
The F# 4.1 Language Specification

Note: This documentation is the specification of version 4.1 of the F# language, released in 2015-16.

Note: thi does not yet incorporate the RFCs for F# 4.1, see

 https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1

 https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1b

Discrepancies may exist between this specification and the 4.1 implementation. Some of these are

noted as comments in this document. If you find further discrepancies please contact us and we will

gladly address the issue in future releases of this specification. The F# team is always grateful for

feedback on this specification, and on both the design and implementation of F#. You can submit

feedback by opening issues, comments and pull requests at

https://github.com/fsharp/fsfoundation/tree/gh-pages/specs/language-spec.

The latest version of this specification can be found at fsharp.org. Many thanks to the F# user

community for their helpful feedback on the document so far.

Certain parts of this specification refer to the C# 4.0, Unicode, and IEEE specifications.

Authors: Don Syme, with assistance from Anar Alimov, Keith Battocchi, Jomo Fisher, Michael Hale,

Jack Hu, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny

Orwick, Daniel Quirk, Kevin Ransom, Chris Smith, Matteo Taveggia, Donna Malayeri, Wonseok Chae,

Uladzimir Matsveyeu, Lincoln Atkinson, and others.

Notice

© 2005-2016 various contributors. Made available under the Creative Commons CC-by 4.0 licence.

Product and company names mentioned herein may be the trademarks of their respective owners.

Document Updates:

• Initial updates for F# 4.1, May 2018

• Updates for F# 4.0, January 2016

• Updates for F# 3.1 and type providers, January 2016

• Edits to change version numbers for F# 3.1, May 2014

• Initial updates for F# 3.1, June 2013 (see online description of language updates)

• Updated to F# 3.0, September 2012

• Updated with formatting changes, April 2012

• Updated with grammar summary, December 2011

https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1
https://github.com/fsharp/fslang-design/tree/master/FSharp-4.1b
https://github.com/fsharp/fsfoundation/tree/gh-pages/specs/language-spec
http://fsharp.org/
https://creativecommons.org/licenses/by/4.0/
http://blogs.msdn.com/b/fsharpteam/archive/2013/06/27/announcing-a-pre-release-of-f-3-1-and-the-visual-f-tools-in-visual-studio-2013.aspx

2

• Updated with glossary, index, and style corrections, February 2011

• Updated with glossary, index, and style corrections, August 2010

Table of Contents

1. INTRODUCTION ... 11

1.1 A FIRST PROGRAM ... 11

1.1.1 Lightweight Syntax .. 11

1.1.2 Making Data Simple .. 12

1.1.3 Making Types Simple ... 13

1.1.4 Functional Programming ... 13

1.1.5 Imperative Programming .. 15

1.1.6 .NET Interoperability and CLI Fidelity .. 15

1.1.7 Parallel and Asynchronous Programming ... 15

1.1.8 Strong Typing for Floating-Point Code .. 16

1.1.9 Object-Oriented Programming and Code Organization .. 17

1.1.10 Information-rich Programming ... 18

1.2 NOTATIONAL CONVENTIONS IN THIS SPECIFICATION .. 19

2. PROGRAM STRUCTURE .. 21

3. LEXICAL ANALYSIS .. 23

3.1 WHITESPACE ... 23

3.2 COMMENTS .. 23

3.3 CONDITIONAL COMPILATION .. 24

3.4 IDENTIFIERS AND KEYWORDS .. 24

3.5 STRINGS AND CHARACTERS .. 26

3.6 SYMBOLIC KEYWORDS ... 27

3.7 SYMBOLIC OPERATORS .. 28

3.8 NUMERIC LITERALS ... 28

3.8.1 Post-filtering of Adjacent Prefix Tokens .. 29

3.8.2 Post-filtering of Integers Followed by Adjacent “..” .. 30

3.8.3 Reserved Numeric Literal Forms .. 30

3.8.4 Shebang ... 30

3.9 LINE DIRECTIVES .. 30

3.10 HIDDEN TOKENS .. 30

3.11 IDENTIFIER REPLACEMENTS .. 31

4. BASIC GRAMMAR ELEMENTS.. 33

4.1 OPERATOR NAMES ... 33

4.2 LONG IDENTIFIERS .. 35

4.3 CONSTANTS .. 35

4.4 OPERATORS AND PRECEDENCE ... 36

4.4.1 Categorization of Symbolic Operators .. 36

4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs 37

3

5. TYPES AND TYPE CONSTRAINTS .. 39

5.1 CHECKING SYNTACTIC TYPES .. 40

5.1.1 Named Types ... 41

5.1.2 Variable Types ... 41

5.1.3 Tuple Types .. 42

5.1.4 Array Types .. 42

5.1.5 Constrained Types ... 42

5.2 TYPE CONSTRAINTS .. 43

5.2.1 Subtype Constraints .. 43

5.2.2 Nullness Constraints .. 44

5.2.3 Member Constraints .. 44

5.2.4 Default Constructor Constraints .. 45

5.2.5 Value Type Constraints .. 45

5.2.6 Reference Type Constraints ... 45

5.2.7 Enumeration Constraints ... 46

5.2.8 Delegate Constraints ... 46

5.2.9 Unmanaged Constraints .. 46

5.2.10 Equality and Comparison Constraints ... 47

5.3 TYPE PARAMETER DEFINITIONS .. 47

5.4 LOGICAL PROPERTIES OF TYPES ... 48

5.4.1 Characteristics of Type Definitions .. 48

5.4.2 Expanding Abbreviations and Inference Equations ... 49

5.4.3 Type Variables and Definition Sites ... 50

5.4.4 Base Type of a Type ... 51

5.4.5 Interfaces Types of a Type ... 51

5.4.6 Type Equivalence ... 51

5.4.7 Subtyping and Coercion ... 52

5.4.8 Nullness ... 52

5.4.9 Default Initialization .. 53

5.4.10 Dynamic Conversion Between Types .. 53

6. EXPRESSIONS ... 55

6.1 SOME CHECKING AND INFERENCE TERMINOLOGY .. 57

6.2 ELABORATION AND ELABORATED EXPRESSIONS ... 58

6.3 DATA EXPRESSIONS .. 59

6.3.1 Simple Constant Expressions ... 60

6.3.2 Tuple Expressions .. 61

6.3.3 List Expressions .. 62

6.3.4 Array Expressions .. 62

6.3.5 Record Expressions .. 62

6.3.6 Copy-and-update Record Expressions ... 64

6.3.7 Function Expressions ... 65

6.3.8 Object Expressions ... 65

6.3.9 Delayed Expressions .. 67

6.3.10 Computation Expressions .. 67

4

6.3.11 Sequence Expressions ... 79

6.3.12 Range Expressions ... 80

6.3.13 Lists via Sequence Expressions .. 80

6.3.14 Arrays Sequence Expressions .. 81

6.3.15 Null Expressions .. 81

6.3.16 'printf' Formats ... 81

6.4 APPLICATION EXPRESSIONS .. 82

6.4.1 Basic Application Expressions .. 82

6.4.2 Object Construction Expressions ... 84

6.4.3 Operator Expressions .. 85

6.4.4 Dynamic Operator Expressions ... 86

6.4.5 The AddressOf Operators .. 86

6.4.6 Lookup Expressions ... 87

6.4.7 Slice Expressions .. 88

6.4.8 Member Constraint Invocation Expressions .. 89

6.4.9 Assignment Expressions .. 90

6.5 CONTROL FLOW EXPRESSIONS .. 91

6.5.1 Parenthesized and Block Expressions .. 91

6.5.2 Sequential Execution Expressions .. 91

6.5.3 Conditional Expressions ... 92

6.5.4 Shortcut Operator Expressions .. 92

6.5.5 Pattern-Matching Expressions and Functions ... 93

6.5.6 Sequence Iteration Expressions ... 93

6.5.7 Simple for-Loop Expressions .. 94

6.5.8 While Expressions .. 95

6.5.9 Try-with Expressions .. 95

6.5.10 Reraise Expressions ... 95

6.5.11 Try-finally Expressions ... 96

6.5.12 Assertion Expressions .. 96

6.6 DEFINITION EXPRESSIONS .. 96

6.6.1 Value Definition Expressions ... 97

6.6.2 Function Definition Expressions... 98

6.6.3 Recursive Definition Expressions ... 99

6.6.4 Deterministic Disposal Expressions ... 99

6.7 TYPE-RELATED EXPRESSIONS .. 100

6.7.1 Type-Annotated Expressions ... 100

6.7.2 Static Coercion Expressions ... 100

6.7.3 Dynamic Type-Test Expressions ... 100

6.7.4 Dynamic Coercion Expressions .. 101

6.8 QUOTED EXPRESSIONS .. 101

6.8.1 Strongly Typed Quoted Expressions .. 102

6.8.2 Weakly Typed Quoted Expressions .. 102

6.8.3 Expression Splices .. 103

6.9 EVALUATION OF ELABORATED FORMS ... 104

6.9.1 Values and Execution Context ... 104

5

6.9.2 Parallel Execution and Memory Model ... 105

6.9.3 Zero Values .. 106

6.9.4 Taking the Address of an Elaborated Expression .. 106

6.9.5 Evaluating Value References ... 107

6.9.6 Evaluating Function Applications .. 107

6.9.7 Evaluating Method Applications ... 107

6.9.8 Evaluating Union Cases ... 108

6.9.9 Evaluating Field Lookups ... 108

6.9.10 Evaluating Array Expressions .. 108

6.9.11 Evaluating Record Expressions .. 108

6.9.12 Evaluating Function Expressions ... 108

6.9.13 Evaluating Object Expressions .. 109

6.9.14 Evaluating Definition Expressions ... 109

6.9.15 Evaluating Integer For Loops .. 109

6.9.16 Evaluating While Loops ... 109

6.9.17 Evaluating Static Coercion Expressions ... 109

6.9.18 Evaluating Dynamic Type-Test Expressions .. 110

6.9.19 Evaluating Dynamic Coercion Expressions .. 110

6.9.20 Evaluating Sequential Execution Expressions ... 111

6.9.21 Evaluating Try-with Expressions ... 111

6.9.22 Evaluating Try-finally Expressions ... 111

6.9.23 Evaluating AddressOf Expressions .. 111

6.9.24 Values with Underspecified Object Identity and Type Identity 112

7. PATTERNS .. 115

7.1 SIMPLE CONSTANT PATTERNS .. 116

7.2 NAMED PATTERNS ... 116

7.2.1 Union Case Patterns .. 117

7.2.2 Literal Patterns .. 118

7.2.3 Active Patterns .. 118

7.3 “AS” PATTERNS ... 120

7.4 WILDCARD PATTERNS ... 120

7.5 DISJUNCTIVE PATTERNS ... 121

7.6 CONJUNCTIVE PATTERNS ... 121

7.7 LIST PATTERNS ... 121

7.8 TYPE-ANNOTATED PATTERNS ... 122

7.9 DYNAMIC TYPE-TEST PATTERNS ... 122

7.10 RECORD PATTERNS ... 123

7.11 ARRAY PATTERNS ... 123

7.12 NULL PATTERNS ... 124

7.13 GUARDED PATTERN RULES .. 124

8. TYPE DEFINITIONS .. 125

8.1 TYPE DEFINITION GROUP CHECKING AND ELABORATION ... 128

8.2 TYPE KIND INFERENCE ... 131

8.3 TYPE ABBREVIATIONS .. 132

6

8.4 RECORD TYPE DEFINITIONS .. 133

8.4.1 Members in Record Types ... 134

8.4.2 Name Resolution and Record Field Labels .. 134

8.4.3 Structural Hashing, Equality, and Comparison for Record Types 134

8.4.4 With/End in Record Type Definitions .. 134

8.4.5 CLIMutable Attributes ... 134

8.5 UNION TYPE DEFINITIONS .. 135

8.5.1 Members in Union Types ... 136

8.5.2 Structural Hashing, Equality, and Comparison for Union Types 136

8.5.3 With/End in Union Type Definitions .. 136

8.5.4 Compiled Form of Union Types for Use from Other CLI Languages 137

8.6 CLASS TYPE DEFINITIONS ... 137

8.6.1 Primary Constructors in Classes .. 138

8.6.2 Members in Classes ... 142

8.6.3 Additional Object Constructors in Classes ... 142

8.6.4 Additional Fields in Classes .. 143

8.7 INTERFACE TYPE DEFINITIONS... 144

8.8 STRUCT TYPE DEFINITIONS ... 145

8.9 ENUM TYPE DEFINITIONS .. 147

8.10 DELEGATE TYPE DEFINITIONS ... 148

8.11 EXCEPTION DEFINITIONS.. 148

8.12 TYPE EXTENSIONS .. 149

8.12.1 Imported CLI C# Extensions Members ... 151

8.13 MEMBERS ... 152

8.13.1 Property Members .. 153

8.13.2 Auto-implemented Properties ... 154

8.13.3 Method Members ... 155

8.13.4 Curried Method Members ... 155

8.13.5 Named Arguments to Method Members .. 156

8.13.6 Optional Arguments to Method Members ... 157

8.13.7 Type-directed Conversions at Member Invocations .. 159

8.13.8 Overloading of Methods ... 160

8.13.9 Naming Restrictions for Members .. 162

8.13.10 Members Represented as Events .. 162

8.13.11 Members Represented as Static Members ... 163

8.14 ABSTRACT MEMBERS AND INTERFACE IMPLEMENTATIONS .. 164

8.14.1 Abstract Members .. 164

8.14.2 Members that Implement Abstract Members .. 165

8.14.3 Interface Implementations .. 167

8.15 EQUALITY, HASHING, AND COMPARISON ... 169

8.15.1 Equality Attributes .. 170

8.15.2 Comparison Attributes .. 170

8.15.3 Behavior of the Generated Object.Equals Implementation 172

8.15.4 Behavior of the Generated CompareTo Implementations .. 172

8.15.5 Behavior of the Generated GetHashCode Implementations..................................... 173

7

8.15.6 Behavior of Hash, =, and Compare ... 173

9. UNITS OF MEASURE ... 175

9.1 MEASURES .. 176

9.2 CONSTANTS ANNOTATED BY MEASURES .. 177

9.3 RELATIONS ON MEASURES ... 177

9.3.1 Constraint Solving ... 178

9.3.2 Generalization of Measure Variables .. 179

9.4 MEASURE DEFINITIONS ... 179

9.5 MEASURE PARAMETER DEFINITIONS ... 179

9.6 MEASURE PARAMETER ERASURE .. 180

9.7 TYPE DEFINITIONS WITH MEASURES IN THE F# CORE LIBRARY ... 180

9.8 RESTRICTIONS .. 181

10. NAMESPACES AND MODULES .. 183

10.1 NAMESPACE DECLARATION GROUPS ... 183

10.2 MODULE DEFINITIONS .. 185

10.2.1 Function and Value Definitions in Modules .. 186

10.2.2 Literal Definitions in Modules ... 187

10.2.3 Type Function Definitions in Modules ... 188

10.2.4 Active Pattern Definitions in Modules... 189

10.2.5 “do” statements in Modules ... 189

10.3 IMPORT DECLARATIONS .. 190

10.4 MODULE ABBREVIATIONS .. 190

10.5 ACCESSIBILITY ANNOTATIONS ... 191

11. NAMESPACE AND MODULE SIGNATURES .. 193

11.1 SIGNATURE ELEMENTS .. 194

11.1.1 Value Signatures ... 194

11.1.2 Type Definition and Member Signatures .. 195

11.2 SIGNATURE CONFORMANCE ... 195

11.2.1 Signature Conformance for Functions and Values .. 196

11.2.2 Signature Conformance for Members... 197

12. PROGRAM STRUCTURE AND EXECUTION .. 199

12.1 IMPLEMENTATION FILES .. 200

12.2 SIGNATURE FILES ... 201

12.3 SCRIPT FILES .. 202

12.4 COMPILER DIRECTIVES .. 202

12.5 PROGRAM EXECUTION .. 204

12.5.1 Execution of Static Initializers ... 204

12.5.2 Explicit Entry Point .. 207

13. CUSTOM ATTRIBUTES AND REFLECTION ... 209

13.1 CUSTOM ATTRIBUTES ... 209

13.1.1 Custom Attributes and Signatures .. 211

13.2 REFLECTED FORMS OF DECLARATION ELEMENTS ... 211

8

14. INFERENCE PROCEDURES ... 213

14.1 NAME RESOLUTION .. 213

14.1.1 Name Environments .. 213

14.1.2 Name Resolution in Module and Namespace Paths ... 214

14.1.3 Opening Modules and Namespace Declaration Groups ... 214

14.1.4 Name Resolution in Expressions ... 215

14.1.5 Name Resolution for Members ... 218

14.1.6 Name Resolution in Patterns .. 219

14.1.7 Name Resolution for Types ... 220

14.1.8 Name Resolution for Type Variables ... 221

14.1.9 Field Label Resolution ... 221

14.2 RESOLVING APPLICATION EXPRESSIONS.. 221

14.2.1 Unqualified Lookup ... 222

14.2.2 Item-Qualified Lookup .. 223

14.2.3 Expression-Qualified Lookup ... 224

14.3 FUNCTION APPLICATION RESOLUTION ... 226

14.4 METHOD APPLICATION RESOLUTION ... 226

14.4.1 Additional Propagation of Known Type Information in F# 3.1 232

14.4.2 Conditional Compilation of Member Calls .. 232

14.4.3 Implicit Insertion of Flexibility for Uses of Functions and Members 233

14.5 CONSTRAINT SOLVING .. 234

14.5.1 Solving Equational Constraints ... 235

14.5.2 Solving Subtype Constraints .. 235

14.5.3 Solving Nullness, Struct, and Other Simple Constraints .. 236

14.5.4 Solving Member Constraints ... 236

14.5.5 Over-constrained User Type Annotations ... 237

14.6 CHECKING AND ELABORATING FUNCTION, VALUE, AND MEMBER DEFINITIONS 238

14.6.1 Ambiguities in Function and Value Definitions ... 238

14.6.2 Mutable Value Definitions .. 239

14.6.3 Processing Value Definitions ... 239

14.6.4 Processing Function Definitions .. 239

14.6.5 Processing Recursive Groups of Definitions .. 240

14.6.6 Recursive Safety Analysis .. 241

14.6.7 Generalization ... 243

14.6.8 Condensation of Generalized Types .. 245

14.7 DISPATCH SLOT INFERENCE .. 247

14.8 DISPATCH SLOT CHECKING ... 248

14.9 BYREF SAFETY ANALYSIS .. 249

14.10 ARITY INFERENCE ... 250

14.11 ADDITIONAL CONSTRAINTS ON CLI METHODS .. 252

15. LEXICAL FILTERING ... 253

15.1 LIGHTWEIGHT SYNTAX .. 253

15.1.1 Basic Lightweight Syntax Rules by Example ... 253

15.1.2 Inserted Tokens ... 254

9

15.1.3 Grammar Rules Including Inserted Tokens ... 254

15.1.4 Offside Lines .. 255

15.1.5 The Pre-Parse Stack... 256

15.1.6 Full List of Offside Contexts ... 256

15.1.7 Balancing Rules ... 257

15.1.8 Offside Tokens, Token Insertions, and Closing Contexts ... 258

15.1.9 Exceptions to the Offside Rules ... 259

15.1.10 Permitted Undentations.. 261

15.2 HIGH PRECEDENCE APPLICATION .. 262

15.3 LEXICAL ANALYSIS OF TYPE APPLICATIONS .. 263

16. PROVIDED TYPES ... 265

16.1 STATIC PARAMETERS .. 266

16.1.1 Mangling of Static Parameter Values ... 266

16.2 PROVIDED NAMESPACE ... 267

16.3 PROVIDED TYPE DEFINITIONS ... 267

16.3.1 Generated v. Erased Types .. 267

16.3.2 Type References .. 268

16.3.3 Static Parameters .. 268

16.3.4 Kind ... 268

16.3.5 Inheritance .. 269

16.3.6 Members ... 269

16.3.7 Attributes .. 270

16.3.8 Accessibility ... 270

16.3.9 Elaborated Code .. 270

16.3.10 Further Restrictions ... 271

17. SPECIAL ATTRIBUTES AND TYPES .. 272

17.1 CUSTOM ATTRIBUTES RECOGNIZED BY F# .. 272

17.2 CUSTOM ATTRIBUTES EMITTED BY F# .. 277

17.3 CUSTOM ATTRIBUTES NOT RECOGNIZED BY F# ... 278

17.4 EXCEPTIONS THROWN BY F# LANGUAGE PRIMITIVES ... 278

18. THE F# LIBRARY FSHARP.CORE.DLL ... 281

18.1 BASIC TYPES (FSHARP.CORE) ... 281

18.1.1 Basic Type Abbreviations .. 281

18.1.2 Basic Types that Accept Unit of Measure Annotations ... 281

18.1.3 The nativeptr<_> Type .. 282

18.2 BASIC OPERATORS AND FUNCTIONS (FSHARP.CORE.OPERATORS) .. 282

18.2.1 Basic Arithmetic Operators ... 282

18.2.2 Generic Equality and Comparison Operators .. 283

18.2.3 Bitwise Operators.. 283

18.2.4 Math Operators .. 283

18.2.5 Function Pipelining and Composition Operators .. 284

18.2.6 Object Transformation Operators ... 284

18.2.7 Pair Operators ... 284

18.2.8 Exception Operators .. 284

10

18.2.9 Input/Output Handles ... 284

18.2.10 Overloaded Conversion Functions ... 285

18.3 CHECKED ARITHMETIC OPERATORS ... 285

18.4 LIST AND OPTION TYPES .. 286

18.4.1 The List Type ... 286

18.4.2 The Option Type .. 286

18.5 LAZY COMPUTATIONS (LAZY) ... 286

18.6 ASYNCHRONOUS COMPUTATIONS (ASYNC) .. 286

18.7 QUERY EXPRESSIONS .. 287

18.8 AGENTS (MAILBOXPROCESSOR) ... 287

18.9 EVENT TYPES ... 287

18.10 IMMUTABLE COLLECTION TYPES (MAP, SET) .. 287

18.11 TEXT FORMATTING (PRINTF) .. 287

18.12 REFLECTION .. 287

18.13 QUOTATIONS .. 287

18.14 NATIVE POINTER OPERATIONS ... 287

18.14.1 Stack Allocation ... 288

19. FEATURES FOR ML COMPATIBILITY ... 289

19.1 CONDITIONAL COMPILATION FOR ML COMPATIBILITY .. 289

19.2 EXTRA SYNTACTIC FORMS FOR ML COMPATIBILITY .. 289

19.3 EXTRA OPERATORS ... 290

19.4 FILE EXTENSIONS AND LEXICAL MATTERS ... 291

APPENDIX A: F# GRAMMAR SUMMARY .. 292

REFERENCES .. 313

GLOSSARY ... 314

INDEX .. 326

1. Introduction
F# is a scalable, succinct, type-safe, type-inferred, efficiently executing functional/imperative/object-

oriented programming language. It aims to be the premier typed functional programming language

for the .NET framework and other implementations of the Ecma 335 Common Language

Infrastructure (CLI) specification. F# was partly inspired by the OCaml language and shares some

common core constructs with it.

1.1 A First Program
Over the next few sections, we will look at some small F# programs, describing some important

aspects of F# along the way. As an introduction to F#, consider the following program:

let numbers = [1 .. 10]

let square x = x * x

let squares = List.map square numbers

printfn "N^2 = %A" squares

To explore this program, you can:

• Compile it as a project in a development environment such as Visual Studio.

• Manually invoke the F# command line compiler fsc.exe.

• Use F# Interactive, the dynamic compiler that is part of the F# distribution.

1.1.1 Lightweight Syntax

The F# language uses simplified, indentation-aware syntactic constructs known as lightweight

syntax. The lines of the sample program in the previous section form a sequence of declarations and

are aligned on the same column. For example, the two lines in the following code are two separate

declarations:

let squares = List.map square numbers

printfn "N^2 = %A" squares

Lightweight syntax applies to all the major constructs of the F# syntax. In the next example, the code

is incorrectly aligned. The declaration starts in the first line and continues to the second and

subsequent lines, so those lines must be indented to the same column under the first line:

let computeDerivative f x =

 let p1 = f (x - 0.05)

 let p2 = f (x + 0.05)

 (p2 - p1) / 0.1

The following shows the correct alignment:

12

let computeDerivative f x =

 let p1 = f (x - 0.05)

 let p2 = f (x + 0.05)

 (p2 - p1) / 0.1

The use of lightweight syntax is the default for all F# code in files with the extension .fs, .fsx, .fsi,

or .fsscript.

1.1.2 Making Data Simple

The first line in our sample simply declares a list of numbers from one through ten.

let numbers = [1 .. 10]

An F# list is an immutable linked list, which is a type of data used extensively in functional

programming. Some operators that are related to lists include :: to add an item to the front of a list

and @ to concatenate two lists. If we try these operators in F# Interactive, we see the following

results:

> let vowels = ['e'; 'i'; 'o'; 'u'];;

val vowels: char list = ['e'; 'i'; 'o'; 'u']

> ['a'] @ vowels;;

val it: char list = ['a'; 'e'; 'i'; 'o'; 'u']

> vowels @ ['y'];;

val it: char list = ['e'; 'i'; 'o'; 'u'; 'y']

Note that double semicolons delimit lines in F# Interactive, and that F# Interactive prefaces the

result with val to indicate that the result is an immutable value, rather than a variable.

F# supports several other highly effective techniques to simplify the process of modeling and

manipulating data such as tuples, options, records, unions, and sequence expressions. A tuple is an

ordered collection of values that is treated as an atomic unit. In many languages, if you want to pass

around a group of related values as a single entity, you need to create a named type, such as a class

or record, to store these values. A tuple allows you to keep things organized by grouping related

values together, without introducing a new type.

To define a tuple, you separate the individual components with commas.

> let tuple = (1, false, "text");;

val tuple : int * bool * string = (1, false, "text")

> let getNumberInfo (x : int) = (x, x.ToString(), x * x);;

val getNumberInfo : int -> int * string * int

> getNumberInfo 42;;

val it : int * string * int = (42, "42", 1764)

A key concept in F# is immutability. Tuples and lists are some of the many types in F# that are

immutable, and indeed most things in F# are immutable by default. Immutability means that once a

value is created and given a name, the value associated with the name cannot be changed.

Immutability has several benefits. Most notably, it prevents many classes of bugs, and immutable

data is inherently thread-safe, which makes the process of parallelizing code simpler.

13

1.1.3 Making Types Simple

The next line of the sample program defines a function called square, which squares its input.

let square x = x * x

Most statically-typed languages require that you specify type information for a function declaration.

However, F# typically infers this type information for you. This process is referred to as type

inference.

From the function signature, F# knows that square takes a single parameter named x and that the

function returns x * x. The last thing evaluated in an F# function body is the return value; hence

there is no “return” keyword here. Many primitive types support the multiplication (*) operator

(such as byte, uint64, and double); however, for arithmetic operations, F# infers the type int (a

signed 32-bit integer) by default.

Although F# can typically infer types on your behalf, occasionally you must provide explicit type

annotations in F# code. For example, the following code uses a type annotation for one of the

parameters to tell the compiler the type of the input.

> let concat (x : string) y = x + y;;

val concat : string -> string -> string

Because x is stated to be of type string, and the only version of the + operator that accepts a left-

hand argument of type string also takes a string as the right-hand argument, the F# compiler infers

that the parameter y must also be a string. Thus, the result of x + y is the concatenation of the

strings. Without the type annotation, the F# compiler would not have known which version of the +

operator was intended and would have assumed int data by default.

The process of type inference also applies automatic generalization to declarations. This

automatically makes code generic when possible, which means the code can be used on many types

of data. For example, the following code defines a function that returns a new tuple in which the

two values are swapped:

> let swap (x, y) = (y, x);;

val swap : 'a * 'b -> 'b * 'a

> swap (1, 2);;

val it : int * int = (2, 1)

> swap ("you", true);;

val it : bool * string = (true,"you")

Here the function swap is generic, and 'a and 'b represent type variables, which are placeholders for

types in generic code. Type inference and automatic generalization greatly simplify the process of

writing reusable code fragments.

1.1.4 Functional Programming

Continuing with the sample, we have a list of integers named numbers, and the square function, and

we want to create a new list in which each item is the result of a call to our function. This is called

mapping our function over each item in the list. The F# library function List.map does just that:

14

let squares = List.map square numbers

Consider another example:

> List.map (fun x -> x % 2 = 0) [1 .. 5];;

val it : bool list

= [false; true; false; true; false]

The code (fun x -> x % 2 = 0) defines an anonymous function, called a function expression, that

takes a single parameter x and returns the result x % 2 = 0, which is a Boolean value that indicates

whether x is even. The -> symbol separates the argument list (x) from the function body (x % 2 = 0).

Both of these examples pass a function as a parameter to another function—the first parameter to

List.map is itself another function. Using functions as function values is a hallmark of functional

programming.

