2014, including pattern matching, generics, option types, type inference,
tuples and closures, something unthinkable in 2005 [Apple 2014]. Haskell, F# and OCaml have all
grown in use, and newcomers such as Elm and ReasonML are also finding good adoption.

What caused this shift? Some factors have been touched on in this paper—for example, the relative
decline of widget-based GUI programming, and the corresponding rise of web programming, cloud
computing, multi-core programming and scalable-data processing, all of which are amenable to
functional programming. The rise in importance of JavaScript is also surely of relevance: although
untyped it has many functional features. That said, it is noticeable that the transition also seems to
have started when Scala and F# matured and received support at the heart of the computing industry.
More recent entrants such as Swift, ReasonML, TypeScript and Elm face many challenges, but a
lack of industry awareness of strongly-typed functional programming is not one of them. We’ve
come a long way since 1997, and Wadler’s question “Why no one uses functional programming?”
has been consigned to the many short-lived curiosities of history.

21.1 F#’s Influence
The most obvious direct influence of F# has been on C#. C# 2.0 (generics) was based on preliminary
work by myself and others working on precursors to F#, specifically with the intent of supporting
ML-family languages on .NET. C# 3.0 (“var x = ...”), C# 5.0 (tasks/async), C# 7.0 (tuples, pattern
matching), C# 8.0 (enhanced pattern matching) and C# 9.0 (non-null pointers as the default) were all
heavily influenced by F# [Mads Torgersen 2017]. Given that C# is one of the most widely adopted
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languages today, and underwent rapid iteration in the 2000s38, it is reasonable to claim that the
presence of F# within the Microsoft Developer Division played an important role as a bridge
between the stream of ideas that constitute “functional programming” and C#. That said, the ideas
have flowed both ways, with F# also influenced by C# 1.0 (objects, properties, events), C# 3.0 (LINQ)
and C# 7.0 (Span). There have also been influences on C# from other sources such as Icon (C# 2.0
Iterators), Python (C# 4.0 Dynamic) and the internal projects Axum by Gustafsson et al. [Wikipedia
2014].
The addition of first-class events and compositional event-combinator programming to F#

influenced directly the initiation of the Rx project, a reactive-functional programming toolkit
now re-implemented as a pattern in multiple languages including Rx.JS [Syme 2006b]. The early
influence of F# here was recounted informally to me by Wes Dyer.
Other direct influences of F# on languages are harder to measure: language designers tend to

be coy about their influences both direct and indirect. Both Elixir and Elm use the |> operator
and there are ways to emulate that operator in other languages such as Scala and R. The Scala
designer, Martin Odersky, was intimately aware of F# throughout its history in his role on the MSR
Cambridge Technical Advisory Board and EPFL research includes efforts to bring F# type providers
to Scala [Burmako 2013]. The apparent influence of F# on the creation of Scala extractors was
mentioned earlier in this article and Scala 3.0 later adopted indentation-aware syntax. Swift seems
to have been influenced by F#, and Joe Pamer managed the team at Apple responsible for developing
the Swift compiler from 2014-16. Kotlin seems to use C#, F# and other languages as reference
points. Rust seems to have been influenced by OCaml, and the author Graydon Hoare refers to
F# extensively when discussing “What’s Next” after Rust [Hoare 2017]. TypeScript was directly
influenced by F#: one of the originators of TypeScript was Luke Hoban, who began TypeScript
(then called Strada) immediately after working on F# 2.0. Recently he noted the influence of F#
on early parts of the TypeScript design [Hoban 2017]. The extent and nature of this influence is
a matter of debate, but it is my opinion that TypeScript is firmly based on positive experience of
advanced type checking and inference in the context of F#, and would not have appeared from a
Microsoft team in anything close to its current form without the influence of F#.