Another tool for data transformation and analysis is pattern matching. This powerful switch

construct allows you to branch control flow and to bind new values. For example, we can match an

F# list against a sequence of list elements.

let checkList alist =

 match alist with

 | [] -> 0

 | [a] -> 1

 | [a; b] -> 2

 | [a; b; c] -> 3

 | _ -> failwith "List is too big!"

In this example, alist is compared with each potentially matching pattern of elements. When alist

matches a pattern, the result expression is evaluated and is returned as the value of the match

expression. Here, the -> operator separates a pattern from the result that a match returns.

Pattern matching can also be used as a control construct—for example, by using a pattern that

performs a dynamic type test:

let getType (x : obj) =

 match x with

 | :? string -> "x is a string"

 | :? int -> "x is an int"

 | :? System.Exception -> "x is an exception"

The :? operator returns true if the value matches the specified type, so if x is a string, getType

returns “x is a string”.

Function values can also be combined with the pipeline operator, |>. For example, given these

functions:

let square x = x * x

let toStr (x : int) = x.ToString()

let reverse (x : string) = new System.String(Array.rev (x.ToCharArray()))

We can use the functions as values in a pipeline:

> let result = 32 |> square |> toStr |> reverse;;

15

val it : string = "4201"

Pipelining demonstrates one way in which F# supports compositionality, a key concept in functional

programming. The pipeline operator simplifies the process of writing compositional code where the

result of one function is passed into the next.

1.1.5 Imperative Programming

The next line of the sample program prints text in the console window.

printfn "N^2 = %A" squares

The F# library function printfn is a simple and type-safe way to print text in the console window.

Consider this example, which prints an integer, a floating-point number, and a string:

> printfn "%d * %f = %s" 5 0.75 ((5.0 * 0.75).ToString());;

5 * 0.750000 = 3.75

val it : unit = ()

The format specifiers %d, %f, and %s are placeholders for integers, floats, and strings. The %A format

can be used to print arbitrary data types (including lists).

The printfn function is an example of imperative programming, which means calling functions for

their side effects. Other commonly used imperative programming techniques include arrays and

dictionaries (also called hash tables). F# programs typically use a mixture of functional and

imperative techniques.

1.1.6 .NET Interoperability and CLI Fidelity

The Common Language Infrastructure (CLI) function System.Console.ReadKey to pause the program

before the console window closes.

System.Console.ReadKey(true)

Because F# is built on top of CLI implementations, you can call any CLI library from F#. Furthermore,

other CLI languages can easily use any F# components.

1.1.7 Parallel and Asynchronous Programming

F# is both a parallel and a reactive language. During execution, F# programs can have multiple

parallel active evaluations and multiple pending reactions, such as callbacks and agents that wait to

react to events and messages.

One way to write parallel and reactive F# programs is to use F# async expressions. For example, the

code below is similar to the original program in §1.1 except that it computes the Fibonacci function

(using a technique that will take some time) and schedules the computation of the numbers in

parallel:

let rec fib x = if x < 2 then 1 else fib(x-1) + fib(x-2)

let fibs =

 Async.Parallel [for i in 0..40 -> async { return fib(i) }]

 |> Async.RunSynchronously

16

printfn "The Fibonacci numbers are %A" fibs

System.Console.ReadKey(true)

The preceding code sample shows multiple, parallel, CPU-bound computations.

F# is also a reactive language. The following example requests multiple web pages in parallel, reacts

to the responses for each request, and finally returns the collected results.

open System

open System.IO

open System.Net

let http url =

 async { let req = WebRequest.Create(Uri url)

 use! resp = req.AsyncGetResponse()

 use stream = resp.GetResponseStream()

 use reader = new StreamReader(stream)

 let contents = reader.ReadToEnd()

 return contents }

let sites = ["http://www.bing.com"; "http://www.google.com";

 "http://www.yahoo.com"; "http://www.search.com"]

let htmlOfSites =

 Async.Parallel [for site in sites -> http site]

 |> Async.RunSynchronously

By using asynchronous workflows together with other CLI libraries, F# programs can implement

parallel tasks, parallel I/O operations, and message-receiving agents.

1.1.8 Strong Typing for Floating-Point Code

F# applies type checking and type inference to floating-point-intensive domains through units of

measure inference and checking. This feature allows you to type-check programs that manipulate

floating-point numbers that represent physical and abstract quantities in a stronger way than other

typed languages, without losing any performance in your compiled code. You can think of this

feature as providing a type system for floating-point code.

Consider the following example:

[<Measure>] type kg

[<Measure>] type m

[<Measure>] type s

let gravityOnEarth = 9.81<m/s^2>

let heightOfTowerOfPisa = 55.86<m>

let speedOfImpact = sqrt(2.0 * gravityOnEarth * heightOfTowerOfPisa)

The Measure attribute tells F# that kg, s, and m are not really types in the usual sense of the word, but

are used to build units of measure. Here speedOfImpact is inferred to have type float<m/s>.

17

1.1.9 Object-Oriented Programming and Code Organization

The sample program shown at the start of this chapter is a script. Although scripts are excellent for

rapid prototyping, they are not suitable for larger software components. F# supports the transition

from scripting to structured code through several techniques.

The most important of these is object-oriented programming through the use of class type

definitions, interface type definitions, and object expressions. Object-oriented programming is a

primary application programming interface (API) design technique for controlling the complexity of

large software projects. For example, here is a class definition for an encoder/decoder object.

open System

/// Build an encoder/decoder object that maps characters to an

/// encoding and back. The encoding is specified by a sequence

/// of character pairs, for example, [('a','Z'); ('Z','a')]

type CharMapEncoder(symbols: seq<char*char>) =

 let swap (x, y) = (y, x)

 /// An immutable tree map for the encoding

 let fwd = symbols |> Map.ofSeq

 /// An immutable tree map for the decoding

 let bwd = symbols |> Seq.map swap |> Map.ofSeq

 let encode (s:string) =

 String [| for c in s -> if fwd.ContainsKey(c) then fwd.[c] else c |]

 let decode (s:string) =

 String [| for c in s -> if bwd.ContainsKey(c) then bwd.[c] else c |]

 /// Encode the input string

 member x.Encode(s) = encode s

 /// Decode the given string

 member x.Decode(s) = decode s

You can instantiate an object of this type as follows:

let rot13 (c:char) =

 char(int 'a' + ((int c - int 'a' + 13) % 26))

let encoder =

 CharMapEncoder([for c in 'a'..'z' -> (c, rot13 c)])

And use the object as follows:

> "F# is fun!" |> encoder.Encode ;;

val it : string = "F# vf sha!"

> "F# is fun!" |> encoder.Encode |> encoder.Decode ;;

val it : String = "F# is fun!"

An interface type can encapsulate a family of object types:

open System

type IEncoding =

 abstract Encode : string -> string

 abstract Decode : string -> string

18

In this example, IEncoding is an interface type that includes both Encode and Decode object types.

Both object expressions and type definitions can implement interface types. For example, here is an

object expression that implements the IEncoding interface type:

let nullEncoder =

 { new IEncoding with

 member x.Encode(s) = s

 member x.Decode(s) = s }

Modules are a simple way to encapsulate code during rapid prototyping when you do not want to

spend the time to design a strict object-oriented type hierarchy. In the following example, we place a

portion of our original script in a module.

module ApplicationLogic =

 let numbers n = [1 .. n]

 let square x = x * x

 let squares n = numbers n |> List.map square

printfn "Squares up to 5 = %A" (ApplicationLogic.squares 5)

printfn "Squares up to 10 = %A" (ApplicationLogic.squares 10)

System.Console.ReadKey(true)

Modules are also used in the F# library design to associate extra functionality with types. For

example, List.map is a function in a module.

Other mechanisms aimed at supporting software engineering include signatures, which can be used

to give explicit types to components, and namespaces, which serve as a way of organizing the name

hierarchies for larger APIs.

1.1.10 Information-rich Programming

F# Information-rich programming addresses the trend toward greater availability of data, services,

and information. The key to information-rich programming is to eliminate barriers to working with

diverse information sources that are available on the Internet and in modern enterprise

environments. Type providers and query expressions are a significant part of F# support for

information-rich programming.

The F# Type Provider mechanism allows you to seamlessly incorporate, in a strongly typed manner,

data and services from external sources. A type provider presents your program with new types and

methods that are typically based on the schemas of external information sources. For example, an

F# type provider for Structured Query Language (SQL) supplies types and methods that allow

programmers to work directly with the tables of any SQL database:

// Add References to FSharp.Data.TypeProviders, System.Data, and System.Data.Linq

type schema = SqlDataConnection<"Data Source=localhost;Integrated Security=SSPI;">

let db = schema.GetDataContext()

The type provider connects to the database automatically and uses this for IntelliSense and type

information.

19

Query expressions (added in F# 3.0) add the established power of query-based programming against

SQL, Open Data Protocol (OData), and other structured or relational data sources. Query expressions

provide support for Language-Integrated Query (LINQ) in F#, and several query operators enable you

to construct more complex queries. For example, we can create a query to filter the customers in the

data source:

let countOfCustomers =

 query { for customer in db.Customers do

 where (customer.LastName.StartsWith("N"))

 select (customer.FirstName, customer.LastName) }

Now it is easier than ever to access many important data sources—including enterprise, web, and

cloud—by using a set of built-in type providers for SQL databases and web data protocols. Where

necessary, you can create your own custom type providers or reference type providers that others

have created. For example, assume your organization has a data service that provides a large and

growing number of named data sets, each with its own stable data schema. You may choose to

create a type provider that reads the schemas and presents the latest available data sets to the

programmer in a strongly typed way.

1.2 Notational Conventions in This Specification
This specification describes the F# language by using a mixture of informal and semiformal

techniques. All examples in this specification use lightweight syntax, unless otherwise specified.

Regular expressions are given in the usual notation, as shown in the table:

Notation Meaning
regexp+ One or more occurrences
regexp* Zero or more occurrences
regexp? Zero or one occurrences
[char - char] Range of ASCII characters
[^ char - char] Any characters except those in the range

Unicode character classes are referred to by their abbreviation as used in CLI libraries for regular

expressions—for example, \Lu refers to any uppercase letter. The following characters are referred

to using the indicated notation:

Character Name Notation
\b backspace ASCII/UTF-8/UTF-16/UTF-32 code 08
\n newline ASCII/UTF-8/UTF-16/UTF-32 code 10
\r return ASCII/UTF-8/UTF-16/UTF-32 code 13
\t tab ASCII/UTF-8/UTF-16/UTF-32 code 09

Strings of characters that are clearly not a regular expression are written verbatim. Therefore, the

following string

abstract

matches precisely the characters abstract.

20

Where appropriate, apostrophes and quotation marks enclose symbols that are used in the

specification of the grammar itself, such as '<' and '|'. For example, the following regular

expression matches (+) or (-):

'(' (+|-) ')'

This regular expression matches precisely the characters #if:

"#if"

Regular expressions are typically used to specify tokens.

token token-name = regexp

In the grammar rules, the notation element-nameopt indicates an optional element. The notation ...

indicates repetition of the preceding non-terminal construct and the separator token. For example,

expr ',' ... ',' expr means a sequence of one or more expr elements separated by commas.

2. Program Structure
The inputs to the F# compiler or the F# Interactive dynamic compiler consist of:

• Source code files, with extensions .fs, .fsi, .fsx, or .fsscript.

• Files with extension .fs must conform to grammar element implementation-file in §12.1.

• Files with extension .fsi must conform to grammar element signature-file in §12.2.

• Files with extension .fsx or .fsscript must conform to grammar element script-file in

§12.3.

• Script fragments (for F# Interactive). These must conform to grammar element script-fragment.

Script fragments can be separated by ;; tokens.

• Assembly references that are specified by command line arguments or interactive directives.

• Compilation parameters that are specified by command line arguments or interactive directives.

• Compiler directives such as #time.

The COMPILED compilation symbol is defined for input that the F# compiler has processed. The

INTERACTIVE compilation symbol is defined for input that F# Interactive has processed.

Processing the source code portions of these inputs consists of the following steps:

1. Decoding. Each file and source code fragment is decoded into a stream of Unicode characters, as

described in the C# specification, sections 2.3 and 2.4. The command-line options may specify a

code page for this process.

2. Tokenization. The stream of Unicode characters is broken into a token stream by the lexical

analysis described in §3.

3. Lexical Filtering. The token stream is filtered by a state machine that implements the rules

described in §15. Those rules describe how additional (artificial) tokens are inserted into the

token stream and how some existing tokens are replaced with others to create an augmented

token stream.

4. Parsing. The augmented token stream is parsed according to the grammar specification in this

document.

5. Importing. The imported assembly references are resolved to F# or CLI assembly specifications,

which are then imported. From the F# perspective, this results in the pre-definition of numerous

namespace declaration groups (§12.1), types and type provider instances. The namespace

declaration groups are then combined to form an initial name resolution environment (§14.1).

6. Checking. The results of parsing are checked one by one. Checking involves such procedures as

Name Resolution (§14.1), Constraint Solving (§14.5), and Generalization (§14.6.7), as well as the

application of other rules described in this specification.

22

Type inference uses variables to represent unknowns in the type inference problem. The various

checking processes maintain tables of context information including a name resolution

environment and a set of current inference constraints. After the processing of a file or program

fragment is complete, all such variables have been either generalized or resolved and the type

inference environment is discarded.

7. Elaboration. One result of checking is an elaborated program fragment that contains elaborated

declarations, expressions, and types. For most constructs, such as constants, control flow, and

data expressions, the elaborated form is simple. Elaborated forms are used for evaluation, CLI

reflection, and the F# expression trees that are returned by quoted expressions (§6.8).

8. Execution. Elaborated program fragments that are successfully checked are added to a

collection of available program fragments. Each fragment has a static initializer. Static initializers

are executed as described in (§12.5).

3. Lexical Analysis
Lexical analysis converts an input stream of Unicode characters into a stream of tokens by iteratively

processing the stream. If more than one token can match a sequence of characters in the source file,

lexical processing always forms the longest possible lexical element. Some tokens, such as block-

comment-start, are discarded after processing as described later in this section.

3.1 Whitespace
Whitespace consists of spaces and newline characters.

regexp whitespace = ' '+
regexp newline = '\n' | '\r' '\n'
token whitespace-or-newline = whitespace | newline

Whitespace tokens whitespace-or-newline are discarded from the returned token stream.

3.2 Comments
Block comments are delimited by (* and *) and may be nested. Single-line comments begin with

two backslashes (//) and extend to the end of the line.

token block-comment-start = "(*"
token block-comment-end = "*)"
token end-of-line-comment = "//" [^'\n' '\r']*

When the input stream matches a block-comment-start token, the subsequent text is tokenized

recursively against the tokens that are described in §3 until a block-comment-end token is found. The

intermediate tokens are discarded.

For example, comments can be nested, and strings that are embedded within comments are

tokenized by the rules for string, verbatim-string, and triple-quoted string. In particular, strings

that are embedded in comments are tokenized in their entirety, without considering closing *)

marks. As a result of this rule, the following is a valid comment:

(* Here's a code snippet: let s = "*)" *)

However, the following construct, which was valid in F# 2.0, now produces a syntax error because a

closing comment token *) followed by a triple-quoted mark is parsed as part of a string:

(* """ *)

For the purposes of this specification, comment tokens are discarded from the returned lexical

stream. In practice, XML documentation tokens are end-of-line-comments that begin with ///. The

delimiters are retained and are associated with the remaining elements to generate XML

documentation.

24

3.3 Conditional Compilation
The lexical preprocessing directives #if ident/#else/#endif delimit conditional compilation

sections. The following describes the grammar for such sections:

token if-directive = "#if" whitespace if-expression-text
token else-directive = "#else"
token endif-directive = "#endif"

if-expression-term =
 ident-text
 '(' if-expression ')'

if-expression-neg =
 if-expression-term
 '!' if-expression-term

if-expression-and =
 if-expression-neg
 if-expression-and && if-expression-and

if-expression-or =
 if-expression-and
 if-expression-or || if-expression-or

if-expression = if-expression-or

A preprocessing directive always occupies a separate line of source code and always begins with a #

character followed immediately by a preprocessing directive name, with no intervening whitespace.

However, whitespace can appear before the # character. A source line that contains the #if, #else,

or #endif directive can end with whitespace and a single-line comment. Multiple-line comments are

not permitted on source lines that contain preprocessing directives.

If an if-directive token is matched during tokenization, text is recursively tokenized until a

corresponding else-directive or endif-directive. If the evaluation of the associated if-

expression-text when parsed as an if-expression is true in the compilation environment defines

(where each ident-text is evaluataed according to the values given by command line options such

as –define), the token stream includes the tokens between the if-directive and the corresponding

else-directive or endif-directive. Otherwise, the tokens are discarded. The converse applies to

the text between any corresponding else-directive and the endif-directive.

• In skipped text, #if ident/#else/#endif sections can be nested.

• Strings and comments are not treated as special

3.4 Identifiers and Keywords
Identifiers follow the specification in this section.

regexp digit-char = [0-9]
regexp letter-char = '\Lu' | '\Ll' | '\Lt' | '\Lm' | '\Lo' | '\Nl'
regexp connecting-char = '\Pc'
regexp combining-char = '\Mn' | '\Mc'
regexp formatting-char = '\Cf'

25

regexp ident-start-char =
 | letter-char
 | _

regexp ident-char =
 | letter-char
 | digit-char
 | connecting-char
 | combining-char
 | formatting-char
 | '
 | _

regexp ident-text = ident-start-char ident-char*
token ident =
 | ident-text For example, myName1
 | `` ([^'`' '\n' '\r' '\t'] | '`' [^ '`' '\n' '\r' '\t'])+ ``
 For example, ``value.with odd#name``

Any sequence of characters that is enclosed in double-backtick marks (`` ``), excluding newlines,

tabs, and double-backtick pairs themselves, is treated as an identifier. Note that when an identifier is

used for the name of a types, union type case, module, or namespace, the following characters are

not allowed even inside double-backtick marks:

‘.', '+', '$', '&', '[', ']', '/', '\\', '*', '\"', '`'

All input files are currently assumed to be encoded as UTF-8. See the C# specification for a list of the

Unicode characters that are accepted for the Unicode character classes \Lu, \Li, \Lt, \Lm, \Lo, \Nl,

\Pc, \Mn, \Mc, and \Cf.

The following identifiers are treated as keywords of the F# language:

token ident-keyword =
 abstract and as assert base begin class default delegate do done
 downcast downto elif else end exception extern false finally for
 fun function global if in inherit inline interface internal lazy let
 match member module mutable namespace new null of open or
 override private public rec return sig static struct then to
 true try type upcast use val void when while with yield

The following identifiers are reserved for future use:

token reserved-ident-keyword =

 atomic break checked component const constraint constructor

 continue eager fixed fori functor include

 measure method mixin object parallel params process protected pure

 recursive sealed tailcall trait virtual volatile

A future revision of the F# language may promote any of these identifiers to be full keywords.

The following token forms are reserved, except when they are part of a symbolic keyword (§3.6).

token reserved-ident-formats =

 | ident-text ('!' | '#')

In the remainder of this specification, we refer to the token that is generated for a keyword simply

by using the text of the keyword itself.

26

3.5 Strings and Characters
String literals may be specified for two types:

• Unicode strings, type string = System.String

• Unsigned byte arrays, type byte[] = bytearray

Literals may also be specified by using C#-like verbatim forms that interpret \ as a literal character

rather than an escape sequence. In a UTF-8-encoded file, you can directly embed the following in a

string in the same way as in C#:

• Unicode characters, such as “\u0041bc”

• Identifiers, as described in the previous section, such as “abc”

• Trigraph specifications of Unicode characters, such as “\067” which represents “C”

regexp escape-char = '\' ["\'ntbrafv]
regexp non-escape-chars = '\' [^"\'ntbrafv]
regexp simple-char-char =
 | (any char except '\n' '\t' '\r' '\b' '\a' '\f' '\v' ' \ ")

regexp unicodegraph-short = '\' 'u' hexdigit hexdigit hexdigit hexdigit
regexp unicodegraph-long = '\' 'U' hexdigit hexdigit hexdigit hexdigit
 hexdigit hexdigit hexdigit hexdigit

regexp trigraph = '\' digit-char digit-char digit-char

regexp char-char =
 | simple-char-char
 | escape-char
 | trigraph
 | unicodegraph-short

regexp string-char =
 | simple-string-char
 | escape-char
 | non-escape-chars
 | trigraph
 | unicodegraph-short
 | unicodegraph-long
 | newline

regexp string-elem =
 | string-char
 | '\' newline whitespace* string-elem

token char = ' char-char '
token string = " string-char* "

regexp verbatim-string-char =
 | simple-string-char
 | non-escape-chars
 | newline
 | \
 | ""

token verbatim-string = @" verbatim-string-char* "

token bytechar = ' simple-or-escape-char 'B
token bytearray = " string-char* "B
token verbatim-bytearray = @" verbatim-string-char* "B
token simple-or-escape-char = escape-char | simple-char

27

token simple-char = any char except newline,return,tab,backspace,',\,"

token triple-quoted-string = """ simple-or-escape-char* """

To translate a string token to a string value, the F# parser concatenates all the Unicode characters

for the string-char elements within the string. Strings may include \n as a newline character.

However, if a line ends with \, the newline character and any leading whitespace elements on the

subsequent line are ignored. Thus, the following gives s the value "abcdef":

let s = "abc\

 def"

Without the backslash, the resulting string includes the newline and whitespace characters. For

example:

let s = "abc

 def"

In this case, s has the value "abc\010 def" where \010 is the embedded control character for \n,

which has Unicode UTF-16 value 10.

Verbatim strings may be specified by using the @ symbol preceding the string as in C#. For example,

the following assigns the value "abc\def" to s.

let s = @"abc\def"

String-like and character-like literals can also be specified for unsigned byte arrays (type byte[]).

These tokens cannot contain Unicode characters that have surrogate-pair UTF-16 encodings or UTF-

16 encodings greater than 127.

A triple-quoted string is specified by using three quotation marks (""") to ensure that a string that

includes one or more escaped strings is interpreted verbatim. For example, a triple-quoted string can

be used to embed XML blobs:

let catalog = """

<?xml version="1.0"?>

<catalog>

 <book id="book">

 <author>Author</author>

 <title>F#</title>

 <genre>Computer</genre>

 <price>44.95</price>

 <publish_date>2012-10-01</publish_date>

 <description>An in-depth look at creating applications in F#</description>

 </book>

</catalog>

"""

3.6 Symbolic Keywords
The following symbolic or partially symbolic character sequences are treated as keywords:

28

token symbolic-keyword =
 let! use! do! yield! return!
 | -> <- . : () [] [< >] [| |] { }
 ' # :?> :? :> .. :: := ;; ; =
 _ ? ?? (*) <@ @> <@@ @@>

The following symbols are reserved for future use:

token reserved-symbolic-sequence =
 ~ `

3.7 Symbolic Operators
User-defined and library-defined symbolic operators are sequences of characters as shown below,

except where the sequence of characters is a symbolic keyword (§3.6).

regexp first-op-char = !%&*+-./<=>@^|~
regexp op-char = first-op-char | ?

token quote-op-left =
 | <@ <@@

token quote-op-right =
 | @> @@>

token symbolic-op =
 | ?
 | ?<-
 | first-op-char op-char*
 | quote-op-left
 | quote-op-right

For example, &&& and ||| are valid symbolic operators. Only the operators ? and ?<- may start with

?.

The quote-op-left and quote-op-right operators are used in quoted expressions (§6.8).

For details about the associativity and precedence of symbolic operators in expression forms, see

§4.4.

3.8 Numeric Literals
The lexical specification of numeric literals is as follows:

regexp digit = [0-9]
regexp hexdigit = digit | [A-F] | [a-f]
regexp octaldigit = [0-7]
regexp bitdigit = [0-1]

regexp int =
 | digit+ For example, 34

regexp xint =
 | 0 (x|X) hexdigit+ For example, 0x22
 | 0 (o|O) octaldigit+ For example, 0o42
 | 0 (b|B) bitdigit+ For example, 0b10010

29

token sbyte = (int|xint) 'y' For example, 34y
token byte = (int|xint) 'uy' For example, 34uy
token int16 = (int|xint) 's' For example, 34s
token uint16 = (int|xint) 'us' For example, 34us
token int32 = (int|xint) 'l' For example, 34l
token uint32 = (int|xint) 'ul' For example, 34ul
 | (int|xint) 'u' For example, 34u
token nativeint = (int|xint) 'n' For example, 34n
token unativeint = (int|xint) 'un' For example, 34un
token int64 = (int|xint) 'L' For example, 34L
token uint64 = (int|xint) 'UL' For example, 34UL
 | (int|xint) 'uL' For example, 34uL

token ieee32 =
 | float [Ff] For example, 3.0F or 3.0f
 | xint 'lf' For example, 0x00000000lf
token ieee64 =
 | float For example, 3.0
 | xint 'LF' For example, 0x0000000000000000LF

token bignum = int ('Q' | 'R' | 'Z' | 'I' | 'N' | 'G')
 For example, 34742626263193832612536171N

token decimal = (float|int) [Mm]

token float =
 digit+ . digit*
 digit+ (. digit*)? (e|E) (+|-)? digit+

3.8.1 Post-filtering of Adjacent Prefix Tokens

Negative integers are specified using the – token; for example, -3. The token steam is post-filtered

according to the following rules:

• If the token stream contains the adjacent tokens – token:

If token is a constant numeric literal, the pair of tokens is merged. For example, adjacent tokens

- and 3 becomes the single token “-3”. Otherwise, the tokens remain separate. However the “-”

token is marked as an ADJACENT_PREFIX_OP token.

This rule does not apply to the sequence token1 - token2, if all three tokens are adjacent and

token1 is a terminating token from expression forms that have lower precedence than the

grammar production expr = MINUS expr.

For example, the – and b tokens in the following sequence are not merged if all three tokens

are adjacent:

a-b

• Otherwise, the usual grammar rules apply to the uses of – and +, with an addition for
ADJACENT_PREFIX_OP:

expr = expr MINUS expr

 | MINUS expr

 | ADJACENT_PREFIX_OP expr

30

3.8.2 Post-filtering of Integers Followed by Adjacent “..”

Tokens of the form

token intdotdot = int..

such as 34.. are post-filtered to two tokens: one int and one symbolic-keyword, “..”.

This rule allows “..” to immediately follow an integer. This construction is used in expressions of the

form [for x in 1..2 -> x + x]. Without this rule, the longest-match rule would consider this

sequence to be a floating-point number followed by a “.”.

3.8.3 Reserved Numeric Literal Forms

The following token forms are reserved for future numeric literal formats:

token reserved-literal-formats =
 | (xint | ieee32 | ieee64) ident-char+

3.8.4 Shebang

A shebang (#!) directive may exist at the beginning of F# source files. Such a line is treated as a

comment. This allows F# scripts to be compatible with the Unix convention whereby a script

indicates the interpreter to use by providing the path to that interpreter on the first line, following

the #! directive.

#!/bin/usr/env fsharpi --exec

3.9 Line Directives
Line directives adjust the source code filenames and line numbers that are reported in error

messages, recorded in debugging symbols, and propagated to quoted expressions. F# supports the

following line directives:

token line-directive =
 # int
 # int string
 # int verbatim-string
 #line int
 #line int string
 #line int verbatim-string

A line directive applies to the line that immediately follows the directive. If no line directive is

present, the first line of a file is numbered 1.

3.10 Hidden Tokens
Some hidden tokens are inserted by lexical filtering (§15) or are used to replace existing tokens. See

§15 for a full specification and for the augmented grammar rules that take these into account.

31

3.11 Identifier Replacements
The following table lists identifiers that are automatically replaced by expressions.

Identifier Replacement
__SOURCE_DIRECTORY__ A literal verbatim string that specifies the name of the directory that contains the

current file. For example:
 C:\source

The name of the current file is derived from the most recent line directive in the
file. If no line directive has appeared, the name is derived from the name that was
specificed to the command-line compiler in combination with
System.IO.Path.GetFullPath.
In F# Interactive, the name stdin is used. When F# Interactive is used from tools
such as Visual Studio, a line directive is implicitly added before the interactive
execution of each script fragment.

__SOURCE_FILE__ A literal verbatim string that contains the name of the current file. For example:
 file.fs

__LINE__ A literal string that specifies the line number in the source file, after taking into
account adjustments from line directives.

4. Basic Grammar Elements
This section defines grammar elements that are used repeatedly in later sections.

4.1 Operator Names
Several places in the grammar refer to an ident-or-op rather than an ident:

ident-or-op :=
 | ident
 | (op-name)
 | (*)

op-name :=
 | symbolic-op
 | range-op-name
 | active-pattern-op-name

range-op-name :=
 | ..
 |

active-pattern-op-name :=
 | | ident | ... | ident |
 | | ident | ... | ident | _ |

In operator definitions, the operator name is placed in parentheses. For example:

let (+++) x y = (x, y)

This example defines the binary operator +++. The text (+++) is an ident-or-op that acts as an

identifier with associated text +++. Likewise, for active pattern definitions (§7), the active pattern

case names are placed in parentheses, as in the following example:

let (|A|B|C|) x = if x < 0 then A elif x = 0 then B else C

Because an ident-or-op acts as an identifier, such names can be used in expressions. For example:

List.map ((+) 1) [1; 2; 3]

The three character token (*)defines the * operator:

let (*) x y = (x + y)

To define other operators that begin with *, whitespace must follow the opening parenthesis;

otherwise (* is interpreted as the start of a comment:

let (*+*) x y = (x + y)

34

Symbolic operators and some symbolic keywords have a compiled name that is visible in the

compiled form of F# programs. The compiled names are shown below.

[] op_Nil
:: op_ColonColon
+ op_Addition
- op_Subtraction
* op_Multiply
/ op_Division
** op_Exponentiation
@ op_Append
^ op_Concatenate
% op_Modulus
&&& op_BitwiseAnd
||| op_BitwiseOr
^^^ op_ExclusiveOr
<<< op_LeftShift
~~~ op_LogicalNot 
>>> op_RightShift 
~+ op_UnaryPlus 
~- op_UnaryNegation 
= op_Equality 
<> op_Inequality 
<= op_LessThanOrEqual 
>= op_GreaterThanOrEqual 
< op_LessThan 
> op_GreaterThan 
? op_Dynamic 
?<- op_DynamicAssignment 
|> op_PipeRight 
||> op_PipeRight2 
|||> op_PipeRight3 
<| op_PipeLeft 
<|| op_PipeLeft2 
<||| op_PipeLeft3 
! op_Dereference 
>> op_ComposeRight 
<< op_ComposeLeft 
<@ @> op_Quotation 
<@@ @@> op_QuotationUntyped 
~% op_Splice 
~%% op_SpliceUntyped 
~& op_AddressOf 
~&& op_IntegerAddressOf 
|| op_BooleanOr 
&& op_BooleanAnd 
+= op_AdditionAssignment 
-= op_SubtractionAssignment 
*= op_MultiplyAssignment 
/= op_DivisionAssignment 
.. op_Range 
.. .. op_RangeStep 

  



35 
 

Compiled names for other symbolic operators are op_N1...Nn where N1 to Nn are the names for the 

characters as shown in the table below. For example, the symbolic identifier <* has the compiled 

name op_LessMultiply: 

> Greater 
< Less  
+ Plus 
- Minus 
* Multiply 
= Equals 
~ Twiddle 
% Percent 
. Dot 
& Amp 
| Bar 
@ At 
# Hash 
^ Hat 
! Bang 
? Qmark 
/ Divide 
. Dot 
: Colon 
( LParen 
, Comma 
) RParen 
[ LBrack 
] RBrack  

4.2 Long Identifiers 
Long identifiers long-ident are sequences of identifiers that are separated by ‘.’ and optional 

whitespace. Long identifiers long-ident-or-op are long identifiers that may terminate with an 

operator name. 

long-ident :=  ident '.' ... '.' ident  
long-ident-or-op :=   
  | long-ident '.' ident-or-op 
  | ident-or-op  

4.3 Constants  
The constants in the following table may be used in patterns and expressions. The individual lexical 

formats for the different constants are defined in §3.  

const :=  
      | sbyte  
      | int16  
      | int32  
      | int64  -- 8, 16, 32 and 64-bit signed integers 
      | byte  
      | uint16  
      | uint32  
      | int  -- 32-bit signed integer 
      | uint64  -- 8, 16, 32 and 64-bit unsigned integers 
      | ieee32  -- 32-bit number of type "float32" 



36 
 

      | ieee64  -- 64-bit number of type "float" 
      | bignum  -- User or library-defined integral literal type 
      | char  -- Unicode character of type "char" 
      | string  -- String of type "string" (System.String) 
      | verbatim-string -- String of type "string" (System.String) 
      | triple-quoted-string -- String of type "string" (System.String) 
      | bytestring  -- String of type "byte[]"  
      | verbatim-bytearray -- String of type "byte[]"  
      | bytechar -- Char of type "byte" 
      | false | true -- Boolean constant of type "bool" 
      | '(' ')' -- unit constant of type "unit" 

4.4 Operators and Precedence  

4.4.1 Categorization of Symbolic Operators 

The following symbolic-op tokens can be used to form prefix and infix expressions. The marker OP 

represents all symbolic-op tokens that begin with the indicated prefix, except for tokens that appear 

elsewhere in the table. 

 
infix-or-prefix-op :=  
    +,  -, +., -., %, &, && 
 
prefix-op := 
    infix-or-prefix-op  
    ~ ~~ ~~~    (and any repetitions of ~) 
    !OP                  (except !=) 
 
infix-op := 
    infix-or-prefix-op  
    -OP +OP || <OP >OP = |OP &OP ^OP *OP /OP %OP != 
                         (or any of these preceded by one or more ‘.’) 
    := 
    :: 
    $ 
    or 
    ? 

The operators +,  -, +., -., %, %%, &, && can be used as both prefix and infix operators. When these 

operators are used as prefix operators, the tilde character is prepended internally to generate the 

operator name so that the parser can distinguish such usage from an infix use of the operator. For 

example, -x is parsed as an application of the operator ~- to the identifier x. This generated name is 

also used in definitions for these prefix operators. Consequently, the definitions of the following 

prefix operators include the ~ character: 

// To completely redefine the prefix + operator: 

let (~+) x = x 

 

// To completely redefine the infix + operator to be addition modulo-7  

let (+) a b = (a + b) % 7 

 

// To define the operator on a type: 

type C(n:int) = 

    let n = n % 7 

    member x.N = n 



37 
 

    static member (~+) (x:C) = x 

    static member (~-) (x:C) = C(-n) 

    static member (+) (x1:C,x2:C) = C(x1.N+x2.N) 

    static member (-) (x1:C,x2:C) = C(x1.N-x2.N) 

 

The:: operator is special. It represents the union case for the addition of an element to the head of 

an immutable linked list, and cannot be redefined, although it may be used to form infix expressions. 

It always accepts arguments in tupled form—as do all union cases—rather than in curried form. 

4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs 

Rules of precedence control the order of evaluation for ambiguous expression and pattern 

constructs. Higher precedence items are evaluated before lower precedence items.  

The following table shows the order of precedence, from highest to lowest, and indicates whether 

the operator or expression is associated with the token to its left or right. The OP marker represents 

the symbolic-op tokens that begin with the specified prefix, except those listed elsewhere in the 

table. For example, +OP represents any token that begins with a plus sign, unless the token appears 

elsewhere in the table.  

Operator or expression Associativity Comments 
f<types> Left High-precedence type application; see §15.3 
f(x) Left High-precedence application; see §15.2 
. Left  
prefix-op Left Applies to prefix uses of these symbols 
"| rule" Right Pattern matching rules 
"f x" 
"lazy x" 
"assert x" 

Left  

**OP Right  
*OP /OP %OP Left  
-OP +OP Left Applies to infix uses of these symbols 
:? Not associative  
:: Right  
^OP Right  
!=OP <OP >OP = |OP &OP $ Left  
:> :?> Right  
& && Left  
or || Left  
, Not associative  
:= Right  
-> Right  
if Not associative  
function, fun, match, try Not associative  
let Not associative  
; Right  
| Left  
when Right  
as Right  
 

If ambiguous grammar rules (such as the rules from §6) involve tokens in the table, a construct that 

appears earlier in the table has higher precedence than a construct that appears later in the table. 



38 
 

The associativity indicates whether the operator or construct applies to the item to the left or the 

right of the operator.   

For example, consider the following token stream: 

a + b * c 

In this expression, the expr infix-op expr rule for b * c takes precedence over the expr infix-op 

expr rule for a + b, because the * operator has higher precedence than the + operator. Thus, this 

expression can be pictured as follows: 

a + b * c 

rather than 

a + b * c 

Likewise, given the tokens 

a * b * c 

the left associativity of * means we can picture the resolution of the ambiguity as: 

a * b * c 

In the preceding table, leading . characters are ignored when determining precedence for infix 

operators. For example,  .* has the same precedence as *. This rule ensures that operators such as 

.*, which is frequently used for pointwise-operation on matrices, have the expected precedence.  

The table entries marked as “High-precedence application” and “High-precedence type application” 

are the result of the augmentation of the lexical token stream, as described in §15.2 and §15.3.



5. Types and Type Constraints 
The notion of type is central to both the static checking of F# programs and to dynamic type tests 

and reflection at runtime. The word is used with four distinct but related meanings: 

• Type definitions, such as the actual CLI or F# definitions of System.String or 

FSharp.Collections.Map<_,_>. 

• Syntactic types, such as the text option<_> that might occur in a program text. Syntactic types 

are converted to static types during the process of type checking and inference. 

• Static types, which result from type checking and inference, either by the translation of syntactic 

types that appear in the source text, or by the application of constraints that are related to 

particular language constructs. For example, option<int> is the fully processed static type that is 

inferred for an expression Some(1+1). Static types may contain type variables as described later 

in this section. 

• Runtime types, which are objects of type System.Type and represent some or all of the 

information that type definitions and static types convey at runtime. The obj.GetType() method, 

which is available on all F# values, provides access to the runtime type of an object. An object’s 

runtime type is related to the static type of the identifiers and expressions that correspond to 

the object. Runtime types may be tested by built-in language operators such as :? and :?>, the 

expression form downcast expr, and pattern matching type tests. Runtime types of objects do 

not contain type variables. Runtime types that System.Reflection reports may contain type 

variables that are represented by System.Type values.  

The following describes the syntactic forms of types as they appear in programs: 

type :=   
    ( type ) 
    type -> type -- function type 
    type * ... * type -- tuple type 
    typar  -- variable type 
    long-ident  -- named type, such as int  
    long-ident<type-args>  -- named type, such as list<int>  
    long-ident< >  -- named type, such as IEnumerable< >  
    type long-ident -- named type, such as int list 
    type[ , ... , ] -- array type 
    type typar-defns -- type with constraints 
    typar :> type -- variable type with subtype constraint  
    #type  -- anonymous type with subtype constraint 
 
type-args :=  type-arg, ..., type-arg 
 
type-arg :=   
    type  -- type argument 
    measure  -- unit of measure argument 
    static-parameter -- static parameter 
 
atomic-type :=  
     type :  one of 
           #type typar ( type ) long-ident long-ident<type-args>  
 
typar := 
    _   -- anonymous variable type 



40 
 

    'ident  -- type variable 
    ^ident  -- static head-type type variable 
 
constraint :=   
    typar :> type -- coercion constraint 
    typar : null -- nullness constraint 
    static-typars : (member-sig ) -- member "trait" constraint 
    typar : (new : unit -> 'T) -- CLI default constructor constraint 
    typar : struct -- CLI non-Nullable struct  
    typar : not struct -- CLI reference type 
    typar : enum<type> -- enum decomposition constraint  
    typar : unmanaged -- unmanaged constraint  
    typar : delegate<type, type>  -- delegate decomposition constraint  
    typar : equality 
    typar : comparison 
 
 
typar-defn := attributesopt typar 
 
typar-defns  := < typar-defn, ..., typar-defn typar-constraintsopt > 
 
typar-constraints := when constraint and ... and constraint  
 
static-typars :=  
    ^ident  
    (^ident or ... or ^ident) 
 
member-sig := <see Section 10> 

In a type instantiation, the type name and the opening angle bracket must be syntactically adjacent 

with no intervening whitespace, as determined by lexical filtering (§15). Specifically: 

array<int> 

and not 

array <  int   > 

5.1 Checking Syntactic Types  
Syntactic types are checked and converted to static types as they are encountered. Static types are a 

specification device used to describe  

• The process of type checking and inference.  

• The connection between syntactic types and the execution of F# programs.  

Every expression in an F# program is given a unique inferred static type, possibly involving one or 

more explicit or implicit generic parameters. 

For the remainder of this specification we use the same syntax to represent syntactic types and 

static types. For example int32 * int32 is used to represent the syntactic type that appears in 

source code and the static type that is used during checking and type inference.  



41 
 

The conversion from syntactic types to static types happens in the context of a name resolution 

environment (§14.1), a floating type variable environment, which is a mapping from names to type 

variables, and a type inference environment (§14.5).  

The phrase “fresh type” means a static type that is formed from a fresh type inference variable. Type 

inference variables are either solved or generalized by type inference (§14.5). During conversion and 

throughout the checking of types, expressions, declarations, and entire files, a set of current 

inference constraints is maintained. That is, each static type is processed under input constraints Χ, 

and results in output constraints Χ’. Type inference variables and constraints are progressively 

simplified and eliminated based on these equations through constraint solving (§14.5).  

5.1.1 Named Types 

Named types have several forms, as listed in the following table.  

Form Description 

long-ident<ty1,…,tyn> Named type with one or more suffixed type arguments. 
long-ident Named type with no type arguments  
type long-ident Named type with one type argument; processed the same as long-ident<type> 

ty1 -> ty2 A function type, where: 

▪ ty1 is the domain of the function values associated with the type 

▪ ty2 is the range. 
 

In compiled code it is represented by the named type 
FSharp.Core.FastFunc<ty1,ty2>. 

 

Named types are converted to static types as follows: 

• Name Resolution for Types (§14.1) resolves long-ident to a type definition with formal generic 

parameters <typar1,…, typarn> and formal constraints C. The number of type arguments n is 

used during the name resolution process to distinguish between similarly named types that take 

different numbers of type arguments.  

• Fresh type inference variables <ty'1,…,ty'n> are generated for each formal type parameter. The 

formal constraints C are added to the current inference constraints for the new type inference 

variables; and constraints tyi = ty'i are added to the current inference constraints. 

5.1.2 Variable Types 

A type of the form 'ident is a variable type. For example, the following are all variable types: 

'a 

'T 

'Key 

During checking, Name Resolution (§14.1) is applied to the identifier. 

• If name resolution succeeds, the result is a variable type that refers to an existing declared type 

parameter.  

• If name resolution fails, the current floating type variable environment is consulted, although 

only in the context of a syntactic type that is embedded in an expression or pattern. If the type 

variable name is assigned a type in that environment, F# uses that mapping. Otherwise, a fresh 



42 
 

type inference variable is created (see §14.5) and added to both the type inference environment 

and the floating type variable environment. 

A type of the form _ is an anonymous variable type. A fresh type inference variable is created and 

added to the type inference environment (see §14.5) for such a type. 

A type of the form ^ident is a statically resolved type variable. A fresh type inference variable is 

created and added to the type inference environment (see §14.5). This type variable is tagged with 

an attribute that indicates that it can be generalized only at inline definitions (see §14.6.7). The 

same restriction on generalization applies to any type variables that are contained in any type that is 

equated with the ^ident type in a type inference equation. 

Note: this specification generally uses uppercase identifiers such as 'T or 'Key for user-

declared generic type parameters, and uses lowercase identifiers such as 'a or 'b for 

compiler-inferred generic parameters. 

5.1.3 Tuple Types 

A tuple type has the following form:  

ty1 * ... * tyn 

The elaborated form of a tuple type is shorthand for a use of the family of F# library types 

System.Tuple<_,...,_>. See §6.3.2 for the details of this encoding.  

When considered as static types, tuple types are distinct from their encoded form. However, the 

encoded form of tuple types is visible in the F# type system through runtime types. For example, 

typeof<int * int> is equivalent to typeof<System.Tuple<int,int>>. 

5.1.4 Array Types 

Array types have the following forms: 

ty[] 

ty[ , ... , ] 

A type of the form ty[] is a single-dimensional array type, and a type of the form ty[ , ... , ] is a 

multidimensional array type. For example, int[,,] is an array of integers of rank 3.  

Except where specified otherwise in this document, these array types are treated as named types, as 

if they are an instantiation of a fictitious type definition System.Arrayn<ty> where n corresponds to 

the rank of the array type. 

Note: The type int[][,] in F# is the same as the type int[,][] in C# although the 

dimensions are swapped. This ensures consistency with other postfix type names in F# 

such as int list list. 

F#  supports multidimensional array types only up to rank 4. 

5.1.5 Constrained Types 

A type with constraints has the following form: 



43 
 

type when constraints 

During checking, type is first checked and converted to a static type, then constraints are checked 

and added to the current inference constraints. The various forms of constraints are described 

in§5.2. 

A type of the form typar :> type is a type variable with a subtype constraint and is equivalent to 

typar when typar :> type. 

A type of the form #type is an anonymous type with a subtype constraint and is equivalent to 'a 

when 'a :> type, where 'a is a fresh type inference variable.  

5.2 Type Constraints 
A type constraint limits the types that can be used to create an instance of a type parameter or type 

variable. F# supports the following type constraints: 

• Subtype constraints 

• Nullness constraints 

• Member constraints 

• Default constructor constraints 

• Value type constraints 

• Reference type constraints 

• Enumeration constraints 

• Delegate constraints 

• Unmanaged constraints 

• Equality and comparison constraints 
 

5.2.1 Subtype Constraints 

An explicit subtype constraint has the following form:  

typar :> type 

During checking, typar is first checked as a variable type, type is checked as a type, and the 

constraint is added to the current inference constraints. Subtype constraints affect type coercion as 

specified in §5.4.7. 

Note that subtype constraints also result implicitly from: 

• Expressions of the form expr :> type. 

•  Patterns of the form pattern :> type. 

• The use of generic values, types, and members with constraints. 

• The implicit use of subsumption when using values and members (§14.4.3). 



44 
 

 

A type variable cannot be constrained by two distinct instantiations of the same named type. If two 

such constraints arise during constraint solving, the type instantiations are constrained to be equal. 

For example, during type inference, if a type variable is constrained by both IA<int> and IA<string>, 

an error occurs when the type instantiations are constrained to be equal. This limitation is 

specifically necessary to simplify type inference, reduce the size of types shown to users, and help 

ensure the reporting of useful error messages. 

5.2.2 Nullness Constraints 

An explicit nullness constraint has the following form:  

typar: null 

During checking, typar is checked as a variable type and the constraint is added to the current 

inference constraints. The conditions that govern when a type satisfies a nullness constraint are 

specified in §5.4.8. 

In addition: 

• The typar must be a statically resolved type variable of the form ^ident. This limitation ensures 

that the constraint is resolved at compile time, and means that generic code may not use this 

constraint unless that code is marked inline (§14.6.7). 

Note: Nullness constraints are primarily for use during type checking and are used 

relatively rarely in F# code.  

Nullness constraints also arise from expressions of the form null.  

5.2.3 Member Constraints 

An explicit member constraint has the following form:  

(typar or ... or typar) : (member-sig) 

For example, the F# library defines the + operator with the following signature: 

val inline (+) : ^a -> ^b -> ^c  

      when (^a or ^b) : (static member (+) : ^a * ^b -> ^c) 

This definition indicates that each use of the + operator results in a constraint on the types that 

correspond to parameters ^a, ^b, and ^c. If these are named types, then either the named type for 

^a or the named type for ^b must support a static member called + that has the given signature. 

In addition: 

• Each typar must be a statically resolved type variable (§5.1.2) in the form ^ident. This ensures 

that the constraint is resolved at compile time against a corresponding named type. It also 

means that generic code cannot use this constraint unless that code is marked inline (§14.6.7).  

• The member-sig cannot be generic; that is, it cannot include explicit type parameter definitions. 

• The conditions that govern when a type satisfies a member constraint are specified in §14.5.4 . 



45 
 

Note: Member constraints are primarily used to define overloaded functions in the F# 

library and are used relatively rarely in F# code. 

Uses of overloaded operators do not result in generalized code unless definitions are 

marked as inline. For example, the function 

  let f x = x + x 

results in a function f that can be used only to add one type of value, such as int or 

float. The exact type is determined by later constraints.  

A type variable may not be involved in the support set of more than one member constraint that has 

the same name, staticness, argument arity, and support set (§14.5.4). If it is, the argument and 

return types in the two member constraints are themselves constrained to be equal. This limitation 

is specifically necessary to simplify type inference, reduce the size of types shown to users, and 

ensure the reporting of useful error messages. 

5.2.4 Default Constructor Constraints 

An explicit default constructor constraint has the following form: 

typar : (new : unit -> 'T) 

During constraint solving (§14.5), the constraint type : (new : unit -> 'T) is met if type has a 

parameterless object constructor. 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

5.2.5 Value Type Constraints 

An explicit value type constraint has the following form: 

typar : struct 

During constraint solving (§14.5), the constraint type : struct is met if type is a value type other 

than the CLI type System.Nullable<_>. 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

The restriction on System.Nullable is inherited from C# and other CLI languages, which 

give this type a special syntactic status. In F#, the type option<_> is similar to some uses 

of System.Nullable<_>. For various technical reasons the two types cannot be equated, 

notably because types such as System.Nullable<System.Nullable<_>> and 

System.Nullable<string> are not valid CLI types. 

5.2.6 Reference Type Constraints 

An explicit reference type constraint has the following form: 

typar : not struct 

During constraint solving (§14.5), the constraint type : not struct is met if type is a reference type. 



46 
 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

5.2.7 Enumeration Constraints 

An explicit enumeration constraint has the following form:  

typar : enum<underlying-type> 

During constraint solving (§14.5), the constraint type : enum<underlying-type> is met if type is a CLI 

or F# enumeration type that has constant literal values of type underlying-type. 

Note: This constraint form exists primarily to allow the definition of library functions 

such as enum. It is rarely used directly in F# programming. 

The enum constraint does not imply anything about subtypes. For example, an enum 

constraint does not imply that the type is a subtype of System.Enum. 

5.2.8 Delegate Constraints 

An explicit delegate constraint has the following form: 

typar : delegate<tupled-arg-type, return-type> 

During constraint solving (§14.5), the constraint type : delegate<tupled-arg-type, return-types> 

is met if type is a delegate type D with declaration type D = delegate of object * arg1 * ... * 

argN and tupled-arg-type = arg1 * ... * argN. That is, the delegate must match the CLI design 

pattern where the sender object is the first argument to the event. 

Note: This constraint form exists primarily to allow the definition of certain F# library 

functions that are related to event programming. It is rarely used directly in F# 

programming. 

The delegate constraint does not imply anything about subtypes. In particular, a 

‘delegate’ constraint does not imply that the type is a subtype of System.Delegate. 

The delegate constraint applies only to delegate types that follow the usual form for CLI 

event handlers, where the first argument is a “sender” object. The reason is that the 

purpose of the constraint is to simplify the presentation of CLI event handlers to the F# 

programmer.  

5.2.9 Unmanaged Constraints 

An unmanaged constraint has the following form: 

typar : unmanaged 

During constraint solving (§14.5), the constraint type : unmanaged is met if type is unmanaged as 

specified below: 

• Types sbyte, byte, char, nativeint, unativeint, float32, float, int16, uint16, int32, uint32, 

int64, uint64, decimal are unmanaged. 

• Type nativeptr<type> is unmanaged. 



47 
 

• A non-generic struct type whose fields are all unmanaged types is unmanaged. 

5.2.10 Equality and Comparison Constraints 

 Equality constraints and comparison constraints have the following forms, respectively: 

typar : equality 

typar : comparison 

During constraint solving (§14.5), the constraint type : equality is met if both of the following 

conditions are true: 

• The type is a named type, and the type definition does not have, and is not inferred to have, the 

NoEquality attribute. 

• The type has equality dependencies ty1, ..., tyn, each of which satisfies tyi : equality. 

The constraint type : comparison is a comparison constraint. Such a constraint is met if all the 

following conditions hold: 

• If the type is a named type, then the type definition does not have, and is not inferred to have, 

the NoComparison attribute, and the type definition implements System.IComparable or is an 

array type or is System.IntPtr or is System.UIntPtr. 

• If the type has comparison dependencies ty1, ..., tyn, then each of these must satisfy tyi : 
comparison  

An equality constraint is a relatively weak constraint, because with two exceptions, all CLI types 

satisfy this constraint. The exceptions are F# types that are annotated with the NoEquality attribute 

and structural types that are inferred to have the NoEquality attribute. The reason is that in other 

CLI languages, such as C#, it possible to use reference equality on all reference types.  

A comparison constraint is a stronger constraint, because it usually implies that a type must 

implement System.IComparable.  

5.3 Type Parameter Definitions  
Type parameter definitions can occur in the following locations: 

• Value definitions in modules 

• Member definitions 

• Type definitions 

• Corresponding specifications in signatures 

For example, the following defines the type parameter ‘T in a function definition: 

let id<'T> (x:'T) = x    

Likewise, in a type definition: 

type Funcs<'T1,'T2> =  
    { Forward: 'T1 -> 'T2; 



48 
 

      Backward : 'T2 -> 'T2 } 

Likewise, in a signature file: 

val id<'T> : 'T -> 'T  
 

Explicit type parameter definitions can include explicit constraint declarations. For example:  

let dispose2<'T when 'T :> System.IDisposable> (x: 'T, y: 'T) =  
    x.Dispose()  
    y.Dispose() 

The constraint in this example requires that 'T be a type that supports the IDisposable interface. 

However, in most circumstances, declarations that imply subtype constraints on arguments can be 

written more concisely: 

let throw (x: Exception) = raise x 

Multiple explicit constraint declarations use and: 

let multipleConstraints<'T when 'T :> System.IDisposable and  
                                'T :> System.IComparable > (x: 'T, y: 'T) =  
    if x.CompareTo(y) < 0 then x.Dispose() else y.Dispose() 

Explicit type parameter definitions can declare custom attributes on type parameter definitions 

(§13.1).  

5.4 Logical Properties of Types  
During type checking and elaboration, syntactic types and constraints are processed into a reduced 

form composed of: 

• Named types op<types>, where each op consists of a specific type definition, an operator to form 

function types, an operator to form array types of a specific rank, or an operator to form specific 

n-tuple types.  

• Type variables 'ident.  

5.4.1 Characteristics of Type Definitions  

Type definitions include CLI type definitions such as System.String and types that are defined in F# 

code (§8). The following terms are used to describe type definitions: 

• Type definitions may be generic, with one or more type parameters; for example, 

System.Collections.Generic.Dictionary<'Key,'Value>. 

• The generic parameters of type definitions may have associated formal type constraints. 

• Type definitions may have custom attributes (§13.1), some of which are relevant to checking and 

inference. 

• Type definitions may be type abbreviations (§8.3). These are eliminated for the purposes of 

checking and inference (see §5.4.2). 



49 
 

• Type definitions have a kind which is one of the following: 

• Class 

• Interface 

• Delegate 

• Struct 

• Record 

• Union 

• Enum  

• Measure 

• Abstract 

The kind is determined at the point of declaration by Type Kind Inference (§8.2) if it is not 

specified explicitly as part of the type definition. The kind of a type refers to the kind of its 

outermost named type definition, after expanding abbreviations. For example, a type is a class 

type if it is a named type C<types> where C is of kind class. Thus, 

System.Collections.Generic.List<int> is a class type.  

• Type definitions may be sealed. Record, union, function, tuple, struct, delegate, enum, and array 

types are all sealed, as are class types that are marked with the SealedAttribute attribute. 

• Type definitions may have zero or one base type declarations. Each base type declaration 

represents an additional type that is supported by any values that are formed using the type 

definition. Furthermore, some aspects of the base type are used to form the implementation of 

the type definition. 

• Type definitions may have one or more interface declarations. These represent additional 

encapsulated types that are supported by values that are formed using the type. 

Class, interface, delegate, function, tuple, record, and union types are all reference type definitions. 

A type is a reference type if its outermost named type definition is a reference type, after expanding 

type definitions. 

Struct types are value types. 

5.4.2 Expanding Abbreviations and Inference Equations 

Two static types are considered equivalent and indistinguishable if they are equivalent after taking 

into account both of the following:  

• The inference equations that are inferred from the current inference constraints (§14.5). 

• The expansion of type abbreviations (§8.3).  

For example, static types may refer to type abbreviations such as int, which is an abbreviation for 

System.Int32and is declared by the F# library: 



50 
 

type int = System.Int32  

This means that the types int32 and System.Int32 are considered equivalent, as are System.Int32 -

> int and int -> System.Int32. 

Likewise, consider the process of checking this function: 

let checkString (x:string) y =  
    (x = y), y.Contains("Hello")  

During checking, fresh type inference variables are created for values x and y; let’s call them ty1 and 

ty2. Checking imposes the constraints ty1 = string and ty1 = ty2. The second constraint results 

from the use of the generic = operator. As a result of constraint solving, ty2 = string is inferred, and 

thus the type of y is string.  