From the outset, F# placed non-nullness as central to its design: the value “null” can’t normally
be used in conjunction with F#-declared types, and in practice null-reference exceptions are rare.39
This affects many micro-decisions in the language. Coming from the OCaml perspective, this is an
obvious choice, and in the cultural context of MSR Cambridge—including the presence of Tony
Hoare at the lab and the memory of his “Billion Dollar Mistake”—any other choice would have
been unthinkable [Hoare 2011]. However, languages like Scala didn’t make the same decision,
and even by 2018 F# was the only significant language running on the JVM or .NET that placed
non-nullness as central to its design. At the time of writing, in February 2020, C# 9.0 is planning
to make non-nullness the default, a dramatic shift that I hope will herald a shift to eliminate this
endemic problem from the programming industry. F# has been central to this process.

F# was the first language to introduce an “async” modality to allow the localized reinterpretation
of the existing control constructs of the language. This meant that converting a piece of code from
“synchronous” to “asynchronous” involved nothing more than wrapping async { ... } around
the code and marking up the “await” points (let! in F#). This directly influenced the async/await
mechanism added to C# 5.0 in 2012—the F# version was first presented to the C# designers in 2007
and many discussions were held in between. The C# async/await feature has been influential on

38The language designs of Java, C++, JavaScript and Python all progressed during this time, but to a lesser extent than C#.
39The F# community joke being “Question: What can C# do that F# can’t?” “Answer: NullReferenceException!”
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TypeScript, Kotlin, Python 3.5, Java, JavaScript and other languages.40 Having an async modality
in a language is now effectively an industry standard, and in each case the lineage of this feature
traces back partly through F#.
In short F# has influenced many of the major languages in use as of 2020, either directly (C#,

TypeScript, Scala, Kotlin, possibly Swift) or indirectly (Rust, Python, Java, JavaScript), with the
possible exception of C++.

21.2 Mistakes andQuestions
Mistakes are hard to admit, and best seen in their historical context. From the early history, the
greatest mistake related to F# was that neither .NET nor the language were open source or using
open engineering. This mistake was well-understood by the core contributors at the time and many
across Microsoft were advocating for a shift to open-source. Put simply, an innovative language
grew in the research lab of a company that had not yet embraced open source: those involved did
what they could through source drops, and the problem was eventually solved via the shift to open
source engineering and design from 2011 to 2014. The rectification of this mistake will likely be the
most significant development in the history of the language. Further, the fact that F# was able to
navigate 2002-2011 while using closed-engineering is largely due to the recognition of its qualities
by decision makers at Microsoft.

One unfortunate side effect of closed-engineering was discontinuity: most early contributors to
F# soon moved on to other jobs. Because F# was not open source, they were unable to continue to
contribute to the codebase, even transitionally. Today, contributors can come and go freely and
frequently answer questions about older code.

From a technical perspective, F# has made many contributions, yet the core feature set has been
stable and even binary-compatible since F# 1.9. There are, of course, some design mistakes, including
active bugs. Of these, the “statically resolved type parameter” mechanism is perhaps the one causing
most corner-case niggles. Originally designed just for operator overloading, the mechanism is
also used by some advanced F# users as a type constraint mechanism akin to Haskell type classes.
Perhaps more concerningly, it is also used extensively and inappropriately by some beginner
F# users or those in teams, attempting to over-apply "maximal abstraction" DRY (Don’t Repeat
Yourself) techniques in coding. The combination of complex SRTP constraints with algorithm-based
type inference is, however, fragile, and it is proving hard to fix some mistakes in the resolution of
SRTP constraints without breaking some existing code in corner cases. If backwards compatibility
were not a major concern this would not be a problem, however it is highly valued by both the F#
community and Microsoft design groups.
The design of F# incorporated some features of OCaml which, in retrospect, could have been

omitted. One example is generic comparison: OCaml supports unconstrained generic structural
operators =, <>, <, >, <=, >=, compare, min and max. The F# design enforces “equality” and “compa-
rable” type constraints on these operators, but the runtime implementation of generic comparison
is complicated, particularly because of corner cases such as NaN on floating point numbers. There
are also performance implications when using these operators. In retrospect, the whole generic
comparison feature could likely have been omitted from F#, or greatly constrained.
One recurring theme of F# language evolution has been its interaction with corresponding C#