All relations on static types are considered after the elimination of all equational inference 

constraints and type abbreviations. For example, we say int is a struct type because System.Int32 is 

a struct type.  

Note: Implementations of F# should attempt to preserve type abbreviations when 

reporting types and errors to users. This typically means that type abbreviations should 

be preserved in the logical structure of types throughout the checking process. 

5.4.3 Type Variables and Definition Sites  

Static types may be type variables. During type inference, static types may be partial, in that they 

contain type inference variables that have not been solved or generalized. Type variables may also 

refer to explicit type parameter definitions, in which case the type variable is said to be rigid and 

have a definition site.  

For example, in the following, the definition site of the type parameter 'T is the type definition of C:  

type C<'T> = 'T * 'T 

Type variables that do not have a binding site are inference variables. If an expression is composed 

of multiple sub-expressions, the resulting constraint set is normally the union of the constraints that 

result from checking all the sub-expressions. However, for some constructs (notably function, value 

and member definitions), the checking process applies generalization (§14.6.7). Consequently, some 

intermediate inference variables and constraints are factored out of the intermediate constraint sets 

and new implicit definition site(s) are assigned for these variables.  

For example, given the following declaration, the type inference variable that is associated with the 

value x is generalized and has an implicit definition site at the definition of function id: 

let id x = x 

Occasionally in this specification we use a more fully annotated representation of inferred and 

generalized type information. For example: 

let id<'a> x'a = x'a 



51 
 

Here, 'a represents a generic type parameter that is inferred by applying type inference and 

generalization to the original source code (§14.6.7), and the annotation represents the definition site 

of the type variable. 

5.4.4 Base Type of a Type 

The base type for the static types is shown in the table. These types are defined in the CLI 

specifications and corresponding implementation documentation.  

Static Type Base Type 

Abstract types  System.Object  

All array types System.Array 

Class types The declared base type of the type definition if the type has one; otherwise, 
System.Object. For generic types C<type-inst>, substitute the formal generic 
parameters of C for type-inst.  

Delegate types System.MulticastDelegate 

Enum types  System.Enum  

Exception types System.Exception  

Interface types System.Object  

Record types System.Object 

Struct types  System.ValueType  

Union types  System.Object  

Variable types System.Object  

5.4.5 Interfaces Types of a Type 

The interface types of a named type C<type-inst> are defined by the transitive closure of the 

interface declarations of C and the interface types of the base type of C, where formal generic 

parameters are substituted for the actual type instantiation type-inst. 

The interface types for single dimensional array types ty[] include the transitive closure that starts 

from the interface System.Collections.Generic.IList<ty>, which includes 

System.Collections.Generic.ICollection<ty> and System.Collections.Generic.IEnumerable<ty>.  

5.4.6 Type Equivalence  

Two static types ty1 and ty2 are definitely equivalent (with respect to a set of current inference 

constraints) if either of the following is true: 

• ty1 has form op<ty11, ..., ty1n>, ty2 has form op<ty21, ..., ty2n> and each ty1i is definitely 

equivalent to ty2i for all 1 <= i <= n. 

—OR— 

• ty1 and ty2 are both variable types, and they both refer to the same definition site or are the 

same type inference variable. 

This means that the addition of new constraints may make types definitely equivalent where 

previously they were not. For example, given Χ = { 'a = int }, we have list<int> = list<'a>. 

Two static types ty1 and ty2 are feasibly equivalent if ty1 and ty2 may become definitely equivalent if 

further constraints are added to the current inference constraints. Thus list<int> and list<'a> are 

feasibly equivalent for the empty constraint set. 



52 
 

5.4.7 Subtyping and Coercion 

A static type ty2 coerces to static type ty1 (with respect to a set of current inference constraints X), if 

ty1 is in the transitive closure of the base types and interface types of ty2. Static coercion is written 

with the :> symbol: 

ty2 :> ty1, 

Variable types 'T coerce to all types ty if the current inference constraints include a constraint of the 

form 'T :> ty2, and ty is in the inclusive transitive closure of the base and interface types of ty2. 

A static type ty2 feasibly coerces to static type ty1 if ty2 coerces to ty1 may hold through the addition 

of further constraints to the current inference constraints. The result of adding constraints is defined 

in Constraint Solving (§14.5). 

5.4.8 Nullness 

The design of F# aims to greatly reduce the use of null literals in common programming tasks, 

because they generally result in error-prone code. However:  

• The use of some null literals is required for interoperation with CLI libraries. 

• The appearance of null values during execution cannot be completely precluded for technical 

reasons related to the CLI and CLI libraries. 

As a result, F# types differ in their treatment of the null literal and null values. All named types and 

type definitions fall into one of the following categories: 

• Types with the null literal. These types have null as an “extra” value. The following types are in 

this category: 

• All CLI reference types that are defined in other CLI languages. 

• All types that are defined in F# and annotated with the AllowNullLiteral attribute. 

For example, System.String and other CLI reference types satisfy this constraint, and these types 

permit the direct use of the null literal.  

• Types with null as an abnormal value. These types do not permit the null literal, but do have 

null as an abnormal value. The following types are in this category: 

• All F# list, record, tuple, function, class, and interface types.  

• All F# union types except those that have null as a normal value, as discussed in the next 

bullet point.  

For types in this category, the use of the null literal is not directly allowed. However, strictly 

speaking, it is possible to generate a null value for these types by using certain functions such as 

Unchecked.defaultof<type>. For these types, null is considered an abnormal value. Operations 

differ in their use and treatment of null values; for details about evaluation of expressions that 

might include null values, see §6.9. 



53 
 

• Types with null as a representation value. These types do not permit the null literal but use 

the null value as a representation.  

For these types, the use of the null literal is not directly permitted. However, one or all of the 

“normal” values of the type is represented by the null value. The following types are in this 

category: 

• The unit type. The null value is used to represent all values of this type.  

• Any union type that has the 
FSharp.Core.CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueV

alue) attribute flag and a single null union case. The null value represents this case. In 

particular, null represents None in the F# option<_> type. 

• Types without null. These types do not permit the null literal and do not have the null value. 

All value types are in this category, including primitive integers, floating-point numbers, and any 

value of a CLI or F# struct type. 

A static type ty satisfies a nullness constraint ty : null if it: 

• Has an outermost named type that has the null literal. 

• Is a variable type with a typar : null constraint. 

5.4.9 Default Initialization 

Related to nullness is the default initialization of values of some types to zero values. This technique 

is common in some programming languages, but the design of F# deliberately de-emphasizes it. 

However, default initialization is allowed in some circumstances: 

• Checked default initialization may be used when a type is known to have a valid and “safe” 

default zero value. For example, the types of fields that are labeled with DefaultValue(true) are 

checked to ensure that they allow default initialization. 

• CLI libraries sometimes perform unchecked default initialization, as do the F# library primitives 

Unchecked.defaultof<_> and Array.zeroCreate.  

The following types permit default initialization: 

• Any type that satisfies the nullness constraint. 

• Primitive value types. 

• Struct types whose field types all permit default initialization. 

5.4.10 Dynamic Conversion Between Types 

A runtime type vty dynamically converts to a static type ty if any of the following are true: 

• vty coerces to ty. 

• vty is int32[]and ty is uint32[](or conversely). Likewise for sbyte[]/byte[], int16[]/uint16[], 

int64[]/uint64[], and nativeint[]/unativeint[]. 



54 
 

• vty is enum[] where enum has underlying type underlying, and ty is underlying[] (or conversely), 

or the (un)signed equivalent of underlying[] by the immediately preceding rule. 

• vty is elemty1[], ty is elemty2[], elemty1 is a reference type, and elemty1 converts to elemty2. 

• ty is System.Nullable<vty>. 
 

Note that this specification does not define the full algebra of the conversions of runtime types to 

static types because the information that is available in runtime types is implementation dependent. 

However, the specification does state the conditions under which objects are guaranteed to have a 

runtime type that is compatible with a particular static type.  

Note: This specification covers the additional rules of CLI dynamic conversions, all of 

which apply to F# types. For example: 

  let x = box [| System.DayOfWeek.Monday |] 
  let y = x :? int32[]  
  printf "%b" y // true 

In the previous code, the type System.DayOfWeek.Monday[] does not statically coerce to 

int32[], but the expression x :? int32[] evaluates to true. 

  let x = box [| 1 |] 
  let y = x :? uint32 [] 
  printf "%b" y // true 

In the previous code, the type int32[] does not statically coerce to uint32[], but the 

expression x :? uint32 [] evaluates to true. 

  let x = box [| "" |] 
  let y = x :? obj [] 
  printf "%b" y // true 

In the previous code, the type string[] does not statically coerce to obj[], but the 

expression x :? obj []evaluates to true. 

  let x = box 1 
  let y = x :? System.Nullable<int32> 
  printf "%b" y // true 

In the previous code, the type int32 does not coerce to System.Nullable<int32>, but the 

expression x :? System.Nullable<int32> evaluates to true.



6. Expressions 
The expression forms and related elements are as follows: 

expr :=   
    const   -- a constant value 
    ( expr )   -- block expression 
    begin expr end  -- block expression 
    long-ident-or-op  -- lookup expression 
    expr '.' long-ident-or-op -- dot lookup expression 
    expr expr   -- application expression  
    expr(expr)   -- high precedence application  
    expr<types>  -- type application expression  
    expr infix-op expr  -- infix application expression 
    prefix-op expr  -- prefix application expression 
    expr.[expr]  -- indexed lookup expression 
    expr.[slice-ranges]    -- slice expression 
    expr <- expr  -- assignment expression 
    expr , ... , expr  -- tuple expression 
    new type expr  -- simple object expression 
    { new base-call object-members interface-impls } -- object expression 
    { field-initializers }  -- record expression 
    { expr with field-initializers } -- record cloning expression 
    [ expr ; ... ; expr ] -- list expression 
    [| expr ; ... ; expr |] -- array expression 
    expr { comp-or-range-expr } -- computation expression 
    [ comp-or-range-expr] -- computed list expression 
    [| comp-or-range-expr |] -- computed array expression 
    lazy expr   -- delayed expression 
    null   -- the "null" value for a reference type 
    expr : type  -- type annotation 
    expr :> type  -- static upcast coercion 
    expr :? type  -- dynamic type test 
    expr :?> type  -- dynamic downcast coercion 
    upcast expr  -- static upcast expression 
    downcast expr  -- dynamic downcast expression 
    let function-defn in expr   –- function definition expression 
    let value-defn in expr       –- value definition expression 
    let rec function-or-value-defns in expr  -- recursive definition expression 
    use ident = expr in expr                 –- deterministic disposal expression 
    fun argument-pats -> expr -- function expression 
    function rules  -- matching function expression 
    expr ; expr  -- sequential execution expression 
    match expr with rules -- match expression 
    try expr with rules  -- try/with expression 
    try expr finally expr -- try/finally expression 
    if expr then expr elif-branchesopt else-branchopt -- conditional expression 
    while expr do expr done -- while loop  
    for ident = expr to expr do expr done           -- simple for loop 
    for pat in expr-or-range-expr do expr done      -- enumerable for loop 
    assert expr  -- assert expression 
    <@ expr @>   -- quoted expression 
    <@@ expr @@>  -- quoted expression 

    %expr    -- expression splice 
    %%expr   -- weakly typed expression splice 

    (static-typars : (member-sig) expr) -– static member invocation 

  



56 
 

Expressions are defined in terms of patterns and other entities that are discussed later in this 

specification. The following constructs are also used: 

exprs := expr ',' ... ',' expr  
 
expr-or-range-expr :=  
    expr  
    range-expr 
 
elif-branches := elif-branch ... elif-branch 
 
elif-branch := elif expr then expr 
 
else-branch := else expr  
 
function-or-value-defn :=  
    function-defn 
    value-defn 
 
function-defn :=  
    inlineopt accessopt ident-or-op typar-defnsopt argument-pats return-typeopt = expr 
 
value-defn :=  
    mutableopt accessopt pat typar-defnsopt return-typeopt = expr  
 
return-type :=  
    : type  
 
function-or-value-defns :=  
    function-or-value-defn and ... and function-or-value-defn  
 
argument-pats:= atomic-pat ... atomic-pat 
 
field-initializer := 
    long-ident = expr -- field initialization 
 
field-initializers := field-initializer ; ... ; field-initializer  
 
object-construction := 
    type expr -- construction expression 
    type -- interface construction expression 
 
base-call := 
    object-construction  -- anonymous base construction 
    object-construction as ident -- named base construction 
 
interface-impls := interface-impl ... interface-impl 
 
interface-impl := 
    interface type object-membersopt -- interface implementation 
 
object-members := with member-defns end 
 
member-defns :=  member-defn ... member-defn 

  



57 
 

Computation and range expressions are defined in terms of the following productions: 

comp-or-range-expr := 
    comp-expr 
    short-comp-expr 
    range-expr 
 
comp-expr :=  
    let! pat = expr in comp-expr -- binding computation 
    let  pat = expr in comp-expr 
    do!  expr in comp-expr -- sequential computation 
    do   expr in comp-expr  
    use! pat = expr in comp-expr -- auto cleanup computation 
    use  pat = expr in comp-expr 
    yield! expr  -- yield computation 
    yield expr   -- yield result 
    return! expr  -- return computation 
    return expr  -- return result 
    if expr then comp-expr  -- control flow or imperative action 
    if expr then expr else comp-expr 
    match expr with pat -> comp-expr | … | pat -> comp-expr 
    try comp-expr with pat -> comp-expr | … | pat -> comp-expr 
    try comp-expr finally expr  
    while expr do comp-expr done 
    for ident = expr to expr do comp-expr done 
    for pat in expr-or-range-expr do comp-expr done 
    comp-expr ; comp-expr 
    expr 
 
short-comp-expr := 
    for pat in expr-or-range-expr -> expr -- yield result 
 
range-expr :=  
    expr .. expr  -- range sequence  
    expr .. expr .. expr  -- range sequence with skip 
 
slice-ranges := slice-range , … , slice-range 
 
slice-range :=  
    expr   -- slice of one element of dimension 
    expr..   -- slice from index to end 
    ..expr   -- slice from start to index  
    expr..expr   -- slice from index to index 
    '*'   -- slice from start to end 

6.1 Some Checking and Inference Terminology 
The rules applied to check individual expressions are described in the following subsections. Where 

necessary, these sections reference specific inference procedures such as Name Resolution (§14.1) 

and Constraint Solving (§14.5). 

All expressions are assigned a static type through type checking and inference. During type checking, 

each expression is checked with respect to an initial type. The initial type establishes some of the 

information available to resolve method overloading and other language constructs. We also use the 

following terminology: 

• The phrase “the type ty1 is asserted to be equal to the type ty2” or simply “ty1 = ty2 is asserted” 

indicates that the constraint “ty1 = ty2” is added to the current inference constraints.  



58 
 

• The phrase “ty1 is asserted to be a subtype of ty2” or simply “ty1 :> ty2 is asserted” indicates 

that the constraint ty1 :> ty2 is added to the current inference constraints. 

• The phrase “type ty is known to ...” indicates that the initial type satisfies the given property 

given the current inference constraints. 

• The phrase “the expression expr has type ty” means the initial type of the expression is asserted 

to be equal to ty.  

Additionally: 

• The addition of constraints to the type inference constraint set fails if it causes an inconsistent 

set of constraints (§14.5). In this case either an error is reported or, if we are only attempting to 

assert the condition, the state of the inference procedure is left unchanged and the test fails. 

6.2 Elaboration and Elaborated Expressions 
Checking an expression generates an elaborated expression in a simpler, reduced language that 

effectively contains a fully resolved and annotated form of the expression. The elaborated 

expression provides more explicit information than the source form. For example, the elaborated 

form of System.Console.WriteLine("Hello") indicates exactly which overloaded method definition 

the call has resolved to. Elaborated forms are underlined in this specification, for example, let x = 1 

in x + x.  

Except for this extra resolution information, elaborated forms are syntactically a subset of syntactic 

expressions, and in some cases (such as constants) the elaborated form is the same as the source 

form. This specification uses the following elaborated forms: 

• Constants 

• Resolved value references: path 

• Lambda expressions: (fun ident -> expr) 

• Primitive object expressions 

• Data expressions (tuples, union cases, array creation, record creation) 

• Default initialization expressions  

• Local definitions of values: let ident = expr in expr 

• Local definitions of functions:  
let rec ident = expr and ... and ident = expr in expr 

• Applications of methods and functions (with static overloading resolved) 

• Dynamic type coercions: expr :?> type 

• Dynamic type tests: expr :? type 

• For-loops: for ident in ident to ident do expr done 

• While-loops: while expr do expr done 

• Sequencing: expr; expr 



59 
 

• Try-with: try expr with expr  

• Try-finally: try expr finally expr 

• The constructs required for the elaboration of pattern matching (§7). 

• Null tests 

• Switches on integers and other types 

• Switches on union cases 

• Switches on the runtime types of objects 

The following constructs are used in the elaborated forms of expressions that make direct 

assignments to local variables and arrays and generate “byref” pointer values. The operations are 

loosely named after their corresponding primitive constructs in the CLI. 

• Assigning to a byref-pointer: expr <-stobj expr  

• Generating a byref-pointer by taking the address of a mutable value: &path. 

• Generating a byref-pointer by taking the address of a record field: &(expr.field) 

• Generating a byref-pointer by taking the address of an array element: &(expr.[expr]) 

Elaborated expressions form the basis for evaluation (see §6.9) and for the expression trees that 

quoted expressions return(see §6.8). 

By convention, when describing the process of elaborating compound expressions, we omit the 

process of recursively elaborating sub-expressions.  

6.3 Data Expressions 
This section describes the following data expressions: 

• Simple constant expressions 

• Tuple expressions 

• List expressions 

• Array expressions 

• Record expressions 

• Copy-and-update record expressions 

• Function expressions 

• Object expressions 

• Delayed expressions 

• Computation expressions 

• Sequence expressions 

• Range expressions 

• Lists via sequence expressions 



60 
 

• Arrays via sequence expressions 

• Null expressions 

• 'printf' formats 

6.3.1 Simple Constant Expressions 

Simple constant expressions are numeric, string, Boolean and unit constants. For example: 

3y             // sbyte 

32uy           // byte 

17s            // int16 

18us           // uint16 

86             // int/int32 

99u            // uint32 

99999999L      // int64 

10328273UL     // uint64 

1.             // float/double 

1.01           // float/double 

1.01e10        // float/double 

1.0f           // float32/single  

1.01f          // float32/single 

1.01e10f       // float32/single  

99999999n      // nativeint       (System.IntPtr) 

10328273un     // unativeint      (System.UIntPtr)  

99999999I      // bigint          (System.Numerics.BigInteger or user-specified) 

'a'            // char            (System.Char) 

"3"            // string          (String) 

"c:\\home"     // string          (System.String) 

@"c:\home"     // string          (Verbatim Unicode, System.String) 

"ASCII"B       // byte[] 

()             // unit            (FSharp.Core.Unit) 

false          // bool            (System.Boolean) 

true           // bool            (System.Boolean) 

Simple constant expressions have the corresponding simple type and elaborate to the corresponding 

simple constant value. 

Integer literals with the suffixes Q, R, Z, I, N, G are processed using the following syntactic translation: 

xxxx<suffix> 

For xxxx = 0   → NumericLiteral<suffix>.FromZero() 

For xxxx = 1   → NumericLiteral<suffix>.FromOne() 

For xxxx in the Int32 range → NumericLiteral<suffix>.FromInt32(xxxx) 

For xxxx in the Int64 range → NumericLiteral<suffix>.FromInt64(xxxx) 

For other numbers  → NumericLiteral<suffix>.FromString("xxxx") 

For example, defining a module NumericLiteralZ as below enables the use of the literal form 32Z to 

generate a sequence of 32 ‘Z’ characters. No literal syntax is available for numbers outside the range 

of 32-bit integers. 

module NumericLiteralZ =  



61 
 

    let FromZero() = ""  

    let FromOne() = "Z"  

    let FromInt32 n = String.replicate n "Z" 

F# compilers may optimize on the assumption that calls to numeric literal functions always 

terminate, are idempotent, and do not have observable side effects. 

6.3.2 Tuple Expressions 

An expression of the form expr1, ..., exprn is a tuple expression. For example: 

let three = (1,2,"3") 

let blastoff = (10,9,8,7,6,5,4,3,2,1,0) 

The expression has the type (ty1 * ... * tyn) for fresh types ty1 … tyn, and each individual 

expression ei is checked using initial type tyi.  

Tuple types and expressions are translated into applications of a family of F# library types named 

System.Tuple. Tuple types ty1 * ... * tyn are translated as follows: 

• For n <= 7 the elaborated form is Tuple<ty1,...,tyn>.  

• For larger n, tuple types are shorthand for applications of the additional F# library type 

System.Tuple<_> as follows: 

• For n = 8 the elaborated form is Tuple<ty1,...,ty7,Tuple<ty8>>.  

• For 9 <= n the elaborated form is Tuple<ty1,...,ty7,tyB> where tyB is the converted form of 

the type (ty8 *...* tyn). 

Tuple expressions (expr1,...,exprn) are translated as follows: 

• For n <= 7 the elaborated form new Tuple<ty1,…,tyn>(expr1,...,exprn).  

• For n = 8 the elaborated form new Tuple<ty1,…,ty7,Tuple<ty8>>(expr1,...,expr7, new 

Tuple<ty8>(expr8).  

• For 9 <= n the elaborated form new Tuple<ty1,...ty7,ty8n>(expr1,..., expr7, new ty8n(e8n) 

where ty8n is the type (ty8*...* tyn) and expr8n is the elaborated form of the expression 

 expr8,..., exprn. 

When considered as static types, tuple types are distinct from their encoded form. However, the 

encoded form of tuple values and types is visible in the F# type system through runtime types. For 

example, typeof<int * int> is equivalent to typeof<System.Tuple<int,int>>, and (1,2) has the 

runtime type System.Tuple<int,int>. Likewise, (1,2,3,4,5,6,7,8,9) has the runtime type 

Tuple<int,int,int,int,int,int,int,Tuple<int,int>>.  

Note: The above encoding is invertible and the substitution of types for type variables 

preserves this inversion. This means, among other things, that the F# reflection library 

can correctly report tuple types based on runtime System.Type values. The inversion is 

defined by: 

• For the runtime type Tuple<ty1,...,tyN> when n <= 7, the corresponding F# tuple 

type is ty1 * ... * tyN 



62 
 

• For the runtime type Tuple<ty1,..., Tuple<tyN>> when n = 8, the corresponding F# 

tuple type is ty1 * ... * ty8 

• For the runtime type Tuple<ty1,..., ty7,tyBn> , if tyBn corresponds to the F# tuple 

type ty8 * ... * tyN, then the corresponding runtime type is ty1 * ... * tyN. 

Runtime types of other forms do not have a corresponding tuple type. In particular, 

runtime types that are instantiations of the eight-tuple type Tuple<_,_,_,_,_,_,_,_> 

must always have Tuple<_> in the final position. Syntactic types that have some other 

form of type in this position are not permitted, and if such an instantiation occurs in F# 

code or CLI library metadata that is referenced by F# code, an F# implementation may 

report an error. 

6.3.3 List Expressions 

An expression of the form [expr1;...; exprn] is a list expression. The initial type of the expression is 

asserted to be FSharp.Collections.List<ty> for a fresh type ty.  

If ty is a named type, each expression expri is checked using a fresh type ty' as its initial type, with 

the constraint ty' :> ty. Otherwise, each expression expri is checked using ty as its initial type. 

List expressions elaborate to uses of FSharp.Collections.List<_> as 

op_Cons(expr1,(op_Cons(expr2... op_Cons (exprn, op_Nil)...) where op_Cons and op_Nil are the 

union cases with symbolic names :: and [] respectively.  

6.3.4 Array Expressions 

An expression of the form [|expr1;...; exprn |] is an array expression. The initial type of the 

expression is asserted to be ty[] for a fresh type ty. 

If this assertion determines that ty is a named type, each expression expri is checked using a fresh 

type ty' as its initial type, with the constraint ty' :> ty. Otherwise, each expression expri is 

checked using ty as its initial type. 

Array expressions are a primitive elaborated form.  

Note: The F#  implementation ensures that large arrays of constants of type bool, char, 

byte, sbyte, int16, uint16, int32, uint32, int64, and uint64 are compiled to an efficient 

binary representation based on a call to 

System.Runtime.CompilerServices.RuntimeHelpers.InitializeArray. 

6.3.5 Record Expressions 

An expression of the form { field-initializer1 ; … ; field-initializern } is a record 

construction expression. For example: 

type Data = { Count : int; Name : string } 

let data1 = { Count = 3; Name = "Hello"; } 

let data2 = { Name = "Hello"; Count= 3 } 

In the following example, data4 uses a long identifier to indicate the relevant field: 

module M =  



63 
 

    type Data = { Age : int; Name : string; Height : float } 

 

let data3 = { M.Age = 17; M.Name = "John"; M.Height = 186.0 } 

let data4 = { data3 with M.Name = "Bill"; M.Height = 176.0  } 

Fields may also be referenced by using the name of the containing type: 

module M2 =  

    type Data = { Age : int; Name : string; Height : float } 

 

let data5 = { M2.Data.Age = 17; M2.Data.Name = "John"; M2.Data.Height = 186.0 } 

let data6 = { data5 with M2.Data.Name = "Bill"; M2.Data.Height=176.0  } 

 

open M2 

let data7 = { Data.Age = 17; Data.Name = "John"; Data.Height = 186.0 } 

let data8 = { data5 with Data.Name = "Bill"; Data.Height=176.0  } 

 

Each field-initializeri has the form field-labeli = expri. Each field-labeli is a long-ident, 

which must resolve to a field Fi in a unique record type R as follows: 

• If field-labeli is a single identifier fld and the initial type is known to be a record type 

R<_,...,_> that has field Fi with name fld, then the field label resolves to Fi. 

• If field-labeli is not a single identifier or if the initial type is a variable type, then the field label 

is resolved by performing Field Label Resolution (see §14.1) on field-labeli. This procedure 

results in a set of fields FSeti. Each element of this set has a corresponding record type, thus 

resulting in a set of record types RSeti. The intersection of all RSeti must yield a single record 

type R, and each field then resolves to the corresponding field in R. 

The set of fields must be complete. That is, each field in record type R must have exactly one 

field definition. Each referenced field must be accessible (see §10.5), as must the type R. 

After all field labels are resolved, the overall record expression is asserted to be of type 

R<ty1,...,tyN> for fresh types ty1,...,tyN. Each expri is then checked in turn. The initial type is 

determined as follows: 

1. Assume the type of the corresponding field Fi in R<ty1,...,tyN> is ftyi 

2. If the type of Fi prior to taking into account the instantiation <ty1,...,tyN> is a named type, then 

the initial type is a fresh type inference variable fty'i with a constraint fty'i :> ftyi. 

3. Otherwise the initial type is ftyi. 

 

Primitive record constructions are an elaborated form in which the fields appear in the same order 

as in the record type definition. Record expressions themselves elaborate to a form that may 

introduce local value definitions to ensure that expressions are evaluated in the same order that the 

field definitions appear in the original expression. For example:  

type R = {b : int; a : int } 

{ a = 1 + 1; b = 2 } 

The expression on the last line elaborates to let v = 1 + 1 in { b = 2; a = v }. 



64 
 

Records expressions are also used for object initializations in additional object constructor 

definitions (§8.6.3). For example:  

type C =  

    val x : int  

    val y : int 

    new() = { x = 1; y = 2 } 

Note: The following record initialization form is deprecated: 

{ new type with Field1 = expr1 and … and Fieldn = exprn } 

The F#  implementation allows the use of this form only with uppercase identifiers.  

F# code should not use this expression form. A future version of the F# language will 

issue a deprecation warning. 

6.3.6 Copy-and-update Record Expressions 

A copy-and-update record expression has the following form: 

{ expr with field-initializers } 

where field-initializers is of the following form: 

field-label1 = expr1 ; … ; field-labeln = exprn 

Each field-labeli is a long-ident. In the following example, data2 is defined by using such an 

expression: 

type Data = { Age : int; Name : string; Height : float } 

let data1 = { Age = 17; Name = "John"; Height = 186.0 } 

let data2 = { data1 with Name = "Bill"; Height = 176.0  } 

The expression expr is first checked with the same initial type as the overall expression. Next, the 

field definitions are resolved by using the same technique as for record expressions. Each field label 

must resolve to a field Fi in a single record type R, all of whose fields are accessible. After all field 

labels are resolved, the overall record expression is asserted to be of type R<ty1,...,tyN> for fresh 

types ty1,...,tyN. Each expri is then checked in turn with initial type that results from the following 

procedure: 

1. Assume the type of the corresponding field Fi in R<ty1,...,tyN> is ftyi. 

2. If the type of Fi before considering the instantiation <ty1,...,tyN> is a named type, then the 

initial type is a fresh type inference variable fty'i with a constraint fty'i :> ftyi. 

3. Otherwise, the initial type is ftyi. 

A copy-and-update record expression elaborates as if it were a record expression written as follows: 

let v = expr in { field-label1 = expr1 ; … ; field-labeln = exprn; F1 = v.F1; ... ; FM = v.FM } 

where F1 ... FM are the fields of R that are not defined in field-initializers and v is a fresh 

variable. 



65 
 

6.3.7 Function Expressions 

An expression of the form fun pat1 ... patn -> expr is a function expression. For example: 

(fun x -> x + 1) 

(fun x y -> x + y) 

(fun [x] -> x) // note, incomplete match 

(fun (x,y) (z,w) -> x + y + z + w) 

Function expressions that involve only variable patterns are a primitive elaborated form. Function 

expressions that involve non-variable patterns elaborate as if they had been written as follows: 

fun v1 ... vn ->  

    let pat1 = v1  

    ... 

    let patn = vn  

    expr 

No pattern matching is performed until all arguments have been received. For example, the 

following does not raise a MatchFailureException exception: 

let f = fun [x] y -> y 

let g = f []  // ok 

However, if a third line is added, a MatchFailureException exception is raised: 

let z = g 3 // MatchFailureException is raised 

6.3.8 Object Expressions 

An expression of the following form is an object expression: 

{ new ty0 args-expropt object-members  

  interface ty1 object-members1 

  … 

  interface tyn object-membersn }  

In the case of the interface declarations, the object-members are optional and are considered empty 

if absent. Each set of object-members has the form: 

with member-defns endopt 

Lexical filtering inserts simulated $end tokens when lightweight syntax is used. 

Each member of an object expression members can use the keyword member, override, or default. 

The keyword member can be used even when overriding a member or implementing an interface. 

For example: 

let obj1 =  

   { new System.Collections.Generic.IComparer<int> with 

        member x.Compare(a,b) = compare (a % 7) (b % 7) } 

 

let obj2 =  

   { new System.Object() with 

         member x.ToString () = "Hello" }  

 

let obj3 =  



66 
 

   { new System.Object() with 

         member x.ToString () = "Hello, base.ToString() = " + base.ToString() }  

 

let obj4 =  

   { new System.Object() with 

         member x.Finalize() = printfn "Finalize"; 

     interface System.IDisposable with  

         member x.Dispose() = printfn "Dispose";  }  

 

An object expression can specify additional interfaces beyond those required to fulfill the abstract 

slots of the type being implemented. For example, obj4 in the preceding examples has static type 

System.Object but the object additionally implements the interface System.IDisposable. The 

additional interfaces are not part of the static type of the overall expression, but can be revealed 

through type tests.  

Object expressions are statically checked as follows.  

1. First, ty0 to tyn are checked to verify that they are named types. The overall type of the 

expression is ty0 and is asserted to be equal to the initial type of the expression. However, if ty0 

is type equivalent to System.Object and ty1 exists, then the overall type is instead ty1. 

2. The type ty0 must be a class or interface type. The base construction argument args-expr must 

appear if and only if ty0 is a class type. The type must have one or more accessible constructors; 

the call to these constructors is resolved and elaborated using Method Application Resolution 

(see §14.4). Except for ty0, each tyi must be an interface type. 

3. The F# compiler attempts to associate each member with a unique dispatch slot by using 

dispatch slot inference (§14.7). If a unique matching dispatch slot is found, then the argument 

types and return type of the member are constrained to be precisely those of the dispatch slot. 

4. The arguments, patterns, and expressions that constitute the bodies of all implementing 

members are next checked one by one to verify the following: 

• For each member, the “this” value for the member is in scope and has type ty0.  

• Each member of an object expression can initially access the protected members of ty0.  

• If the variable base-ident appears, it must be named base, and in each member a base 

variable with this name is in scope. Base variables can be used only in the member 

implementations of an object expression, and are subject to the same limitations as byref 

values described in §14.9. 

The object must satisfy dispatch slot checking (§14.8) which ensures that a one-to-one mapping 

exists between dispatch slots and their implementations. 

Object expressions elaborate to a primitive form. At execution, each object expression creates an 

object whose runtime type is compatible with all of the tyi that have a dispatch map that is the 

result of dispatch slot checking (§14.8). 

The following example shows how to both implement an interface and override a method from 

System.Object. The overall type of the expression is INewIdentity. 



67 
 

type public INewIdentity = 

    abstract IsAnonymous : bool 

 

let anon =  

    { new System.Object() with 

        member i.ToString() = "anonymous" 

      interface INewIdentity with 

        member i.IsAnonymous = true } 

6.3.9 Delayed Expressions 

An expression of the form lazy expr is a delayed expression. For example: 

lazy (printfn "hello world") 

is syntactic sugar for  

new System.Lazy (fun () -> expr) 

The behavior of the System.Lazy library type ensures that expression expr is evaluated on demand in 

response to a .Value operation on the lazy value.  

6.3.10 Computation Expressions 

The following expression forms are all computation expressions:  

expr { for ... } 
expr { let ... }  
expr { let! ... } 
expr { use ... }  
expr { while ... }  
expr { yield ... } 
expr { yield! ... } 
expr { try ... } 
expr { return ... } 
expr { return! ... } 

More specifically, computation expressions have the following form: 

builder-expr { cexpr }  

where cexpr is, syntactically, the grammar of expressions with the additional constructs that are 

defined in comp-expr. Computation expressions are used for sequences and other non-standard 

interpretations of the F# expression syntax. For a fresh variable b, the expression 

builder-expr { cexpr }  

translates to 

let b = builder-expr in {| cexpr |}C 

 

The type of b must be a named type after the checking of builder-expr. The subscript indicates that 

custom operations (C) are acceptable but are not required.  

If the inferred type of b has one or more of the Run, Delay, or Quote methods when builder-expr is 

checked, the translation involves those methods. For example, when all three methods exist, the 

same expression translates to: 



68 
 

let b = builder-expr in b.Run (<@ b.Delay(fun () -> {| cexpr |}C) >@) 

If a Run method does not exist on the inferred type of b, the call to Run is omitted. Likewise, if no 

Delay method exists on the type of b, that call and the inner lambda are omitted, so the expression 

translates to the following: 

let b = builder-expr in b.Run (<@ {| cexpr |}C >@) 

Similarly, if a Quote method exists on the inferred type of b, at-signs <@ @> are placed around {| cexpr 

|}C or b.Delay(fun () -> {| cexpr |}C) if a Delay method also exists. 

The translation {| cexpr |}C , which rewrites computation expressions to core language expressions, 

is defined recursively according to the following rules: 

{| cexpr |}C ≡ T (cexpr, [], fun v -> v, true) 

During the translation, we use the helper function {| cexpr |}0 to denote a translation that does not 

involve custom operations: 

{| cexpr |}0 ≡ T (cexpr, [], fun v -> v, false) 

T(e, V, C, q) where e : the computation expression being translated 
                    V : a set of scoped variables 
                    C : continuation (or context where “e” occurs,  
                        up to a hole to be filled by the result of translating “e”) 
                    q : Boolean that indicates whether a custom operator is allowed 
 

 

Then, T is defined for each computation expression e: 

T(let p = e in ce, V, C, q) = T(ce, V  var(p), v.C(let p = e in v), q) 

T(let! p = e in ce, V, C, q) =  T(ce, V  var(p), v.C(b.Bind(src(e),fun p -> v), q) 

T(yield e, V, C, q) = C(b.Yield(e)) 

T(yield! e, V, C, q) = C(b.YieldFrom(src(e))) 

T(return e, V, C, q) = C(b.Return(e)) 

T(return! e, V, C, q) = C(b.ReturnFrom(src(e))) 

T(use p = e in ce, V, C, q) = C(b.Using(e, fun p -> {| ce |}0)) 

T(use! p = e in ce, V, C, q) = C(b.Bind(src(e), fun p -> b.Using(p, fun p -> {| ce |}0)) 

T(match e with pi -> cei, V, C, q) = C(match e with pi -> {| cei |}0) 

T(while e do ce, V, C, q) = T(ce, V, v.C(b.While(fun () -> e, b.Delay(fun () -> v))), q) 

T(try ce with pi -> cei, V, C, q) =  

    Assert(not q); C(b.TryWith(b.Delay(fun () -> {| ce |}0), fun pi -> {| cei |}0)) 

T(try ce finally e, V, C, q) =  

    Assert(not q); C(b.TryFinally(b.Delay(fun () -> {| ce |}0), fun () -> e)) 

T(if e then ce, V, C, q) = T(ce, V, v.C(if e then v else b.Zero()), q) 



69 
 

T(if e then ce1 else ce2, V, C, q) = Assert(not q); C(if e then  {| ce1 |}0) else  {| ce2 |}0) 

T(for x = e1 to e2 do ce, V, C, q) = T(for x in e1 .. e2 do ce, V, C, q) 

T(for p1 in e1 do joinOp p2 in e2 onWord (e3 eop e4) ce, V, C, q) = 

    Assert(q); T(for pat(V) in b.Join(src(e1), src(e2), p1.e3, p2.e4,  

    p1. p2.(p1,p2)) do ce, V , C, q) 

T(for p1 in e1 do groupJoinOp p2 in e2 onWord (e3 eop e4) into p3 ce, V, C, q) =  

    Assert(q); T(for pat(V) in b.GroupJoin(src(e1),  

    src(e2), p1.e3, p2.e4, p1. p3.(p1,p3)) do ce, V , C, q) 

T(for x in e do ce, V, C, q) = T(ce, V  {x}, v.C(b.For(src(e), fun x -> v)), q) 

T(do e in ce, V, C, q) = T(ce, V, v.C(e; v), q) 

T(do! e in ce, V, C, q) = T(let! () = e in ce, V, C, q) 

T(joinOp p2 in e2 on (e3 eop e4) ce, V, C, q) =  

    T(for pat(V) in C({| yield exp(V) |}0) do join p2 in e2 onWord (e3 eop e4) ce, V, v.v, q) 

T(groupJoinOp p2 in e2 onWord (e3 eop e4) into p3 ce, V, C, q) =  

    T(for pat(V) in C({| yield exp(V) |}0) do groupJoin p2 in e2 on (e3 eop e4) into p3 ce,  

    V, v.v, q) 

T([<CustomOperator("Cop")>]cop arg, V, C, q) = Assert (q); [| cop arg, C(b.Yield exp(V)) |]V 

T([<CustomOperator("Cop", MaintainsVarSpaceUsingBind=true)>]cop arg; e, V, C, q) =  

    Assert (q); CL (cop arg; e, V, C(b.Return exp(V)), false) 

T([<CustomOperator("Cop")>]cop arg; e, V, C, q) =  

    Assert (q); CL (cop arg; e, V, C(b.Yield exp(V)), false) 

T(ce1; ce2, V, C, q) = C(b.Combine({| ce1 |}0, b.Delay(fun () ->  {| ce2 |}0))) 

T(do! e;, V, C, q) = T(let! () = src(e) in b.Return(), V, C, q) 

T(e;, V, C, q) = C(e;b.Zero()) 

The following notes apply to the translations: 

• The lambda expression (fun f x -> b) is represented by x.b. 

• The auxiliary function var(p) denotes a set of variables that are introduced by a pattern p. For 

example: 

var(x) = {x}, var((x,y)) = {x,y} or var(S (x,y)) = {x,y} 

where S is a type constructor.  

•  is an update operator for a set V to denote extended variable spaces. It updates the existing 

variables. For example, {x,y}  var((x,z)) becomes {x,y,z} where the second x replaces the 

first x.  

• The auxiliary function pat(V) denotes a pattern tuple that represents a set of variables in V. For 

example, pat({x,y}) becomes (x,y), where x and y represent pattern expressions.  

• The auxiliary function exp(V) denotes a tuple expression that represents a set of variables in V. 

For example, exp({x,y}) becomes (x,y), where x and y represent variable expressions. 



70 
 

• The auxiliary function src(e) denotes b.Source(e) if the innermost ForEach is from the user 

code instead of generated by the translation, and a builder b contains a Source method. 

Otherwise, src(e) denotes e. 

• Assert() checks whether a custom operator is allowed. If not, an error message is reported. 

Custom operators may not be used within try/with, try/finally, if/then/else, use, match, or 

sequential execution expressions such as (e1;e2). For example, you cannot use if/then/else in 

any computation expressions for which a builder defines any custom operators, even if the 

custom operators are not used.  

• The operator eop denotes one of =, ?=, =? or ?=?. 

• joinOp and onWord represent keywords for join-like operations that are declared in 

CustomOperationAttribute. For example, [<CustomOperator("join", IsLikeJoin=true, 

JoinConditionWord="on")>] declares “join” and “on”. 

• Similarly, groupJoinOp represents a keyword for groupJoin-like operations, declared in 

CustomOperationAttribute. For example, [<CustomOperator("groupJoin", 

IsLikeGroupJoin=true, JoinConditionWord="on")>] declares “groupJoin” and “on”. 

• The auxiliary translation CL is defined as follows:  

CL (e1, V, e2, bind) where e1: the computation expression being translated 
                           V: a set of scoped variables                        
                           e2: the expression that will be translated after e1 is 
done 
                           bind: indicator if it is for Bind (true) or iterator 
(false). 
 

The following shows translations for the uses of CL in the preceding computation expressions: 

CL (cop arg, V, e’, bind) = [| cop arg, e’ |]V 

CL ([<MaintainsVariableSpaceUsingBind=true>]cop arg into p; e, V, e’, bind) =  

    T(let! p = e’ in e, [], v.v, true) 

CL (cop arg into p; e, V, e’, bind) = T(for p in e’ do e, [], v.v, true) 

CL ([<MaintainsVariableSpace=true>]cop arg; e, V, e’, bind) =  

    CL (e, V, [| cop arg, e’ |]V, true) 

CL ([<MaintainsVariableSpaceUsingBind=true>]cop arg; e, V, e’, bind) =  

    CL (e, V, [| cop arg, e’ |]V, true) 

CL (cop arg; e, V, e’, bind) = CL (e, [], [| cop arg, e’ |]V, false) 

CL (e, V, e’, true) = T(let! pat(V) = e’ in e, V, v.v, true) 

CL (e, V, e’, false) = T(for pat(V) in e’ do e, V, v.v, true) 

• The auxiliary translation [| e1, e2 |]V is defined as follows: 

[|[ e1, e2 |]V where e1: the custom operator available in a build 
                  e2: the context argument that will be passed to a custom operator 
                  V: a list of bound variables 
 

[|[<CustomOperator(" Cop")>] cop [<ProjectionParameter>] arg, e |]V =  



71 
 

b.Cop (e, fun pat(V) -> arg) 

[|[<CustomOperator("Cop")>] cop arg, e |]V = b.Cop (e, arg) 

• The final two translation rules (for do! e; and do! e;) apply only for the final expression in the 

computation expression. The semicolon (;) can be omitted. 

The following attributes specify custom operations: 

• CustomOperationAttribute indicates that a member of a builder type implements a custom 

operation in a computation expression. The attribute has one parameter: the name of the 

custom operation. The operation can have the following properties: 

• MaintainsVariableSpace indicates that the custom operation maintains the variable space of 

a computation expression.  

• MaintainsVariableSpaceUsingBind indicates that the custom operation maintains the 

variable space of a computation expression through the use of a bind operation. 

• AllowIntoPattern indicates that the custom operation supports the use of ‘into’ immediately 

following the operation in a computation expression to consume the result of the operation. 

• IsLikeJoin indicates that the custom operation is similar to a join in a sequence 

computation, which supports two inputs and a correlation constraint. 

• IsLikeGroupJoin indicates that the custom operation is similar to a group join in a sequence 

computation, which support two inputs and a correlation constraint, and generates a group. 

• JoinConditionWord indicates the names used for the ‘on’ part of the custom operator for 

join-like operators. 

• ProjectionParameterAttribute indicates that, when a custom operation is used in a 

computation expression, a parameter is automatically parameterized by the variable space of 

the computation expression. 

The following examples show how the translation works. Assume the following simple sequence 

builder:  

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Yield (item:'a) : seq<'a> = seq { yield item }  

 

let myseq = SimpleSequenceBuilder() 

 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    yield i*i 

    } 

translates to  

let b = myseq 

b.For([1..10], fun i ->  

b.Yield(i*i)) 



72 
 

 

CustomOperationAttribute allows us to define custom operations. For example, the simple sequence 

builder can have a custom operator, “where”: 

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Yield (item:'a) : seq<'a> = seq { yield item }  

    [<CustomOperation("where")>]  

    member __.Where (source : seq<'a>, f: 'a -> bool) : seq<'a> = Seq.filter f source         

 

let myseq = SimpleSequenceBuilder() 

 

 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    where (fun x -> x > 5) 

    } 

translates to  

let b = myseq 

b.Where( 

b.For([1..10], fun i ->  

b.Yield (i)), 

fun x -> x > 5) 

  

ProjectionParameterAttribute automatically adds a parameter from the variable space of the 

computation expression. For example, ProjectionParameterAttribute can be attached to the second 

argument of the where operator: 

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Yield (item:'a) : seq<'a> = seq { yield item }  

    [<CustomOperation("where")>]  

    member __.Where (source: seq<'a>, [<ProjectionParameter>]f: 'a -> bool) : seq<'a> = 

           Seq.filter f source         

 

let myseq = SimpleSequenceBuilder() 

 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    where (i > 5) 

    } 

translates to 

let b = myseq 

b.Where( 



73 
 

b.For([1..10], fun i ->  

b.Yield (i)), 

fun i -> i > 5) 

  

ProjectionParameterAttribute is useful when a let binding appears between ForEach and the 

custom operators. For example, the expression 

myseq {  

    for i in 1 .. 10 do  

    let j = i * i 

    where (i > 5 && j < 49) 

    } 

translates to 

let b = myseq 

b.Where( 

b.For([1..10], fun i -> 

 let j = i * i  

b.Yield (i,j)), 

fun (i,j) -> i > 5 && j < 49) 

 

Without ProjectionParameterAttribute, a user would be required to write “fun (i,j) ->” explicitly.  

Now, assume that we want to write the condition “where (i > 5 && j < 49)” in the following 

syntax: 

 where (i > 5) 

 where (j < 49) 

To support this style, the where custom operator should produce a computation that has the same 

variable space as the input computation. That is, j should be available in the second where. The 

following example uses the MaintainsVariableSpace property on the custom operator to specify this 

behavior:    

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Yield (item:'a) : seq<'a> = seq { yield item }  

    [<CustomOperation("where", MaintainsVariableSpace=true)>] 

    member __.Where (source: seq<'a>, [<ProjectionParameter>]f: 'a -> bool) : seq<'a> = 

           Seq.filter f source         

 

let myseq = SimpleSequenceBuilder() 

 

 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    let j = i * i 

    where (i > 5) 

    where (j < 49) 



74 
 

    } 

translates to 

let b = myseq 

b.Where( 

b.Where( 

b.For([1..10], fun i -> 

 let j = i * i  

b.Yield (i,j)), 

fun (i,j) -> i > 5), 

fun (i,j) -> j < 49) 

 

When we may not want to produce the variable space but rather want to explicitly express the chain 

of the where operator, we can design this simple sequence builder in a slightly different way. For 

example, we can express the same expression in the following way: 

myseq {  

    for i in 1 .. 10 do  

    where (i > 5) into j 

    where (j*j < 49) 

    } 

In this example, instead of having a let-binding (for j in the previous example) and passing variable 

space (including j) down to the chain, we can introduce a special syntax that captures a value into a 

pattern variable and passes only this variable down to the chain, which is arguably more readable. 

For this case, AllowIntoPattern allows the custom operation to have an into syntax:  

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Yield (item:'a) : seq<'a> = seq { yield item } 

 

    [<CustomOperation("where", AllowIntoPattern=true)>]  

    member __.Where (source: seq<'a>, [<ProjectionParameter>]f: 'a -> bool) : seq<'a> =  

        Seq.filter f source  

      

 

let myseq = SimpleSequenceBuilder() 

 

 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    where (i > 5) into j 

    where (j*j < 49) 

    } 

translates to 

let b = myseq 

b.Where( 

 b.For( 



75 
 

  b.Where( 

   b.For([1..10], fun i -> b.Yield (i)) 

   fun i -> i>5), 

  fun j -> b.Yield (j)), 

 fun j -> j*j < 49) 

 

Note that the into keyword is not customizable, unlike join and on. 

In addition to MaintainsVariableSpace, MaintainsVariableSpaceUsingBind is provided to pass 

variable space down to the chain in a different way. For example: 

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v }  

    member __.Return (item:'a) : seq<'a> = seq { yield item } 

    member __.Bind (value , cont) = cont value 

 

    [<CustomOperation("where", MaintainsVariableSpaceUsingBind=true, 

AllowIntoPattern=true)>]  

    member __.Where (source: seq<'a>, [<ProjectionParameter>]f: 'a -> bool) : seq<'a> =  

        Seq.filter f source  

      

let myseq = SimpleSequenceBuilder() 

  

 

The presence of MaintainsVariableSpaceUsingBindAttribute requires Return and Bind methods 

during the translation. 

Then, the expression 

myseq {  

    for i in 1 .. 10 do  

    where (i > 5 && i*i < 49) into j 

    return j 

    }  

translates to 

let b = myseq 

b.Bind( 

 b.Where(B.For([1..10], fun i -> b.Return (i)), 

  fun i -> i > 5 && i*i < 49), 

 fun j -> b.Return (j)) 

 

where Bind is called to capture the pattern variable j. Note that For and Yield are called to capture 

the pattern variable when MaintainsVariableSpace is used. 

Certain properties on the CustomOperationAttribute introduce join-like operators. The following 

example shows how to use the IsLikeJoin property. 

type SimpleSequenceBuilder() =  

    member __.For (source : seq<'a>, body : 'a -> seq<'b>) =  

           seq { for v in source do yield! body v } 



76 
 

    member __.Yield (item:'a) : seq<'a> = seq { yield item } 

 

    [<CustomOperation("merge", IsLikeJoin=true, JoinConditionWord="whenever")>]  

    member __.Merge (src1:seq<'a>, src2:seq<'a>, ks1, ks2, ret) =  

              seq { for a in src1 do 

                    for b in src2 do 

                    if ks1 a = ks2 b then yield((ret a ) b) 

              } 

 

let myseq = SimpleSequenceBuilder()  

 

IsLikeJoin indicates that the custom operation is similar to a join in a sequence computation; that 

is, it supports two inputs and a correlation constraint.  

The expression 

myseq {  

    for i in 1 .. 10 do  

    merge j in [5 .. 15] whenever (i = j) 

    yield j 

    }  

translates to 

let b = myseq 

b.For( 

 b.Merge([1..10], [5..15],  

            fun i -> i, fun j -> j, 

   fun i -> fun j -> (i,j)), 

 fun j -> b.Yield (j)) 

 

This translation implicitly places type constraints on the expected form of the builder methods. For 

example, for the async builder found in the FSharp.Control library, the translation phase 

corresponds to implementing a builder of a type that has the following member signatures: 

type AsyncBuilder with 

    member For: seq<'T> * ('T -> Async<unit>) -> Async<unit> 

    member Zero : unit -> Async<unit>  

    member Combine : Async<unit> * Async<'T> -> Async<'T> 

    member While : (unit -> bool) * Async<unit> -> Async<unit> 

    member Return : 'T -> Async<'T> 

    member Delay : (unit -> Async<'T>) -> Async<'T> 

    member Using: 'T * ('T -> Async<'U>) -> Async<'U>  

                           when 'U :> System.IDisposable 

    member Bind: Async<'T> * ('T -> Async<'U>) -> Async<'U> 

    member TryFinally: Async<'T> * (unit -> unit) -> Async<'T> 

    member TryWith: Async<'T> * (exn -> Async<'T>) -> Async<'T> 

The following example shows a common approach to implementing a new computation expression 

builder for a monad. The example uses computation expressions to define computations that can be 

partially run by executing them step-by-step, for example, up to a time limit. 

/// Computations that can cooperatively yield by returning a continuation 

type Eventually<'T> =  

    | Done of 'T  



77 
 

    | NotYetDone of (unit -> Eventually<'T>) 

 

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] 

module Eventually =  

 

    /// The bind for the computations. Stitch 'k' on to the end of the computation. 

    /// Note combinators like this are usually written in the reverse way, 

    /// for example,  

    ///     e |> bind k 

    let rec bind k e =  

        match e with  

        | Done x -> NotYetDone (fun () -> k x) 

        | NotYetDone work -> NotYetDone (fun () -> bind k (work())) 

 

    /// The return for the computations.  

    let result x = Done x 

 

    type OkOrException<'T> = 

        | Ok of 'T 

        | Exception of System.Exception                      

 

    /// The catch for the computations. Stitch try/with throughout  

    /// the computation and return the overall result as an OkOrException. 

    let rec catch e =  

        match e with  

        | Done x -> result (Ok x) 

        | NotYetDone work ->  

            NotYetDone (fun () ->  

                let res = try Ok(work()) with | e -> Exception e  

                match res with  

                | Ok cont -> catch cont // note, a tailcall 

                | Exception e -> result (Exception e)) 

     

    /// The delay operator. 

    let delay f = NotYetDone (fun () -> f()) 

 

    /// The stepping action for the computations.  

    let step c =  

        match c with  

        | Done _ -> c 

        | NotYetDone f -> f () 

 

    // The rest of the operations are boilerplate. 

 

    /// The tryFinally operator. 

    /// This is boilerplate in terms of "result", "catch" and "bind". 

    let tryFinally e compensation =     

        catch (e)  

        |> bind (fun res ->  compensation(); 

                             match res with  

                             | Ok v -> result v 

                             | Exception e -> raise e) 

 

    /// The tryWith operator. 

    /// This is boilerplate in terms of "result", "catch" and "bind". 

    let tryWith e handler =     

        catch e  

        |> bind (function Ok v -> result v | Exception e -> handler e) 

 

    /// The whileLoop operator. 



78 
 

    /// This is boilerplate in terms of "result" and "bind". 

    let rec whileLoop gd body =     

        if gd() then body |> bind (fun v -> whileLoop gd body) 

        else result () 

     

    /// The sequential composition operator 

    /// This is boilerplate in terms of "result" and "bind". 

    let combine e1 e2 =     

        e1 |> bind (fun () -> e2) 

     

    /// The using operator. 

    let using (resource: #System.IDisposable) f =  

        tryFinally (f resource) (fun () -> resource.Dispose()) 

 

    /// The forLoop operator. 

    /// This is boilerplate in terms of "catch", "result" and "bind". 

    let forLoop (e:seq<_>) f =  

        let ie = e.GetEnumerator()  

        tryFinally (whileLoop (fun () -> ie.MoveNext())  

                              (delay (fun () -> let v = ie.Current in f v))) 

                   (fun () -> ie.Dispose()) 

 

     

// Give the mapping for F# computation expressions. 

type EventuallyBuilder() =  

    member x.Bind(e,k)                  = Eventually.bind k e 

    member x.Return(v)                  = Eventually.result v     

    member x.ReturnFrom(v)              = v     

    member x.Combine(e1,e2)             = Eventually.combine e1 e2 

    member x.Delay(f)                   = Eventually.delay f 

    member x.Zero()                     = Eventually.result () 

    member x.TryWith(e,handler)         = Eventually.tryWith e handler 

    member x.TryFinally(e,compensation) = Eventually.tryFinally e compensation 

    member x.For(e:seq<_>,f)            = Eventually.forLoop e f 

    member x.Using(resource,e)          = Eventually.using resource e 

 

let eventually = new EventuallyBuilder() 

After the computations are defined, they can be built by using eventually { ... }: 

let comp =  

    eventually { for x in 1 .. 2 do  

                    printfn " x = %d" x 

                 return 3 + 4 } 

These computations can now be stepped. For example: 

let step x = Eventually.step x 

comp |> step 

   // returns "NotYetDone <closure>" 

 

comp |> step |> step 

   // prints "x = 1" 

   // returns "NotYetDone <closure>" 

 

comp |> step |> step |> step |> step |> step |> step 

   // prints "x = 1" 

   // prints "x = 2" 

   // returns “NotYetDone <closure>” 

 



79 
 

comp |> step |> step |> step |> step |> step |> step |> step |> step  

   // prints "x = 1" 

   // prints "x = 2" 

   // returns "Done 7" 

6.3.11 Sequence Expressions 

An expression in one of the following forms is a sequence expression: 

seq { comp-expr } 
seq { short-comp-expr } 

For example: 

seq { for x in [ 1; 2; 3 ] do for y in [5; 6] do yield x + y } 

seq { for x in [ 1; 2; 3 ] do yield x + x } 

seq { for x in [ 1; 2; 3 ] -> x + x } 

Logically speaking, sequence expressions can be thought of as computation expressions with a 

builder of type FSharp.Collections.SeqBuilder. This type can be considered to be defined as 

follows: 

type SeqBuilder() =  
    member x.Yield (v) = Seq.singleton v 
    member x.YieldFrom (s:seq<_>) = s 
    member x.Return (():unit) = Seq.empty 
    member x.Combine (xs1,xs2) = Seq.append xs1 xs2 
    member x.For (xs,g) = Seq.collect f xs 
    member x.While (guard,body) = SequenceExpressionHelpers.EnumerateWhile guard body 
    member x.TryFinally (xs,compensation) =  
        SequenceExpressionHelpers.EnumerateThenFinally xs compensation 
    member x.Using (resource,xs) = SequenceExpressionHelpers.EnumerateUsing resource xs 

However, this builder type is not actually defined in the F# library. Instead, sequence expressions are 

elaborated directly as follows: 

{| yield expr |}    Seq.singleton expr 
{| yield! expr |}    expr 
{| expr1 ; expr2 |}   Seq.append {| expr1 |} {| expr2 |} 
{| for pat in expr1 -> expr2 |}  Seq.map (fun pat -> {| expr2 |}) expr1 
{| for pat in expr1 do expr2 |}  Seq.collect (fun pat -> {| expr2 |}) expr1 
{| while expr1 do expr2 |}   RuntimeHelpers.EnumerateWhile  
                                          (fun () -> expr1)  
                                       {| expr2 |})   
{| try expr1 finally expr2 |}  RuntimeHelpers.EnumerateThenFinally  
                                          (| expr1 |})   
                                                                                  (fun () -> expr2) 
{| use v = expr1 in expr2 |}  let v = expr1 in  
                                RuntimeHelpers.EnumerateUsing v {| expr2 |} 
{| let v = expr1 in expr2 |}  let v = expr1 in {| expr2 |} 
{| match expr with pati -> expri |} .match expr with pati -> {| cexpri |} 
{| expr1 |}    expr1 ; Seq.empty  
{| if expr then expr0 |}C   if expr then {| expr0 |}C else Seq.empty 
{| if expr then expr0 else expr1 |}  if expr then {| expr0 |}C else {| expr1 |}C 
 

Here the use of Seq and RuntimeHelpers refers to the corresponding functions in 

FSharp.Collections.Seq and FSharp.Core.CompilerServices.RuntimeHelpers respectively. This 