and .NET design elements. For example, F# 1.9 added Async<T> in 2007. In contrast, .NET added
40The history of async programming, continuations and co-routines would need to be the subject of a different article,
stretching back to LISP. The influence of MLDonkey on F# has been noted earlier. C# 5.0 added new elements to the design
of “async/await” suitable for an ALGOL language, including state-machine compilation, derived originally from the Axum
prototype noted earlier. In this light, F# async was a precursor to C# async/await, and the latter was not a simple copy of
the former.
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Task<T> in 2010 and C# 5.0 added language integrated support for Task<T> in 2012. At the high
level these are all “the same thing”, i.e. lightweight user-level threading. However, even at the time
of writing, in 2019, these sit awkwardly together. They interoperate: you can generate Task<T>
from an Async<T>, and await a Task<T> in an Async<T>, but each has distinct advantages. For
example, when using Async<T>, the F# programmer is relieved of the burden of passing cancellation
tokens explicitly, and, when using Task<T>, performance is better with fewer allocations.

This tension, where F# added one version of a feature, only for C# to add a modified version of a
similar feature later, was repeated even with tuples: F# had boxed tuples from the outset in 2002,
and C# added unboxed tuples in 2017. In 2017 the F# design team had to adjust F# to allow both
boxed and unboxed tuples. The introduction of C# expression quotations in 2007 was similar: F#
had quotations Expr<T>, but C#’s expression quotation added LINQ’s Expression<T>, widely used
by .NET libraries. C# expressions quotations are strictly more limited than F# quotations (covering
only C# expressions, and not statement forms), and more complicated, but they are effectively
a .NET standard. To my knowledge no other language dances quite so closely with a “bigger”
language. It is important for the long-term integrity of the F# design that these adjustments are
done with extreme care.
One small but fortuitous mistake was the precedence of the “back-piping” operator f <| x,

which can’t be used in iterated fashion f2 <| f1 <| x due to a left-associative precedence. This
was not deliberate—the precedence was simply taken from OCaml—but was never fixed because
the preferred F# style is x |> f1 |> f2. The mistake has the benefit of restricting the use of
the operator which rarely results in readable code. The F# library also includes multi-argument
back-piping operators <|| and <||| which should never have been included simply for stylistic
reasons: code using them is very rare but also incomprehensible.
As a language design, F# has many opportunities to evolve, and over 200 active language

suggestions are recorded on the “F# Language Suggestions” site that forms part of the official
FSSF language design process [FSSF Contributors 2019b]. Two of the most popular suggestions
are type classes and higher kind type parameterization. However, in both cases I’ve indicated an
unwillingness to add this feature to F# without also adding a matching feature to C#, partly to
avoid a recurring pattern of multiple semi-compatible versions of similar features.

As indicated in the discussion on .NET Core, significant evolution steps are likely to happen in
conjunction with the design of both C# and the .NET runtime itself. One example is the addition of
safe high-performance memory primitives called “Span” in F# 4.5 and C# 7.2. This feature had the
added benefit of helping iron out various minor problems present since the F# 2.0 design.

22 CONCLUSION
In this article, I have tried to sketch the long arc from Robin Milner in the 1970s to F# as it is today,
with a focus on the genesis and early history of F# and the context in which that happened. F# has
come a long way since 2001, when it was an idea in an email on the OCaml mailing list, or 2006,
when it was a Microsoft Research project, or 2010, when F# 2.0 was effectively tied to Windows.
The core spirit of ML—succinct, type-safe, correct, pragmatic, functional-first programming—has
held true throughout this journey, with the integration of new ideas along the way. F# today is
open-source and cross-platform, with both commercial support and a vibrant community. It has a
solid future evolution path and is usable as a practical and enjoyable functional-first programming
language in many application domains.
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