means that a sequence expression generates an object of type 

System.Collections.Generic.IEnumerable<ty> for some type ty. Such an object has a GetEnumerator 



80 
 

method that returns a System.Collections.Generic.IEnumerator<ty> whose MoveNext, Current and 

Dispose methods implement an on-demand evaluation of the sequence expressions. 

6.3.12 Range Expressions 

Expressions of the following forms are range expressions.  

{ e1 .. e2 }   
{ e1 .. e2 .. e3 }  
seq { e1 .. e2 }   
seq { e1 .. e2 .. e3 }  

Range expressions generate sequences over a specified range. For example: 

seq { 1 .. 10 } // 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 

seq { 1 .. 2 .. 10 } // 1; 3; 5; 7; 9 

Range expressions involving expr1 .. expr2 are translated to uses of the (..) operator, and those 

involving expr1 .. expr1 .. expr3 are translated to uses of the (.. ..) operator: 

seq { e1 .. e2 }   → (..) e1 e2 
seq { e1 .. e2 .. e3 } → (.. ..) e1 e2 e3 

The default definition of these operators is in FSharp.Core.Operators. The (..) operator generates 

an IEnumerable<_> for the range of values between the start (expr1) and finish (expr2) values, using 

an increment of 1 (as defined by FSharp.Core.LanguagePrimitives.GenericOne). The (.. ..) 

operator generates an IEnumerable<_> for the range of values between the start (expr1) and finish 

(expr3) values, using an increment of expr2.  

The seq keyword, which denotes the type of computation expression, can be omitted for simple 

range expressions, but this is not recommended and might be deprecated in a future release. It is 

always preferable to explicitly mark the type of a computation expression. 

Range expressions also occur as part of the translated form of expressions, including the following: 

• [ expr1 .. expr2 ] 

• [| expr1 .. expr2 |] 

• for var in expr1 .. expr2 do expr3  

A sequence iteration expression of the form for var in expr1 .. expr2 do expr3 done is sometimes 

elaborated as a simple for loop-expression (§6.5.7). 

6.3.13 Lists via Sequence Expressions 

A list sequence expression is an expression in one of the following forms  

[ comp-expr ]  

[ short-comp-expr ]  

[ range-expr ]  

In all cases [ cexpr ] elaborates to FSharp.Collections.Seq.toList(seq { cexpr }). 

For example: 

let x2 = [ yield 1; yield 2 ] 



81 
 

 

let x3 = [ yield 1 

           if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then  

               yield 2] 

6.3.14 Arrays Sequence Expressions 

An expression in one of the following forms is an array sequence expression: 

[| comp-expr |]  

[| short-comp-expr |]  

[| range-expr |]  

In all cases [| cexpr |] elaborates to FSharp.Collections.Seq.toArray(seq { cexpr }). 

For example: 

let x2 = [| yield 1; yield 2 |] 

let x3 = [| yield 1 

            if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then  

                yield 2 |] 

6.3.15 Null Expressions 

An expression in the form null is a null expression. A null expression imposes a nullness constraint 

(§5.2.2, §5.4.8) on the initial type of the expression. The constraint ensures that the type directly 

supports the value null. 

Null expressions are a primitive elaborated form. 

6.3.16 'printf' Formats  

Format strings are strings with % markers as format placeholders. Format strings are analyzed at 

compile time and annotated with static and runtime type information as a result of that analysis. 

They are typically used with one of the functions printf, fprintf, sprintf, or bprintf in the 

FSharp.Core.Printf module. Format strings receive special treatment in order to type check uses of 

these functions more precisely. 

More concretely, a constant string is interpreted as a printf-style format string if it is expected to 

have the type FSharp.Core.PrintfFormat<'Printer,'State,'Residue,'Result,'Tuple>. The string is 

statically analyzed to resolve the generic parameters of the PrintfFormat type, of which 'Printer 

and 'Tuple are the most interesting: 

• 'Printer is the function type that is generated by applying a printf-like function to the format 

string. 

• 'Tuple is the type of the tuple of values that are generated by treating the string as a generator 

(for example, when the format string is used with a function similar to scanf in other 

languages). 

A format placeholder has the following shape:   

%[flags][width][.precision][type] 

where: 



82 
 

flags   

Are 0, -, +, and the space character. The # flag is invalid and results in a compile-time error. 

width 

Is an integer that specifies the minimum number of characters in the result. 

precision 

Is the number of digits to the right of the decimal point for a floating-point type. . 

type 

Is as shown in the following table. 

Placeholder string Type 
%b bool 

%s string 

%c char 

%d, %i One of the basic integer types: 
byte, sbyte, int16, uint16, int32, uint32, int64, uint64, nativeint, or 

unativeint 

%u Basic integer type formatted as an unsigned integer 

%x Basic integer type formatted as an unsigned hexadecimal integer with lowercase 
letters a through f.  

%X Basic integer type formatted as an unsigned hexadecimal integer with uppercase 
letters A through F. 

%o Basic integer type formatted as an unsigned octal integer. 

 %e, %E, %f, %F, %g, %G float or float32 

%M System.Decimal  

%O System.Object 

%A Fresh variable type 'T  

%a Formatter of type 'State -> 'T -> 'Residue for a fresh variable type 'T 

%t Formatter of type 'State -> 'Residue  

 
For example, the format string "%s %d %s" is given the type PrintfFormat<(string -> int -> string 

-> 'd), 'b, 'c, 'd,(string * int * string)> for fresh variable types 'b, 'c, 'd. Applying printf 

to it yields a function of type string -> int -> string -> unit. 

6.4 Application Expressions 

6.4.1 Basic Application Expressions 

Application expressions involve variable names, dot-notation lookups, function applications, method 

applications, type applications, and item lookups, as shown in the following table.  

Expression Description 
long-ident-or-op Long-ident lookup expression 
expr '.' long-ident-or-op Dot lookup expression 
expr expr Function or member application expression  



83 
 

Expression Description 
expr(expr) High precedence function or member application 

expression  
expr<types> Type application expression  
expr< > Type application expression with an empty type list 
type expr Simple object expression 
 

The following are examples of application expressions: 

System.Math.PI 

System.Math.PI.ToString() 

(3 + 4).ToString() 

System.Environment.GetEnvironmentVariable("PATH").Length 

System.Console.WriteLine("Hello World") 

Application expressions may start with object construction expressions that do not include the new 

keyword: 

System.Object() 

System.Collections.Generic.List<int>(10) 

System.Collections.Generic.KeyValuePair(3,"Three") 

System.Object().GetType() 

System.Collections.Generic.Dictionary<int,int>(10).[1] 

If the long-ident-or-op starts with the special pseudo-identifier keyword global, F# resolves the 

identifier with respect to the global namespace—that is, ignoring all open directives (see §14.2). For 

example: 

global.System.Math.PI 

is resolved to System.Math.PI ignoring all open directives. 

The checking of application expressions is described in detail as an algorithm in §14.2. To check an 

application expression, the expression form is repeatedly decomposed into a lead expression expr 

and a list of projections projs through the use of Unqualified Lookup (§14.2.1). This in turn uses 

procedures such as Expression-Qualified Lookup and Method Application Resolution.  

As described in §14.2, checking an application expression results in an elaborated expression that 

contains a series of lookups and method calls. The elaborated expression may include: 

• Uses of named values 

• Uses of union cases  

• Record constructions 

• Applications of functions 

• Applications of methods (including methods that access properties)  

• Applications of object constructors 

• Uses of fields, both static and instance 

• Uses of active pattern result elements 

Additional constructs may be inserted when resolving method calls into simpler primitives:  



84 
 

• The use of a method or value as a first-class function may result in a function expression.  

For example, System.Environment.GetEnvironmentVariable elaborates to: 
(fun v -> System.Environment.GetEnvironmentVariable(v)) 

for some fresh variable v. 

• The use of post-hoc property setters results in the insertion of additional assignment and 

sequential execution expressions in the elaborated expression.  

For example, new System.Windows.Forms.Form(Text="Text") elaborates to 
let v = new System.Windows.Forms.Form() in v.set_Text("Text"); v  

for some fresh variable v. 

• The use of optional arguments results in the insertion of Some(_) and None data constructions in 

the elaborated expression. 

For uses of active pattern results (see §10.2.4), for result i in an active pattern that has N possible 

results of types types, the elaborated expression form is a union case ChoiceNOfi of type 

FSharp.Core.Choice<types>.  

6.4.2 Object Construction Expressions 

An expression of the following form is an object construction expression: 

new ty(e1 ... en)  

An object construction expression constructs a new instance of a type, usually by calling a 

constructor method on the type. For example: 

new System.Object() 

new System.Collections.Generic.List<int>() 

new System.Windows.Forms.Form (Text="Hello World") 

new 'T() 

The initial type of the expression is first asserted to be equal to ty. The type ty must not be an array, 

record, union or tuple type. If ty is a named class or struct type: 

• ty must not be abstract.  

• If ty is a struct type, n is 0, and ty does not have a constructor method that takes zero 

arguments, the expression elaborates to the default “zero-bit pattern” value for ty. 

• Otherwise, the type must have one or more accessible constructors. The overloading between 

these potential constructors is resolved and elaborated by using Method Application Resolution 

(see §14.4). 

If ty is a delegate type the expression is a delegate implementation expression.  

• If the delegate type has an Invoke method that has the following signature 

Invoke(ty1,...,tyn) -> rtyA,  

then the overall expression must be in this form: 

new ty(expr) where expr has type ty1 -> ... -> tyn -> rtyB 

If type rtyA is a CLI void type, then rtyB is unit, otherwise it is rtyA. 



85 
 

• If any of the types tyi is a byref-type then an explicit function expression must be specified. That 

is, the overall expression must be of the form new ty(fun pat1 ... patn -> exprbody).  

If ty is a type variable: 

• There must be no arguments (that is, n = 0). 

• The type variable is constrained as follows:  

ty : (new : unit -> ty)  -- CLI default constructor constraint 

• The expression elaborates to a call to 

FSharp.Core.LanguagePrimitives.IntrinsicFunctions.CreateInstance<ty>(), which in turn calls 

System.Activator.CreateInstance<ty>(), which in turn uses CLI reflection to find and call the 

null object constructor method for type ty. On return from this function, any exceptions are 

wrapped by using System.TargetInvocationException. 

6.4.3 Operator Expressions 

Operator expressions are specified in terms of their shallow syntactic translation to other constructs. 

The following translations are applied in order: 

infix-or-prefix-op e1  → (~infix-or-prefix-op) e1  

prefix-op e1         → (prefix-op) e1  

e1 infix-op e2         → (infix-op) e1 e2 

Note: When an operator that may be used as either an infix or prefix operator is used in 

prefix position, a tilde character ~ is added to the name of the operator during the 

translation process. 

These rules are applied after applying the rules for dynamic operators (§6.4.4). 

The parenthesized operator name is then treated as an identifier and the standard rules for 

unqualified name resolution (§14.1) in expressions are applied. The expression may resolve to a 

specific definition of a user-defined or library-defined operator. For example: 

let (+++) a b = (a,b) 

3 +++ 4  

In some cases, the operator name resolves to a standard definition of an operator from the F# 

library. For example, in the absence of an explicit definition of (+),  

3 + 4  

resolves to a use of the infix operator FSharp.Core.Operators.(+). 

Some operators that are defined in the F# library receive special treatment in this specification. In 

particular: 

• The &expr and &&expr address-of operators (§6.4.5) 

• The expr && expr and expr || expr shortcut control flow operators (§6.5.4) 

• The %expr and %%expr expression splice operators in quotations (§6.8.3) 

• The library-defined operators, such as +, -, *, /, %, **, <<<, >>>, &&&, |||, and ^^^ (§18.2). 



86 
 

If the operator does not resolve to a user-defined or library-defined operator, the name resolution 

rules (§14.1) ensure that the operator resolves to an expression that implicitly uses a static member 

invocation expression (§0) that involves the types of the operands. This means that the effective 

behavior of an operator that is not defined in the F# library is to require a static member that has the 

same name as the operator, on the type of one of the operands of the operator. In the following 

code, the otherwise undefined operator --> resolves to the static member on the Receiver type, 

based on a type-directed resolution: 

type Receiver(latestMessage:string) = 

    static member (<--) (receiver:Receiver,message:string) =  

        Receiver(message) 

 

    static member (-->) (message,receiver:Receiver) =  

        Receiver(message) 

 

let r = Receiver "no message" 

 

r <-- "Message One"  

 

"Message Two" --> r 

6.4.4 Dynamic Operator Expressions 

Expressions of the following forms are dynamic operator expressions: 

expr1 ? expr2  

expr1 ? expr2 <- expr3  

These expressions are defined by their syntactic translation: 

expr ? ident               → (?) expr "ident" 
expr1 ? (expr2)             → (?) expr1 expr2 
expr1 ? ident <- expr2     → (?<-) expr1 "ident" expr2 
expr1 ? (expr2) <- expr3   → (?<-) expr1 expr2 expr3 

Here "ident" is a string literal that contains the text of ident.  

Note: The F# core library FSharp.Core.dll does not define the (?) and (?<-) operators. 

However, user code may define these operators. For example, it is common to define 

the operators to perform a dynamic lookup on the properties of an object by using 

reflection. 

This syntactic translation applies regardless of the definition of the (?) and (?<-) operators. 

However, it does not apply to uses of the parenthesized operator names, as in the following: 

(?) x y  

6.4.5 The AddressOf Operators 

Under default definitions, expressions of the following forms are address-of expressions, called 

byref-address-of expression and nativeptr-address-of expression, respectively:  

&expr  

&&expr  



87 
 

Such expressions take the address of a mutable local variable, byref-valued argument, field, array 

element, or static mutable global variable. 

For &expr and &&expr , the initial type of the overall expression must be of the form byref<ty> and 

nativeptr<ty> respectively, and the expression expr is checked with initial type ty. 

The overall expression is elaborated recursively by taking the address of the elaborated form of expr, 

written AddressOf(expr, DefinitelyMutates), defined in §6.9.4. 

Use of these operators may result in unverifiable or invalid common intermediate language (CIL) 

code; when possible, a warning or error is generated. In general, their use is recommended only: 

• To pass addresses where byref or nativeptr parameters are expected. 

• To pass a byref parameter on to a subsequent function. 

• When required to interoperate with native code. 
  

Addresses that are generated by the && operator must not be passed to functions that are in tail call 

position. The F# compiler does not check for this. 

Direct uses of byref types, nativeptr types, or values in the FSharp.NativeInterop module may 

result in invalid or unverifiable CIL code. In particular, byref and nativeptr types may NOT be used 

within named types such as tuples or function types. 

When calling an existing CLI signature that uses a CLI pointer type ty*, use a value of type 

nativeptr<ty>. 

Note: The rules in this section apply to the following prefix operators, which are defined 

in the F# core library for use with one argument.   

  FSharp.Core.LanguagePrimitives.IntrinsicOperators.(~&)  

  FSharp.Core.LanguagePrimitives.IntrinsicOperators.(~&&)  

Other uses of these operators are not permitted. 

6.4.6 Lookup Expressions 

Lookup expressions are specified by syntactic translation: 

e1.[eargs]               → e1.get_Item(eargs) 
e1.[eargs] <- e3         → e1.set_Item(eargs, e3) 

In addition, for the purposes of resolving expressions of this form, array types of rank 1, 2, 3, and 4 

are assumed to support a type extension that defines an Item property that has the following 

signatures: 

type 'T[] with  
    member arr.Item : int -> 'T 
 
type 'T[,] with  
    member arr.Item : int * int -> 'T 
 
type 'T[,,] with  
    member arr.Item : int * int * int -> 'T 



88 
 

 
type 'T[,,,] with  
    member arr.Item : int * int * int * int -> 'T 

In addition, if type checking determines that the type of e1 is a named type that supports the 

DefaultMember attribute, then the member name identified by the DefaultMember attribute is used 

instead of Item. 

6.4.7 Slice Expressions 

Slice expressions are defined by syntactic translation: 

e1.[sliceArg1, ,,, sliceArgN]   → e1.GetSlice( args1,…,argsN) 
 
e1.[sliceArg1, ,,, sliceArgN] <- expr  → e1.SetSlice( args1,…,argsN, expr) 
 

where each sliceArgN is one of the following and translated to argsN (giving one or two args) as 

indicated 

*       → None, None  

e1..    → Some e1, None  

..e2    → None, Some e2  

e1..e2  → Some e1, Some e2  

idx     → idx 

Because this is a shallow syntactic translation, the GetSlice and SetSlice name may be resolved by 

any of the relevant Name Resolution (§14.1) techniques, including defining the method as a type 

extension for an existing type. 

For example, if a matrix type has the appropriate overloads of the GetSlice method (see below), it is 

possible to do the following: 

matrix.[1..,*] -- get rows 1.. from a matrix (returning a matrix) 

matrix.[1..3,*] -- get rows 1..3 from a matrix (returning a matrix) 

matrix.[*,1..3] -- get columns 1..3from a matrix (returning a matrix) 

matrix.[1..3,1,.3] -- get a 3x3 sub-matrix (returning a matrix) 

matrix.[3,*] -- get row 3 from a matrix as a vector 

matrix.[*,3] -- get column 3 from a matrix as a vector 

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a 

method GetSlice that has the following signature: 

type 'T[] with  
    member arr.GetSlice : ?start1:int * ?end1:int -> 'T[] 
 
type 'T[,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int -> 'T[,] 
    member arr.GetSlice : idx1:int * ?start2:int * ?end2:int -> 'T[] 
    member arr.GetSlice : ?start1:int * ?end1:int * idx2:int  -> 'T[] 
 
type 'T[,,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int * 
                          ?start3:int * ?end3:int  
                             -> 'T[,,] 
 
type 'T[,,,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int * 
                          ?start3:int * ?end3:int * ?start4:int * ?end4:int  



89 
 

                             -> 'T[,,,] 

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a 

method SetSlice that has the following signature: 

type 'T[] with  
    member arr.SetSlice : ?start1:int * ?end1:int * values:T[] -> unit 
 
type 'T[,] with  
    member arr.SetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int *  
                          values:T[,] -> unit  
    member arr.SetSlice : idx1:int * ?start2:int * ?end2:int * values:T[] -> unit 
    member arr.SetSlice : ?start1:int * ?end1:int * idx2:int * values:T[] -> unit 
 
type 'T[,,] with  
    member arr.SetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int * 
                          ?start3:int * ?end3:int  * values:T[,,] -> unit 
 
type 'T[,,,] with  
    member arr.SetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int * 
                          ?start3:int * ?end3:int * ?start4:int * ?end4:int * 
                          values:T[,,,] -> unit 

6.4.8 Member Constraint Invocation Expressions 

An expression of the following form is a member constraint invocation expression: 

(static-typars : (member-sig) expr) 

Type checking proceeds as follows: 

1. The expression is checked with initial type ty. 

2. A statically resolved member constraint is applied (§5.2.3): 
static-typars : (member-sig) 

3. ty is asserted to be equal to the return type of the constraint. 

4. expr is checked with an initial type that corresponds to the argument types of the constraint. 

The elaborated form of the expression is a member invocation. For example: 

let inline speak (a: ^a) =  

    let x = (^a : (member Speak: unit -> string) (a)) 

    printfn "It said: %s" x 

    let y = (^a : (member MakeNoise: unit -> string) (a)) 

    printfn "Then it went: %s" y 

 

type Duck() = 

    member x.Speak() = "I'm a duck" 

    member x.MakeNoise() = "quack" 

type Dog() = 

    member x.Speak() = "I'm a dog" 

    member x.MakeNoise() = "grrrr" 

 

let x = new Duck() 

let y = new Dog() 

speak x 

speak y 



90 
 

Outputs: 

It said: I'm a duck 

Then it went: quack 

It said: I'm a dog 

Then it went: grrrr 

6.4.9 Assignment Expressions 

An expression of the following form is an assignment expression: 

expr1 <- expr2 

A modified version of Unqualified Lookup (§14.2.1) is applied to the expression expr1 using a fresh 

expected result type ty, thus producing an elaborate expression expr1. The last qualification for expr1 

must resolve to one of the following constructs: 

• An invocation of a property with a setter method. The property may be an indexer. 

Type checking incorporates expr2 as the last argument in the method application resolution for 

the setter method. The overall elaborated expression is a method call to this setter property and 

includes the last argument. 

• A mutable value path of type ty. 

Type checking of expr2 uses the expected result type ty and generates an elaborated expression 

expr2. The overall elaborated expression is an assignment to a value reference &path <-stobj 

expr2. 

• A reference to a value path of type byref<ty>.  

Type checking of expr2 uses the expected result type ty and generates an elaborated expression 

expr2. The overall elaborated expression is an assignment to a value reference path <-stobj expr2. 

• A reference to a mutable field expr1a.field with the actual result type ty.  

Type checking of expr2 uses the expected result type ty and generatesan elaborated expression 

expr2. The overall elaborated expression is an assignment to a field (see §6.9.4): 

AddressOf(expr1a.field, DefinitelyMutates) <-stobj  expr2  

• A array lookup expr1a.[expr1b] where expr1a has type ty[].  

Type checking of expr2 uses the expected result type ty and generates thean elaborated 

expression expr2. The overall elaborated expression is an assignment to a field (see §6.9.4): 

AddressOf(expr1a.[expr1b] , DefinitelyMutates) <-stobj expr2  

Note: Because assignments have the preceding interpretations, local values must be 

mutable so that primitive field assignments and array lookups can mutate their 

immediate contents. In this context, “immediate” contents means the contents of a 

mutable value type. For example, given 



91 
 

 [<Struct>] 
 type SA =  
     new(v) = { x = v } 
     val mutable x : int 
 
 [<Struct>] 
 type SB =  
     new(v) = { sa = v } 
     val mutable sa : SA 
  
 let s1 = SA(0) 
 let mutable s2 = SA(0) 
 let s3 = SB(0) 
 let mutable s4 = SB(0) 

Then these are not permitted: 

 s1.x <- 3 
 s3.sa.x <- 3 

and these are: 

 s2.x <- 3 
 s4.sa.x <- 3 
 s4.sa <- SA(2) 

6.5 Control Flow Expressions 

6.5.1 Parenthesized and Block Expressions  

A parenthesized expression has the following form: 

(expr)  

A block expression has the following form:  

begin expr end  

The expression expr is checked with the same initial type as the overall expression. 

The elaborated form of the expression is simply the elaborated form of expr. 

6.5.2 Sequential Execution Expressions 

A sequential execution expression has the following form:  

expr1; expr2 

For example: 

printfn "Hello"; printfn "World"; 3 

The ; token is optional when both of the following are true: 

• The expression expr2 occurs on a subsequent line that starts in the same column as expr1. 



92 
 

• The current pre-parse context that results from the syntax analysis of the program text is a 

SeqBlock (§15).  

When the semicolon is optional, parsing inserts a $sep token automatically and applies an additional 

syntax rule for lightweight syntax (§15.1.1). In practice, this means that code can omit the ; token 

for sequential execution expressions that implement functions or immediately follow tokens such as 

begin and (. 

The expression expr1 is checked with an arbitrary initial type ty. After checking expr1, ty is asserted 

to be equal to unit. If the assertion fails, a warning rather than an error is reported. The expression 

expr2 is then checked with the same initial type as the overall expression. 

Sequential execution expressions are a primitive elaborated form. 

6.5.3 Conditional Expressions 

A conditional expression  has the following form:s  

if expr1a then expr1b   

elif expr3a then expr2b  

…  

elif exprna then exprnb  

else exprlast  

The elif and else branches may be omitted. For example: 

if (1 + 1 = 2) then "ok" else "not ok" 

if (1 + 1 = 2) then printfn "ok"  

Conditional expressions are equivalent to pattern matching on Boolean values. For example, the 

following expression forms are equivalent:  

if expr1 then expr2 else expr3 

match (expr1:bool) with true -> expr2 | false -> expr3  

If the else branch is omitted, the expression is a sequential conditional expression and is equivalent 

to:  

match (expr1:bool) with true -> expr2 | false -> ()  

with the exception that the initial type of the overall expression is first asserted to be unit. 

6.5.4 Shortcut Operator Expressions 

Under default definitions, expressions of the following form are respectively an shortcut and 

expression and a shortcut or expression: 

expr && expr  

expr || expr 

These expressions are defined by their syntactic translation: 

expr1 && expr2               → if expr1 then expr2 else false 

expr1 || expr2               → if expr1 then true else expr2  



93 
 

Note: The rules in this section apply when the following operators, as defined in the F# 

core library, are applied to two arguments. 

FSharp.Core.LanguagePrimitives.IntrinsicOperators.(&&)  
FSharp.Core.LanguagePrimitives.IntrinsicOperators.(||)  

If the operator is not immediately applied to two arguments, it is interpreted as a strict 

function that evaluates both its arguments before use. 

6.5.5 Pattern-Matching Expressions and Functions 

A pattern-matching expressionhas the following form:  

match expr with rules 

Pattern matching is used to evaluate the given expression and select a rule (§7). For example: 

match (3, 2) with  

  | 1, j -> printfn "j = %d" j 

  | i, 2 -> printfn "i = %d" i 

  | _    -> printfn "no match" 

A pattern-matching function is an expression of the following form: 

function rules 

A pattern-matching function is syntactic sugar for a single-argument function expression that is 

followed by immediate matches on the argument. For example:  

function   

  | 1, j -> printfn "j = %d" j 

  | _    -> printfn "no match" 

is syntactic sugar for the following, where x is a fresh variable: 

fun x ->  

  match x with  

  | 1, j -> printfn "j = %d" j 

  | _    -> printfn "no match" 

6.5.6 Sequence Iteration Expressions 

An expression of the following form is a sequence iteration expression: 

for pat in expr1 do expr2 done  

The done token is optional if expr2 appears on a later line and is indented from the column position 

of the for token. In this case, parsing inserts a $done token automatically and applies an additional 

syntax rule for lightweight syntax (§15.1.1). 

For example: 

for x, y in [(1, 2); (3, 4)] do 

    printfn "x = %d, y = %d" x y  



94 
 

The expression expr1 is checked with a fresh initial type tyexpr, which is then asserted to be a subtype 

of type IEnumerable<ty>, for a fresh type ty. If the assertion succeeds, the expression elaborates to 

the following, where v is of type IEnumerator<ty> and pat is a pattern of type ty: 

let v = expr1.GetEnumerator()  
try  
    while (v.MoveNext()) do 
        match v.Current with 
        | pat -> expr2 
        | _ -> () 
finally 
    match box(v) with  
    | :? System.IDisposable as d -> d.Dispose() 
    | _ -> () 

If the assertion fails, the type tyexpr may also be of any static type that satisfies the “collection 

pattern” of CLI libraries. If so, the enumerable extraction process is used to enumerate the type. In 

particular, tyexpr may be any type that has an accessible GetEnumerator method that accepts zero 

arguments and returns a value that has accessible MoveNext and Current properties. The type of pat 

is the same as the return type of the Current property on the enumerator value. However, if the 

Current property has return type obj and the collection type ty has an Item property with a more 

specific (non-object) return type ty2, type ty2 is used instead, and a dynamic cast is inserted to 

convert v.Current to ty2. 

A sequence iteration of the form  

for var in expr1 .. expr2 do expr3 done  

where the type of expr1 or expr2 is equivalent to int, is elaborated as a simple for-loop expression 

(§6.5.7) 

6.5.7 Simple for-Loop Expressions 

An expression of the following form is a simple for loop expression: 

for var = expr1 to expr2 do expr3 done  

The done token is optional when e2 appears on a later line and is indented from the column position 

of the for token. In this case, a $done token is automatically inserted, and an additional syntax rule 

for lightweight syntax applies (§15.1.1). For example: 

for x = 1 to 30 do 

    printfn "x = %d, x^2 = %d" x (x*x) 

The bounds expr1 and  expr2 are checked with initial type int. The overall type of the expression is 

unit. A warning is reported if the body expr3 of the for loop does not have static type unit.  

The following shows the elaborated form of a simple for-loop expression for fresh variables start 

and finish: 

let start = expr1 in  
let finish = expr2 in  
for var = start to finish do expr3 done 



95 
 

For-loops over ranges that are specified by variables are a primitive elaborated form. When 

executed, the iterated range includes both the starting and ending values in the range, with an 

increment of 1. 

An expression of the form  

for var in expr1 .. expr2 do expr3 done  

is always elaborated as a simple for-loop expression whenever the type of expr1 or expr2 is 

equivalent to int. 

6.5.8 While Expressions 

A while loop expression has the following form: 

while expr1 do expr2 done  

The done token is optional when expr2 appears on a subsequent line and is indented from the 

column position of the while. In this case, a $done token is automatically inserted, and an additional 

syntax rule for lightweight syntax applies (§15.1.1). 

For example: 

while System.DateTime.Today.DayOfWeek = System.DayOfWeek.Monday do 

    printfn "I don't like Mondays"  

The overall type of the expression is unit. The expression expr1 is checked with initial type bool. A 

warning is reported if the body expr2 of the while loop cannot be asserted to have type unit.  

6.5.9 Try-with Expressions 

A try-with expression has the following form:  

try expr with rules 

For example: 

try "1" with _ -> "2" 

 

try  

    failwith "fail" 

with 

   | Failure msg -> "caught" 

   | :? System.InvalidOperationException -> "unexpected" 

Expression expr is checked with the same initial type as the overall expression. The pattern matching 

clauses are then checked with the same initial type and with input type System.Exception. 

Try-with expressions are a primitive elaborated form. 

6.5.10 Reraise Expressions 

A reraise expression is an application of the reraise F# library function. This function must be 

applied to an argument and can be used only on the immediate right-hand side of rules in a try-with 

expression. 



96 
 

try  

    failwith "fail" 

with e -> printfn "Failing"; reraise() 

Note: The rules in this section apply to any use of the function 

FSharp.Core.Operators.reraise, which is defined in the F# core library. 

When executed, reraise() continues exception processing with the original exception information. 

6.5.11 Try-finally Expressions 

A try-finally expression has the following form:  

try expr1 finally expr2 

For example: 

try "1" finally printfn "Finally!" 

 

try  

    failwith "fail" 

finally 

    printfn "Finally block" 

Expression expr1 is checked with the initial type of the overall expression. Expression expr2 is 

checked with arbitrary initial type, and a warning occurs if this type cannot then be asserted to be 

equal to unit. 

Try-finally expressions are a primitive elaborated form. 

6.5.12 Assertion Expressions 

An assertion expression has the following form: 

assert expr 

The expression assert expr is syntactic sugar for System.Diagnostics.Debug.Assert(expr) 

Note: System.Diagnostics.Debug.Assert is a conditional method call. This means that 

assertions are triggered only if the DEBUG conditional compilation symbol is defined. 

6.6 Definition Expressions 
A definition expression has one of the following forms:  

let function-defn in expr  

let value-defn in expr  

let rec function-or-value-defns in expr  

use ident = expr1 in expr  

Such an expression establishes a local function or value definition within the lexical scope of expr 

and has the same overall type as expr. 



97 
 

In each case, the in token is optional if expr appears on a subsequent line and is aligned with the 

token let. In this case, a $in token is automatically inserted, and an additional syntax rule for 

lightweight syntax applies (§15.1.1) 

For example: 

let x = 1  

x + x 

and 

let x, y = ("One", 1)  

x.Length + y 

and 

let id x = x in (id 3, id "Three") 

and 

let swap (x, y) = (y,x)  

List.map swap [ (1, 2); (3, 4) ] 

and 

let K x y = x in List.map (K 3) [ 1; 2; 3; 4 ] 

Function and value definitions in expressions are similar to function and value definitions in class 

definitions (§8.6.1.3), modules (§10.2.1), and computation expressions (§6.3.10), with the following 

exceptions: 

• Function and value definitions in expressions may not define explicit generic parameters (§5.3). 

For example, the following expression is rejected: 

let f<'T> (x:'T) = x in f 3 

• Function and value definitions in expressions are not public and are not subject to arity analysis 

(§14.10). 

• Any custom attributes that are specified on the declaration, parameters, and/or return 

arguments are ignored and result in a warning. As a result, function and value definitions in 

expressions may not have the ThreadStatic or ContextStatic attribute. 

6.6.1 Value Definition Expressions 

A value definition expression has the following form: 

let value-defn in expr  

where value-defn has the form: 

mutableopt accessopt pat typar-defnsopt return-typeopt = rhs-expr  

Checking proceeds as follows: 

1. Check the value-defn (§14.6), which defines a group of identifiers identj with inferred types tyj  



98 
 

2. Add the identifiers identj to the name resolution environment, each with corresponding type 

tyj.  

3. Check the body expr against the initial type of the overall expression. 

In this case, the following rules apply: 

• If pat is a single value pattern ident, the resulting elaborated form of the entire expression is 

let ident1 <typars1> = expr1 in 

body-expr 

where ident1, typars1 and expr1 are defined in §14.6. 

• Otherwise, the resulting elaborated form of the entire expression is 

let tmp <typars1… typarsn> = expr in 

let ident1 <typars1> = expr1 in 

… 

let identn <typarsn> = exprn in 

body-expr 

where tmp is a fresh identifier and identi, typarsi, and expri all result from the compilation of 

the pattern pat (§7) against the input tmp. 

Value definitions in expressions may be marked as mutable. For example: 

let mutable v = 0 
while v < 10 do 
    v <- v + 1 
    printfn "v = %d" v 

Such variables are implicitly dereferenced each time they are used.  

6.6.2 Function Definition Expressions 

A function definition expression has the form: 

let function-defn in expr  

where function-defn has the form: 

inlineopt accessopt ident-or-op typar-defnsopt pat1 ... patn return-typeopt = rhs-expr  

Checking proceeds as follows: 

1. Check the function-defn (§14.6), which defines ident1, ty1, typars1 and expr1 

2. Add the identifier ident1 to the name resolution environment, each with corresponding type ty1.  

3. Check the body expr against the initial type of the overall expression. 

The resulting elaborated form of the entire expression is 

let ident1 <typars1> = expr1 in 

expr 

where ident1, typars1 and expr1 are as defined in §14.6. 



99 
 

6.6.3 Recursive Definition Expressions 

An expression of the following form is a recursive definition expression: 

let rec function-or-value-defns in expr  

The defined functions and values are available for use within their own definitions—that is can be 

used within any of the expressions on the right-hand side of function-or-value-defns. Multiple 

functions or values may be defined by using let rec … and …. For example: 

let test() =  

    let rec twoForward count =  

        printfn "at %d, taking two steps forward" count 

        if count = 1000 then "got there!" 

        else oneBack (count + 2) 

    and oneBack count =  

        printfn "at %d, taking one step back " count 

        twoForward (count - 1) 

 

    twoForward 1 

 

test() 

In the example, the expression defines a set of recursive functions. If one or more recursive values 

are defined, the recursive expressions are analyzed for safety (§14.6.6). This may result in warnings 

(including some reported as compile-time errors) and runtime checks. 

6.6.4 Deterministic Disposal Expressions 

A deterministic disposal expression has the form:  

use ident = expr1 in expr2  

For example: 

use inStream = System.IO.File.OpenText "input.txt"  

let line1 = inStream.ReadLine() 

let line2 = inStream.ReadLine() 

(line1,line2) 

The expression is first checked as an expression of form let ident = expr1 in expr2 (§Error! R

eference source not found.), which results in an elaborated expression of the following form: 

let ident1 : ty1 = expr1 in expr2. 

Only one value may be defined by a deterministic disposal expression, and the definition is not 

generalized (§14.6.7). The type ty1, is then asserted to be a subtype of System.IDisposable. If the 

dynamic value of the expression after coercion to type obj is non-null, the Dispose method is called 

on the value when the value goes out of scope. Thus the overall expression elaborates to this: 

let ident1 : ty1 = expr1  
try expr2  
finally (match (ident :> obj) with  
         | null -> ()  
         | _ -> (ident :> System.IDisposable).Dispose()) 



100 
 

6.7 Type-Related Expressions 

6.7.1 Type-Annotated Expressions 

A type-annotated expression has the following form, where ty indicates the static type of expr: 

expr : ty 

For example: 

(1 : int) 

let f x = (x : string) + x 

When checked, the initial type of the overall expression is asserted to be equal to ty. Expression expr 

is then checked with initial type ty. The expression elaborates to the elaborated form of expr. This 

ensures that information from the annotation is used during the analysis of expr itself.  

6.7.2 Static Coercion Expressions 

A static coercion expression—also called  a flexible type constraint—has the following form:   

expr :> ty 

The expression upcast expr is equivalent to expr :> _, so the target type is the same as the initial 

type of the overall expression. For example: 

(1 :> obj) 

("Hello" :> obj) 

([1;2;3] :> seq<int>).GetEnumerator() 

(upcast 1 : obj) 

The initial type of the overall expression is ty. Expression expr is checked using a fresh initial type 

tye, with constraint tye :> ty. Static coercions are a primitive elaborated form. 

6.7.3 Dynamic Type-Test Expressions 

A dynamic type-test expression has the following form:  

expr :? ty 

For example: 

((1 :> obj) :? int) 

((1 :> obj) :? string) 

The initial type of the overall expression is bool. Expression expr is checked using a fresh initial type 

tye. After checking: 

• The type tye must not be a variable type. 

• A warning is given if the type test will always be true and therefore is unnecessary. 

• The type tye must not be sealed. 

• If type ty is sealed, or if ty is a variable type, or if type tye is not an interface type, then ty :> tye 

is asserted. 



101 
 

Dynamic type tests are a primitive elaborated form. 

6.7.4 Dynamic Coercion Expressions 

A dynamic coercion expression has the following form:  

expr :?> ty 

The expression downcast e1 is equivalent to expr :?> _, so the target type is the same as the initial 

type of the overall expression. For example: 

let obj1 = (1 :> obj) 

(obj1 :?> int) 

(obj1 :?> string) 

(downcast obj1 : int) 

The initial type of the overall expression is ty. Expression expr is checked using a fresh initial type 

tye. After these checks: 

• The type tye must not be a variable type. 

• A warning is given if the type test will always be true and therefore is unnecessary. 

• The type tye must not be sealed. 

• If type ty is sealed, or if ty is a variable type, or if type tye is not an interface type, then ty :> tye 

is asserted. 

Dynamic coercions are a primitive elaborated form. 

6.8 Quoted Expressions  
An expression in one of these forms is a quoted expression: 

  <@ expr @> 

 <@@ expr @@> 

The former is a strongly typed quoted expression, and the latter is a weakly typed quoted expression. 

In both cases, the expression forms capture the enclosed expression in the form of a typed abstract 

syntax tree. 

The exact nodes that appear in the expression tree are determined by the elaborated form of expr 

that type checking produces. 

For details about the nodes that may be encountered, see the documentation for the 

FSharp.Quotations.Expr type in the F# core library. In particular, quotations may contain:  

• References to module-bound functions and values, and to type-bound members. For example: 

let id x = x 

let f (x : int) = <@ id 1 @> 

In this case the value appears in the expression tree as a node of kind 

FSharp.Quotations.Expr.Call. 



102 
 

• A type, module, function, value, or member that is annotated with the ReflectedDefinition 

attribute. If so, the expression tree that forms its definition may be retrieved dynamically using 

the FSharp.Quotations.Expr.TryGetReflectedDefinition. 

If the ReflectedDefinition attribute is applied to a type or module, it will be recursively applied 

to all members, too. 

• References to defined values, such as the following: 

let f (x : int) = <@ x + 1 @> 

Such a value appears in the expression tree as a node of kind FSharp.Quotations.Expr.Value.  

• References to generic type parameters or uses of constructs whose type involves a generic 

parameter, such as the following: 

let f (x:'T) = <@ (x, x) : 'T * 'T @> 

In this case, the actual value of the type parameter is implicitly substituted throughout the type 

annotations and types in the generated expression tree.  

As of F# 3.1, the following limitations apply to quoted expressions:  

• Quotations may not use object expressions. 

• Quotations may not define expression-bound functions that are themselves inferred to be 

generic. Instead, expression-bound functions should either include type annotations to refer to a 

specific type or should be written by using module-bound functions or class-bound members. 

6.8.1 Strongly Typed Quoted Expressions  

A strongly typed quoted expression has the following form: 

<@ expr @> 

For example: 

<@ 1 + 1 @> 

     

<@ (fun x -> x + 1) @> 

In the first example, the type of the expression is FSharp.Quotations.Expr<int>. In the second 

example, the type of the expression is FSharp.Quotations.Expr<int -> int>. 

When checked, the initial type of a strongly typed quoted expression <@ expr @> is asserted to be of 

the form FSharp.Quotations.Expr<ty> for a fresh type ty. The expression expr is checked with initial 

type ty.  

6.8.2 Weakly Typed Quoted Expressions  

A weakly typed quoted expression  has the following form: 

<@@ expr @@>  

Weakly typed quoted expressions are similar to strongly quoted expressions but omit any type 

annotation. For example: 



103 
 

<@@ 1 + 1 @@> 

 

<@@ (fun x -> x + 1) @@> 

In both these examples, the type of the expression is FSharp.Quotations.Expr. 

When checked, the initial type of a weakly typed quoted expression <@@ expr @@> is asserted to be 

of the form FSharp.Quotations.Expr. The expression expr is checked with fresh initial type ty.  

6.8.3 Expression Splices 

Both strongly typed and weakly typed quotations may contain expression splices in the following 

forms: 

%expr  

%%expr  

These are respectively strongly typed and weakly typed splicing operators. 

6.8.3.1 Strongly Typed Expression Splices 

An expression of the following form is a strongly typed expression splice: 

%expr 

For example, given 

open FSharp.Quotations  

let f1 (v:Expr<int>) = <@ %v + 1 @> 

let expr = f1 <@ 3 @> 

the identifier expr evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree for <@ 

3 @> replaces the splice in the corresponding expression tree node. 

A strongly typed expression splice may appear only in a quotation. Assuming that the splice 

expression %expr is checked with initial type ty, the expression expr is checked with initial type 

FSharp.Quotations.Expr<ty>. 

Note: The rules in this section apply to any use of the prefix operator 

FSharp.Core.ExtraTopLevelOperators.(~%). Uses of this operator must be applied to an 

argument and may only appear in quoted expressions. 

6.8.3.2 Weakly Typed Expression Splices 

An expression of the following form is a weakly typed expression splice: 

%%expr 

For example, given 

open FSharp.Quotations  

let f1 (v:Expr) = <@ %%v + 1 @> 

let tree = f1 <@@ 3 @@> 

the identifier tree evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree 

replaces the splice in the corresponding expression tree node. 



104 
 

A weakly typed expression splice may appear only in a quotation. Assuming that the splice 

expression %%expr is checked with initial type ty, then the expression expr is checked with initial type 

FSharp.Quotations.Expr. No additional constraint is placed on ty.  

Additional type annotations are often required for successful use of this operator. 

Note: The rules in this section apply to any use of the prefix operator 

FSharp.Core.ExtraTopLevelOperators.(~%%), which is defined in the F# core library. Uses 

of this operator must be applied to an argument and may only occur in quoted 

expressions. 

6.9 Evaluation of Elaborated Forms 
At runtime, execution evaluates expressions to values. The evaluation semantics of each expression 

form are specified in the subsections that follow. 

6.9.1 Values and Execution Context 

The execution of elaborated F# expressions results in values. Values include:  

• Primitive constant values  

• The special value null 

• References to object values in the global heap of object values  

• Values for value types, containing a value for each field in the value type 

• Pointers to mutable locations (including static mutable locations, mutable fields and array 

elements) 
 

Evaluation assumes the following evaluation context:  

• A global heap of object values. Each object value contains:  

• A runtime type and dispatch map 

• A set of fields with associated values 

• For array objects, an array of values in index order 

• For function objects, an expression which is the body of the function  

• An optional union case label, which is an identifier  

• A closure environment that assigns values to all variables that are referenced in the method 

bodies that are associated with the object 

• A global environment that maps runtime-type/name pairs to values.Each name identifies a static 

field in a type definition or a value in a module. 

• A local environment mapping names of variables to values. 

• A local stack of active exception handlers, made up of a stack of try/with and try/finally handlers. 
 

Evaluation may also raise an exception. In this case, the stack of active exception handlers is 

processed until the exception is handled, in which case additional expressions may be executed (for 



105 
 

try/finally handlers), or an alternative expression may be evaluated (for try/with handlers), as 

described below. 

6.9.2 Parallel Execution and Memory Model 

In a concurrent environment, evaluation may involve both multiple active computations (multiple 

concurrent and parallel threads of execution) and multiple pending computations (pending 

callbacks, such as those activated in response to an I/O event).  

If multiple active computations concurrently access mutable locations in the global environment or 

heap, the atomicity, read, and write guarantees of the underlying CLI implementation apply. The 

guarantees are related to the logical sizes and characteristics of values, which in turn depend on 

their type: 

• F# reference types are guaranteed to map to CLI reference types. In the CLI memory model, 

reference types have atomic reads and writes. 

• F# value types map to a corresponding CLI value type that has corresponding fields. Reads and 

writes of sizes less than or equal to one machine word are atomic. 
 

The VolatileField attribute marks a mutable location as volatile in the compiled form of the code.  

Ordering of reads and writes from mutable locations may be adjusted according to the limitations 

specified by the CLI memory model. The following example shows situations in which changes to 

read and write order can occur, with annotations about the order of reads: 

type ClassContainingMutableData() =  

    let value = (1, 2) 

    let mutable mutableValue = (1, 2) 

 

    [<VolatileField>] 

    let mutable volatileMutableValue = (1, 2) 

 

    member x.ReadValues() =  

        // Two reads on an immutable value 

        let (a1, b1) = value  

 

        // One read on mutableValue, which may be duplicated according  

        // to ECMA CLI spec. 

        let (a2, b2) = mutableValue  

 

        // One read on volatileMutableValue, which may not be duplicated. 

        let (a3, b3) = volatileMutableValue  

 

        a1, b1, a2, b2, a3, b3 

 

    member x.WriteValues() =  

        // One read on mutableValue, which may be duplicated according  

        // to ECMA CLI spec. 

        let (a2, b2) = mutableValue  

 

        // One write on mutableValue. 

        mutableValue <- (a2 + 1, b2 + 1) 

 

        // One read on volatileMutableValue, which may not be duplicated. 

        let (a3, b3) = volatileMutableValue  



106 
 

 

        // One write on volatileMutableValue. 

        volatileMutableValue <- (a3 + 1, b3 + 1)  

 

let obj = ClassContainingMutableData() 

Async.Parallel [ async { return obj.WriteValues() };  

                 async { return obj.WriteValues() };  

                 async { return obj.ReadValues() };  

                 async { return obj.ReadValues() } ] 

6.9.3 Zero Values 

Some types have a zero value. The zero value is the“default” value for the type in the CLI execution 

environment. The following types have the following zero values: 

• For reference types, the null value. 

• For value types, the value with all fields set to the zero value for the type of the field. The zero 

value is also computed by the F# library function Unchecked.defaultof<ty>. 

6.9.4 Taking the Address of an Elaborated Expression 

When the F# compiler determines the elaborated forms of certain expressions, it must compute a 

“reference” to an elaborated expression expr, written AddressOf(expr, mutation). The AddressOf 

operation is used internally within this specification to indicate the elaborated forms of address-of 

expressions, assignment expressions, and method and property calls on objects of variable and value 

types. 

The AddressOf operation is computed as follows: 

• If expr has form path where path is a reference to a value with type byref<ty>, the elaborated 

form is &path.  

• If expr has form expra.field where field is a mutable, non-readonly CLI field, the elaborated 

form is &(AddressOf(expra).field).  

• If expr has form expra.[exprb] where the operation is an array lookup, the elaborated form is 

&(AddressOf(expra).[exprb]). 

• If expr has any other form, the elaborated form is &v,where v is a fresh mutable local value that 

is initialized by adding let v = expr to the overall elaborated form for the entire assignment 

expression. This initialization is known as a defensive copy of an immutable value. If expr is a 

struct, expr is copied each time the AddressOf operation is applied, which results in a different 

address each time. To keep the struct in place, the field that contains it should be marked as 
mutable. 

The AddressOf operation is computed with respect to mutation, which indicates whether the 

relevant elaborated form uses the resulting pointer to change the contents of memory. This 

assumption changes the errors and warnings reported. 

• If mutation is DefinitelyMutates, then an error is given if a defensive copy must be created.  

• If mutation is PossiblyMutates, then a warning is given if a defensive copy arises. 
 



107 
 

An F# compiler can optionally upgrade PossiblyMutates to DefinitelyMutates for calls to property 

setters and methods named MoveNext and GetNextArg, which are the most common cases of struct-

mutators in CLI library design. This is done by the F#  compiler. 

Note:In F#, the warning “copy due to possible mutation of value type” is a level 4 

warning and is not reported when using the default settings of the F# compiler. This is 

because the majority of value types in CLI libraries are immutable. This is warning 

number 52 in the F# implementation. 

CLI libraries do not include metadata to indicate whether a particular value type is 

immutable. Unless a value is held in arrays or locations marked mutable, or a value type 

is known to be immutable to the F# compiler, F# inserts copies to ensure that 

inadvertent mutation does not occur.  

6.9.5 Evaluating Value References 

At runtime, an elaborated value reference v is evaluated by looking up the value of v in the local 

environment. 

6.9.6 Evaluating Function Applications 

At runtime, an elaborated application of a function f e1 ... en is evaluated as follows:  

• The expressions f and e1 ... en, are evaluated. 

• If f evaluates to a function value with closure environment E, arguments v1 ... vm, and body expr, 

where m <= n, then E is extended by mapping v1 ... vm to the argument values for e1 ... em. The 

expression expr is then evaluated in this extended environment and any remaining arguments 

applied. 

• If f evaluates to a function value with more than n arguments, then a new function value is 

returned with an extended closure mapping n additional formal argument names to the 

argument values for e1 ... em. 

The result of calling the obj.GetType() method on the resulting object is under-specified (see 

§6.9.24). 

6.9.7 Evaluating Method Applications 

At runtime an elaborated application of a method is evaluated as follows:  

• The elaborated form is e0.M(e1,…,en) for an instance method or M(e1,…,en) for a static method. 

• The (optional) e0 and e1,…,en are evaluated in order.  

• If e0 evaluates to null, a NullReferenceException is raised. 

• If the method is declared abstract—that is, if it is a virtual dispatch slot—then the body of the 

member is chosen according to the dispatch maps of the value of e0 (§14.8). 

• The formal parameters of the method are mapped to corresponding argument values. The body 

of the method member is evaluated in the resulting environment . 



108 
 

6.9.8 Evaluating Union Cases 

At runtime, an elaborated use of a union case Case(e1,…,en) for a union type ty is evaluated as 

follows: 

• The expressions e1,…,en are evaluated in order. 

• The result of evaluation is an object value with union case label Case and fields given by the 

values of e1,…,en.  

• If the type ty uses null as a representation (§5.4.8) and Case is the single union case without 

arguments, the generated value is null. 

• The runtime type of the object is either ty or an internally generated type that is compatible 

with ty.  

6.9.9 Evaluating Field Lookups 

At runtime, an elaborated lookup of a CLI or F# fields is evaluated as follows: 

• The elaborated form is expr.F for an instance field or F for a static field. 

• The(optional) expr is evaluated. 

• If expr evaluates to null, a NullReferenceException is raised.  

• The value of the field is read from either the global field table or the local field table associated 

with the object.  

6.9.10 Evaluating Array Expressions 

At runtime, an elaborated array expression [| e1; … ; en |]ty  is evaluated as follows: 

• Each expression e1 … en is evaluated in order. 

• The result of evaluation is a new array of runtime type ty[] that contains the resulting values in 

order.  

6.9.11 Evaluating Record Expressions 

At runtime, an elaborated record construction { field1 = e1; … ; fieldn = en }ty  is evaluated as 

follows: 

• Each expression e1 … en is evaluated in order. 

• The result of evaluation is an object of type ty with the given field values 

6.9.12 Evaluating Function Expressions 

At runtime, an elaborated function expression (fun v1 … vn -> expr) is evaluated as follows: 

• The expression evaluates to a function object with a closure that assigns values to all variables 

that are referenced in expr and a function body that is expr. 

• The values in the closure are the current values of those variables in the execution environment.  

• The result of calling the obj.GetType() method on the resulting object is under-specified (see 

§6.9.24). 



109 
 

6.9.13 Evaluating Object Expressions 

At runtime, elaborated object expressions  

{ new ty0 args-expropt object-members  
      interface ty1 object-members1 
      … 
      interface tyn object-membersn } 

is evaluated as follows: 

• The expression evaluates to an object whose runtime type is compatible with all of the tyi and 

which has the corresponding dispatch map (§14.8). If present, the base construction expression 

ty0 (args-expr) is executed as the first step in the construction of the object.  

• The object is given a closure that assigns values to all variables that are referenced in expr.  

• The values in the closure are the current values of those variables in the execution environment.  

The result of calling the obj.GetType() method on the resulting object is under-specified (see 

§6.9.24).  

6.9.14 Evaluating Definition Expressions 

At runtime, each elaborated definition pat = expr is evaluated as follows:  

• The expression expr is evaluated. 

• The expression is then matched against pat to produce a value for each variable pattern (§7.2) 

in pat. 

• These mappings are added to the local environment. 

6.9.15 Evaluating Integer For Loops  

At runtime, an integer for loop for var = expr1 to expr2 do expr3 done is evaluated as follows: 

• Expressions expr1 and expr2 are evaluated once to values v1 and v2. 

• The expression expr3 is evaluated repeatedly with the variable var assigned successive values in 

the range of v1 up to v2.  

• If v1 is greater than v2, then expr3 is never evaluated. 

6.9.16 Evaluating While Loops  

As runtime, while-loops while expr1 do expr2 done are evaluated as follows: 

• Expression expr1 is evaluated to a value v1. 

• If v1 is true, expression expr2 is evaluated, and the expression while expr1 do expr2 done is 

evaluated again.  

• If v1 is false, the loop terminates and the resulting value is null (the representation of the only 

value of type unit) 

6.9.17 Evaluating Static Coercion Expressions 

At runtime, elaborated static coercion expressions of the form expr :> ty are evaluated as follows: 



110 
 

• Expression expr is evaluated to a value v. 

• If the static type of e is a value type, and ty is a reference type, v is boxed; that is, v is converted 

to an object on the heap with the same field assignments as the original value. The expression 

evaluates to a reference to this object. 

• Otherwise, the expression evaluates to v. 

6.9.18 Evaluating Dynamic Type-Test Expressions 

At runtime, elaborated dynamic type test expressions expr :? ty are evaluated as follows: 

1. Expression expr is evaluated to a value v.  

2. If v is null, then: 

• If tye uses null as a representation (§5.4.8), the result is true. 

• Otherwise the expression evaluates to false. 

3. If v is not null and has runtime type vty which dynamically converts to ty (§5.4.10), the 

expression evaluates to true. However, if ty is an enumeration type, the expression evaluates to 

true if and only if ty is precisely vty. 

6.9.19 Evaluating Dynamic Coercion Expressions 

At runtime, elaborated dynamic coercion expressions expr :?> ty are evaluated as follows: 

1. Expression expr is evaluated to a value v.  

2. If v is null: 

• If tye uses null as a representation (§5.4.8), the result is the null value.  

• Otherwise a NullReferenceException is raised.  

3. If v is not null: 

• If v has dynamic type vty which dynamically converts to ty (§5.4.10), the expression 

evaluates to the dynamic conversion of v to ty.  

o If vty is a reference type and ty is a value type, then v is unboxed; that is, v is 

converted from an object on the heap to a struct value with the same field 

assignments as the object. The expression evaluates to this value. 

o Otherwise, the expression evaluates to v. 

• Otherwise an InvalidCastException is raised. 

Expressions of the form expr :?> ty evaluate in the same way as the F# library function 

unbox<ty>(expr). 

Note: Some F# types—most notably the option<_> type—use null as a representation 

for efficiency reasons (§5.4.8),. For these types, boxing and unboxing can lose type 

distinctions. For example, contrast the following two examples: 



111 
 

> (box([]:string list) :?> int list);;  
System.InvalidCastException… 

> (box(None:string option) :?> int option);;  
val it : int option = None 

In the first case, the conversion from an empty list of strings to an empty list of integers 

(after first boxing) fails. In the second case, the conversion from a string option to an 

integer option (after first boxing) succeeds.  

6.9.20 Evaluating Sequential Execution Expressions 

At runtime, elaborated sequential expressions expr1; expr2 are evaluated as follows: 

• The expression expr1 is evaluated for its side effects and the result is discarded. 

• The expression expr2 is evaluated to a value v2 and the result of the overall expression is v2. 

6.9.21 Evaluating Try-with Expressions 

At runtime, elaborated try-with expressions try expr1 with rules are evaluated as follows: 

• The expression expr1 is evaluated to a value v1. 

• If no exception occurs, the result is the value v1. 

• If an exception occurs, the pattern rules are executed against the resulting exception value.  

• If no rule matches, the exception is reraised.  

• If a rule pat -> expr2 matches, the mapping pat = v1 is added to the local environment, 

and expr2 is evaluated. 

6.9.22 Evaluating Try-finally Expressions 

At runtime, elaborated try-finally expressions try expr1 finally expr2 are evaluated as follows: 

• The expression expr1 is evaluated.  

• If the result of this evaluation is a value v , then expr2 is evaluated.  

1) If this evaluation results in an exception, then the overall result is that exception. 

2) If this evaluation does not result in an exception, then the overall result is v. 

• If the result of this evaluation is an exception, then expr2 is evaluated.  

3) If this evaluation results in an exception, then the overall result is that exception. 

4) If this evaluation does not result in an exception, then the original exception is re-

raised. 

6.9.23 Evaluating AddressOf Expressions 

At runtime, an elaborated address-of expression is evaluated as follows. First, the expression has 

one of the following forms: 

• &path where path is a static field. 



112 
 

• &(expr.field)  

• &(expra.[exprb]) 

• &v where v is a local mutable value. 

The expression evaluates to the address of the referenced local mutable value, mutable field, or 

mutable static field. 

Note: The underlying CIL execution machinery that F# uses supports covariant arrays, as 

evidenced by the fact that the type string[] dynamically converts to obj[] (§5.4.10). 

Although this feature is rarely used in F#, its existence means that array assignments and 

taking the address of array elements may fail at runtime with a 

System.ArrayTypeMismatchException if the runtime type of the target array does not 

match the runtime type of the element being assigned. For example, the following code 

fails at runtime: 

let f (x: byref<obj>) = () 

 

let a = Array.zeroCreate<obj> 10 

let b = Array.zeroCreate<string> 10 

f (&a.[0]) 

let bb = ((b :> obj) :?> obj[]) 

// The next line raises a System.ArrayTypeMismatchException exception. 

F (&bb.[1])  

6.9.24 Values with Underspecified Object Identity and Type Identity  

The CLI and F# support operations that detect object identity—that is, whether two object 

references refer to the same “physical” object. For example, System.Object.ReferenceEquals(obj1, 

obj2) returns true if the two object references refer to the same object. Similarly, 

System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode() returns a hash code that is partly 

based on physical object identity, and the AddHandler and RemoveHandler operations (which register 

and unregister event handlers) are based on the object identity of delegate values. 

The results of these operations are underspecified when used with values of the following F# types: 

• Function types 

• Tuple types 

• Immutable record types 

• Union types 

• Boxed immutable value types 
 

For two values of such types, the results of System.Object.ReferenceEquals and 

System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode are underspecified; however, the 

operations terminate and do not raise exceptions. An implementation of F# is not required to define 

the results of these operations for values of these types. 

For function values and objects that are returned by object expressions, the results of the following 

operations are underspecified in the same way: 

• Object.GetHashCode() 



113 
 

• Object.GetType() 

For union types the results of the following operations are underspecified in the same way: 

• Object.GetType() 





7. Patterns 
Patterns are used to perform simultaneous case analysis and decomposition on values together with 

the match, try...with, function, fun, and let expression and declaration constructs. Rules are 

attempted in order from top to bottom and left to right. The syntactic forms of patterns are shown 

in the subsequent table.  

rule := 
    pat pattern-guardopt -> expr -- pattern, optional guard and action 
 
pattern-guard := when expr 
 
pat :=  
    const   -- constant pattern 
    long-ident pat-paramopt patopt -- named pattern 
    _    -- wildcard pattern 
    pat as ident  -- "as" pattern 
    pat '|' pat  -- disjunctive pattern 
    pat '&' pat  -- conjunctive pattern 
    pat :: pat   -- "cons" pattern 
    pat : type   -- pattern with type constraint 
    pat,...,pat  -- tuple pattern 
    (pat)   -- parenthesized pattern 
    list-pat   -- list pattern 
    array-pat   -- array pattern 
    record-pat   -- record pattern 
    :? atomic-type  -- dynamic type test pattern 
    :? atomic-type as ident -- dynamic type test pattern 
    null   -- null-test pattern 
    attributes pat  -- pattern with attributes 
 
list-pat :=   
    [ ] 
    [ pat ; ... ; pat ] 
 
array-pat :=     
    [| |] 
    [| pat ; ... ; pat |] 
 
record-pat :=  
    { field-pat ; ... ; field-pat } 
 
atomic-pat := 
    pat :     one of  
          const  long-ident  list-pat  record-pat  array-pat  (pat)   
          :? atomic-type   
          null  _  
 
field-pat := long-ident = pat 
pat-param := 
    | const  
    | long-ident  
    | [ pat-param ; ... ; pat-param ] 
    | ( pat-param, ..., pat-param ) 
    | long-ident pat-param  
    | pat-param : type 
    | <@ expr @> 
    | <@@ expr @@> 
    | null  
 



116 
 

pats :=  pat , ... , pat  
field-pats := field-pat ; ... ; field-pat  
rules := '|'opt rule '|' ... '|' rule        

Patterns are elaborated to expressions through a process called pattern match compilation. This 

reduces pattern matching to decision trees which operate on an input value, called the pattern input. 

The decision tree is composed of the following constructs: 

• Conditionals on integers and other constants  

• Switches on union cases  

• Conditionals on runtime types 

• Null tests 

• Value definitions 

• An array of pattern-match targets referred to by index 

7.1 Simple Constant Patterns  
The pattern const is a constant pattern which matches values equal to the given constant. For 

example: 

let rotate3 x = 

   match x with   

   | 0 -> "two" 

   | 1 -> "zero" 

   | 2 -> "one" 

   | _ -> failwith "rotate3" 

In this example, the constant patterns are 0, 1, and 2. Any constant listed in §6.3.1 may be used as a 

constant pattern except for integer literals that have the suffixes Q, R, Z, I, N, G. 

Simple constant patterns have the corresponding simple type. Such patterns elaborate to a call to 

the F# structural equality function FSharp.Core.Operators.(=) with the pattern input and the 

constant as arguments. The match succeeds if this call returns true; otherwise, the match fails. 

Note: The use of FSharp.Core.Operators.(=) means that CLI floating-point equality is 

used to match floating-point values, and CLI ordinal string equality is used to match 

strings.  

7.2 Named Patterns 
Patterns in the following forms are named patterns: 

Long-ident 

Long-ident pat 

Long-ident pat-params pat 



117 
 

If long-ident is a single identifier that does not begin with an uppercase character, it is interpreted 

as a variable pattern. During checking, the variable is assigned the same value and type as the 

pattern input. 

If long-ident is more than one-character long or begins with an uppercase character (that is, if 

System.Char.IsUpperInvariant is true and System.Char.IsLowerInvariant is false on the first 

character), it is resolved by using Name Resolution in Patterns (§14.1.6). This algorithm produces one 

of the following: 

• A union case  

• An exception label 

• An active pattern case name 

• A literal value 
 

Otherwise, long-ident must be a single uppercase identifier ident. In this case, pat is a variable 

pattern. An F# implementation may optionally generate a warning if the identifier is uppercase. Such 

a warning is recommended if the length of the identifier is greater than two. 

After name resolution, the subsequent treatment of the named pattern is described in the following 

sections. 

7.2.1 Union Case Patterns 

If long-ident from §7.2 resolves to a union case, the pattern is a union case pattern. If long-ident 

resolves to a union case Case, then long-ident and long-ident pat are patterns that match pattern 

inputs that have union case label Case. The long-ident form is used if the corresponding case takes 

no arguments, and the long-ident pat form is used if it takes arguments.  

At runtime, if the pattern input is an object that has the corresponding union case label, the data 

values carried by the union are matched against the given argument patterns. 

For example: 

type Data =  

    | Kind1 of int * int 

    | Kind2 of string * string 

 

let data = Kind1(3, 2) 

 

let result =  

    match data with  

    | Kind1 (a, b) -> a + b 

    | Kind2 (s1, s2) -> s1.Length + s2.Length 

In this case, result is given the value 5. 

When a union case has named fields, these names may be referenced in a union case pattem. When 

using pattern matching with multiple fields, semicolons are used to delimit the named fields. For 

example 

type Shape =  



118 
 

    | Rectangle of width: float * height: float 

    | Square of width: float 

 

let getArea (s: Shape) =  

    match s with  

    | Rectangle (width = w; height = h) -> w*h 

    | Square (width = w) -> w*w 

7.2.2 Literal Patterns  

If long-ident from §7.2 resolves to a literal value, the pattern is a literal pattern. The pattern is 

equivalent to the corresponding constant pattern.  

In the following example, the Literal attribute (§10.2.2) is first used to define two literals, and these 

literals are used as identifiers in the match expression: 

[<Literal>] 

let Case1 = 1 

 

[<Literal>] 

let Case2 = 100 

 

let result =  

    match 100 with  

    | Case1 -> "Case1" 

    | Case2 -> "Case2" 

    | _ -> "Some other case" 

In this case, result is given the value "Case2”. 

7.2.3 Active Patterns  

If long-ident from §7.2 resolves to an active pattern case name CaseNamei then the pattern is an 

active pattern. The rules for name resolution in patterns (§14.1.6) ensure that CaseNamei is 

associated with an active pattern function f in one of the following forms: 

• (|CaseName|) inp  

Single case. The function accepts one argument (the value being matched) and can return any 

type. 

• (|CaseName|_|) inp 

Partial. The function accepts one argument (the value being matched) and must return a value 

of type FSharp.Core.option<_>  

• (|CaseName1| ...|CaseNamen|) inp 

Multi-case. The function accepts one argument (the value being matched), and must return a 

value of type FSharp.Core.Choice<_,...,_> based on the number of case names. In F#, the 

limitation n ≤ 7 applies. 

• (|CaseName|) arg1 ... argn inp 

Single case with parameters. The function accepts n+1 arguments, where the last argument (inp) 

is the value to match, and can return any type.  



119 
 

• (|CaseName|_|) arg1 ... argn inp 

Partial with parameters. The function accepts n+1 arguments, where the last argument (inp) is 

the value to match, and must return a value of type FSharp.Core.option<_>. 

Other active pattern functions are not permitted. In particular, multi-case, partial functions such as 

the following are not permitted: 

(|CaseName1| ... |CaseNamen|_|)  

When an active pattern function takes arguments, the pat-params are interpreted as expressions 

that are passed as arguments to the active pattern function. The pat-params are converted to the 

syntactically identical corresponding expression forms and are passed as arguments to the active 

pattern function f.  

At runtime, the function f is applied to the pattern input, along with any parameters. The pattern 

matches if the active pattern function returns v, ChoicekOfN v, or Some v, respectively, when applied 

to the pattern input. If the pattern argument pat is present, it is then matched against v. 

The following example shows how to define and use a partial active pattern function: 

let (|Positive|_|) inp = if inp > 0 then Some(inp) else None 

let (|Negative|_|) inp = if inp < 0 then Some(-inp) else None 

 

match 3 with  

| Positive n -> printfn "positive, n = %d" n 

| Negative n -> printfn "negative, n = %d" n 

| _          -> printfn "zero"  

The following example shows how to define and use a multi-case active pattern function: 

let (|A|B|C|) inp = if inp < 0 then A elif inp = 0 then B else C 

 

match 3 with  

| A -> "negative" 

| B -> "zero" 

| C -> "positive" 

 

The following example shows how to define and use a parameterized active pattern function: 

let (|MultipleOf|_|) n inp = if inp%n = 0 then Some (inp / n) else None 

 

match 16 with  

| MultipleOf 4 n -> printfn "x = 4*%d" n 

| _ -> printfn "not a multiple of 4"  

 

An active pattern function is executed only if a left-to-right, top-to-bottom reading of the entire 

pattern indicates that execution is required. For example, consider the following active patterns:  

let (|A|_|) x =  

    if x = 2 then failwith "x is two"  

    elif x = 1 then Some() 

    else None 

 

let (|B|_|) x =  

    if x=3 then failwith "x is three" else None 



120 
 

 

let (|C|) x = failwith "got to C"  

 

let f x =  

    match x with  

    | 0 -> 0 

    | A -> 1 

    | B -> 2 

    | C -> 3 

    | _ -> 4 

These patterns evaluate as follows: 

f 0 // 0 

f 1 // 1 

f 2 // failwith "x is two" 

f 3 // failwith "x is three" 

f 4 // failwith "got to C" 

An active pattern function may be executed multiple times against the same pattern input during 

resolution of a single overall pattern match. The precise number of times that the active pattern 

function is executed against a particular pattern input is implementation-dependent. 

7.3 “As” Patterns  
An “as” pattern is of the following form: 

pat as ident 

The “as” pattern defines ident to be equal to the pattern input and matches the pattern input 

against pat. For example: 

let t1 = (1, 2) 

let (x, y) as t2 = t1 

printfn "%d-%d-%A" x y t2  // 1-2-(1, 2) 

This example binds the identifiers x, y, and t1 to the values 1, 2, and (1,2), respectively.  

7.4 Wildcard Patterns  
The pattern _ is a wildcard pattern and matches any input. For example:  

let categorize x =  

    match x with  

    | 1 -> 0 

    | 0 -> 1 

    | _ -> 0 

In the example, if x is 0, the match returns 1. If x has any other value, the match returns 0. 



121 
 

7.5 Disjunctive Patterns 
A disjunctive pattern matches an input value against one or the other of two patterns:  

pat | pat 

At runtime, the patterm input is matched against the first pattern. If that fails, the pattern input is 

matched against the second pattern. Both patterns must bind the same set of variables with the 

same types. For example: 

type Date = Date of int * int * int 

 

let isYearLimit date =  

    match date with  

    | (Date (year, 1, 1) | Date (year, 12, 31)) -> Some year 

    | _ -> None 

 

let result = isYearLimit (Date (2010,12,31)) 

In this example, result is given the value true, because the pattern input matches the second 

pattern. 

7.6 Conjunctive Patterns 
A conjunctive pattern matches the pattern input against two patterns.  

pat1 & pat2 

For example: 

let (|MultipleOf|_|) n inp = if inp%n = 0 then Some (inp / n) else None 

 

let result =  

    match 56 with  

    | MultipleOf 4 m & MultipleOf 7 n -> m + n 

    | _ -> false  

In this example, result is given the value 22 (= 16 + 8), because the pattern input match matches 

both patterns. 

7.7  List Patterns 
The pattern pat :: pat is a union case pattern that matches the “cons” union case of F# list values.  

The pattern [] is a union case pattern that matches the “nil” union case of F# list values. 

The pattern [pat1 ; ... ; patn] is shorthand for a series of :: and empty list patterns 

pat1 :: … :: patn :: [].  

For example: 

let rec count x =  

    match x with  



122 
 

    | [] -> 0 

    | h :: t -> h + count t 

 

let result1 = count [1;2;3]  

let result2 =  

    match [1;2;3] with  

    | [a;b;c] -> a + b + c 

    | _ -> 0 

In this example, both result1 and result2 are given the value 6. 

7.8 Type-Annotated Patterns 
A type-annotated pattern specifies the type of the value to match to a pattern.  

pat : type 

For example: 

let rec sum xs =  

    match xs with  

    | [] -> 0 

    | (h : int) :: t -> h + sum t 

In this example, the initial type of h is asserted to be equal to int before the pattern h is checked. 

Through type inference, this in turn implies that xs and t have static type int list, and sum has 

static type 

int list -> int.  

7.9 Dynamic Type-Test Patterns 
Dynamic type-test patterns have the following two forms: 

:? type 

:? type as ident 

A dynamic type-test pattern matches any value whose runtime type is type or a subtype of type. For 

example:  

let message (x : System.Exception) =  

    match x with  

    | :? System.OperationCanceledException -> "cancelled" 

    | :? System.ArgumentException -> "invalid argument" 

    | _ -> "unknown error" 

If the type-test pattern is of the form :? type as ident, then the value is coerced to the given type 

and ident is bound to the result. For example: 

let findLength (x : obj) =  

    match x with  

    | :? string as s -> s.Length 

    | _ -> 0 



123 
 

In the example, the identifier s is bound to the value x with type string.  

If the pattern input has type tyin, pattern checking uses the same conditions as both a dynamic type-

test expression e :? type and a dynamic coercion expression e :?> type where e has type tyin.  An 

error occurs if type cannot be statically determined to be a subtype of the type of the pattern input. 

A warning occurs if the type test will always succeed based on type and the static type of the pattern 

input. 

A warning is issued if an expression contains a redundant dynamic type-test pattern, after any 

coercion is applied. For example: 

match box "3" with  

| :? string -> 1  

| :? string -> 1  // a warning is reported that this rule is "never matched" 

| _ -> 2 

 

match box "3" with  

| :? System.IComparable -> 1  

| :? string -> 1  // a warning is reported that this rule is "never matched" 

| _ -> 2 

At runtime, a dynamic type-test pattern succeeds if and only if the corresponding dynamic type-test 

expression e :? ty would return true where e is the pattern input. The value of the pattern is bound 

to the results of a dynamic coercion expression e :?> ty. 

7.10 Record Patterns  
The following is a record pattern: 

{ long-ident1 = pat1; ... ; long-identn = patn} 

For example:  

type Data = { Header:string; Size: int; Names: string list } 

 

let totalSize data =  

    match data with  

    | { Header = "TCP"; Size = size; Names = names } -> size + names.Length * 12 

    | { Header = "UDP"; Size = size } -> size 

    | _ -> failwith "unknown header" 

The long-identi are resolved in the same way as field labels for record expressions and must 

together identify a single, unique F# record type. Not all record fields for the type need to be 

specified in the pattern. 

7.11 Array Patterns  
An array pattern matches an array of a partciular length:  

[|pat ; ... ; pat|] 



124 
 

For example:  

let checkPackets data =  

    match data with  

    | [| "HeaderA"; data1; data2 |] -> (data1, data2) 

    | [| "HeaderB"; data2; data1 |] -> (data1, data2) 

    | _ -> failwith "unknown packet" 

7.12 Null Patterns  
The null pattern null matches values that are represented by the CLI value null. For example:  

let path =  

    match System.Environment.GetEnvironmentVariable("PATH") with  

    | null -> failwith "no path set!" 

    | res -> res 

Most F# types do not use null as a representation; consequently,  the null pattern is generally used 

to check values passed in by CLI method calls and properties. For a list of F# types that use null as a 

representation, see §5.4.8. 

7.13 Guarded Pattern Rules 
Guarded pattern rules have the following form:  

pat when expr  

For example:  

let categorize x =  

    match x with  

    | _ when x < 0 -> -1 

    | _ when x < 0 -> 1 

    | _ -> 0 

The guards on a rule are executed only after the match value matches the corresponding pattern. 

For example, the following evaluates to 2 with no output. 

match (1, 2) with 

| (3, x) when (printfn "not printed"; true) -> 0 

| (_, y) -> y 



8. Type Definitions 
Type definitions define new named types. The grammar of type definitions is shown below. 

type-defn :=   
    abbrev-type-defn 
    record-type-defn  
    union-type-defn  
    anon-type-defn 
    class-type-defn 
    struct-type-defn 
    interface-type-defn 
    enum-type-defn 
    delegate-type-defn             
    type-extension 
 
type-name :=  
    attributesopt accessopt ident typar-defnsopt 
 
abbrev-type-defn :=  
    type-name = type  
 
union-type-defn :=  
    type-name '=' union-type-cases type-extension-elementsopt 
 
union-type-cases   :=   
    '|'opt union-type-case '|' ... '|' union-type-case      
 
union-type-case :=  
    attributesopt union-type-case-data  
 
union-type-case-data := 
    ident   -- null union case 
    ident of union-type-field * ... * union-type-field -- n-ary union case 
    ident : uncurried-sig -- n-ary union case 
 
union-type-field := 
    type   -- unnamed union fiels 
    ident : type                 -- named union field  
 
record-type-defn :=  
    type-name = '{' record-fields '}' type-extension-elementsopt 
 
record-fields :=  
    record-field ; ... ; record-field ;opt 
 
record-field :=   
    attributesopt mutableopt accessopt ident : type 
 
anon-type-defn :=  
    type-name primary-constr-argsopt object-valopt '=' begin class-type-body end 
 
class-type-defn :=  
    type-name primary-constr-argsopt object-valopt '=' class class-type-body end 
 
as-defn := as ident 
 
class-type-body :=  
    class-inherits-declopt class-function-or-value-defnsopt type-defn-elementsopt 
 
class-inherits-decl := inherit type expropt 
 



126 
 

class-function-or-value-defn := 
    attributesopt staticopt let recopt function-or-value-defns 
    attributesopt staticopt do expr    
 
struct-type-defn :=  
    type-name primary-constr-argsopt as-defnopt '=' struct struct-type-body end 
 
struct-type-body := type-defn-elements 
 
interface-type-defn :=  
    type-name '=' interface interface-type-body end 
 
interface-type-body := type-defn-elements 
 
exception-defn :=  
    attributesopt exception union-type-case-data -- exception definition 
    attributesopt exception ident = long-ident -- exception abbreviation 
 
enum-type-defn :=  
    type-name '=' enum-type-cases 
 
enum-type-cases =  
    '|'opt enum-type-case '|' ... '|' enum-type-case      
 
enum-type-case :=  
    ident '=' const -- enum constant definition 
 
delegate-type-defn :=  
    type-name '=' delegate-sig 
 
delegate-sig := 
    delegate of uncurried-sig -- CLI delegate definition 
 
type-extension :=  
    type-name type-extension-elements  
 
type-extension-elements := with type-defn-elements end 
 
type-defn-element :=  
    member-defn  
    interface-impl 
    interface-spec 
 
type-defn-elements :=  type-defn-element ... type-defn-element   
 
primary-constr-args :=  
    attributesopt accessopt (simple-pat, ... , simple-pat) 

simple-pat :=  
    | ident 
    | simple-pat : type 

 
additional-constr-defn := 
    attributesopt accessopt new pat as-defn = additional-constr-expr  
 
additional-constr-expr := 
    stmt ';' additional-constr-expr -- sequence construction (after) 
    additional-constr-expr then expr -- sequence construction (before) 
    if expr then additional-constr-expr else  additional-constr-expr  
    let function-or-value-defn in  additional-constr-expr  
    additional-constr-init-expr 
 
additional-constr-init-expr := 
    '{' class-inherits-decl field-initializers '}' -- explicit construction 
    new type expr    -- delegated construction  



127 
 

 
member-defn := 
    attributesopt staticopt member accessopt method-or-prop-defn   -- concrete member  
    attributesopt abstract memberopt accessopt member-sig -- abstract member  
    attributesopt override accessopt method-or-prop-defn   -- override member  
    attributesopt default accessopt method-or-prop-defn   -- override member  
    attributesopt staticopt val mutableopt accessopt ident : type   -- value member 
    additional-constr-defn -- additional constructor  
 
method-or-prop-defn := 
    ident.opt function-defn       -- method definition 
    ident.opt value-defn        -- property definition 
    ident.opt ident with function-or-value-defns  -- property definition via 
get/set methods 
    member ident = exp   –- auto-implemented property definition 
    member ident = exp with get  –- auto-implemented property definition 
    member ident = exp with set  –- auto-implemented property definition 
    member ident = exp with get,set –- auto-implemented property definition 
    member ident = exp with set,get –- auto-implemented property definition 
 
member-sig := 
    ident typar-defnsopt : curried-sig  -- method or property signature 
    ident typar-defnsopt : curried-sig with get -- property signature 
    ident typar-defnsopt : curried-sig with set -- property signature 
    ident typar-defnsopt : curried-sig with get,set -- property signature 
    ident typar-defnsopt : curried-sig with set,get -- property signature 
 
curried-sig :=  
    args-spec -> ... -> args-spec -> type  
 
uncurried-sig :=  
    args-spec -> type 
 
args-spec :=  
    arg-spec * ... * arg-spec  
 
arg-spec :=  
    attributesopt arg-name-specopt type 
 
arg-name-spec :=  
    ?opt ident : 
 
interface-spec := 
    interface type  

For example: 

type int = System.Int32 

type Color = Red | Green | Blue 

type Map<'T> = { entries: 'T[] } 

Type definitions can be declared in: 

• Module definitions  

• Namespace declaration groups  

F# supports the following kinds of type definitions: 

• Type abbreviations (§8.3) 

• Record type definitions (§8.4) 

• Union type definitions (§8.5)  



128 
 

• Class type definitions (§8.6)  

• Interface type definitions (§8.7)  

• Struct type definitions (§8.8) 

• Enum type definitions (§8.9)  

• Delegate type definitions (§8.10)  

• Exception type definitions (§8.11)  

• Type extension definitions (§8.12)  

• Measure type definitions (§9.4) 

With the exception of type abbreviations and type extension definitions, type definitions define 

fresh, named types that are distinct from other types.  

A type definition group defines several type definitions or extensions simultaneously: 

type ... and ... 

For example: 

type RowVector(entries: seq<int>) =  

    let entries = Seq.toArray entries 

    member x.Length = entries.Length  

    member x.Permute = ColumnVector(entries) 

 

and ColumnVector(entries: seq<int>) =  

    let entries = Seq.toArray entries 

    member x.Length = entries.Length  

    member x.Permute = RowVector(entries) 

A type definition group can include any type definitions except for exception type definitions and 

module definitions. 

Most forms of type definitions may contain both static elements and instance elements. Static 

elements are accessed by using the type definition. Within a static definition, only the static 

elements are in scope. Most forms of type definitions may contain members (§8.13). 

Custom attributes may be placed immediately before a type definition group, in which case they 

apply to the first type definition, or immediately before the name of the type definition: 

[<Obsolete>] type X1() = class end 

 

type [<Obsolete>] X2() = class end  

and [<Obsolete>] Y2() = class end 

8.1 Type Definition Group Checking and Elaboration 
F# checks type definition groups by determining the basic shape of the definitions and then filling in 

the details. In overview, a type definition group is checked as follows: 

1. For each type definition: 



129 
 

• Determine the generic arguments, accessibility and kind of the type definition 

• Determine whether the type definition supports equality and/or comparison 

• Elaborate the explicit constraints for the generic parameters. 

2. For each type definition: 

• Establish type abbreviations 

• Determine the base types and implemented interfaces of each new type definition 

• Detect any cyclic abbreviations  

• Verify the consistency of types in fields, union cases, and base types. 

3. For each type definition: 

• Determine the union cases, fields, and abstract members (§8.14) of each new type 

definition. 

• Check the union cases, fields, and abstract members themselves, as described in the 

corresponding sections of this chapter. 

4. For each member, add items that represent the members to the environment as a recursive 

group.  

5. Check the members, function, and value definitions in order and apply incremental 

generalization. 

 

In the context in which type definitions are checked, the type definition itself is in scope, as are all 

members and other accessible functionality of the type. This context enables recursive references to 

the accessible static content of a type. It also enables recursive references to the accessible 

properties of any object that has the same type as the type definition or a related type. 

In more detail, given an initial environment env, a type definition group is checked as described in 

the following paragraphs. 

First, check the individual type definitions. For each type definition:  

1. Determine the number, names, and sorts of generic arguments of the type definition. 

• For each generic argument, if a Measure attribute is present, mark the generic argument as a 

measure parameter. The generic arguments are initially inference parameters, and 

additional constraints may be inferred for these parameters. 

• For each type definition T, the subsequent steps use an environment envT that is produced 

by adding the type definitions themselves and the generic arguments for T to env. 

2. Determine the accessibility of the type definition. 

3. Determine and check the basic kind of the type definition, using Type Kind Inference if necessary 

(§8.2). 

4. Mark the type definition as a measure type definition if a Measure attribute is present. 



130 
 

5. If the type definition is generic, infer whether the type definition supports equality and/or 

comparison.  

6.  Elaborate and add the explicit constraints for the generic parameters of the type definition, and 

then generalize the generic parameters. Inference of additional constraints is not permitted.  

7. If the type definition is a type abbreviation, elaborate and establish the type being abbreviated.  

8. Check and elaborate any base types and implemented interfaces. 

9. If the type definition is a type abbreviation, check that the type abbreviation is not cyclic.  

10. Check whether the type definition has a single, zero-argument constructor, and hence forms a 

type that satisfies the default constructor constraint. 

11. Recheck the following to ensure that constraints are consist: 

• The type being abbreviated, if any. 

• The explicit constraints for any generic parameters, if any. 

• The types and constraints occurring in the base types and implemented interfaces, if any. 

12. Determine the union cases, fields, and abstract members, if any, of the type definition. Check 

and elaborate the types that the union cases, fields, and abstract members include.  

13. Make additional checks as defined elsewhere in this chapter. For example, check that the 

AbstractClass attribute does not appear on a union type. 

14. For each type definition that is a struct, class, or interface, check that the inheritance graph and 

the struct-inclusion graph are not cyclic. This check ensures that a struct does not contain itself 

and that a class or interface does not inherit from itself. This check includes the following steps: 

a) Create a graph with one node for each type definition. 

b) Close the graph under edges.  

• (T, base-type-definition) 

• (T, interface-type-definition) 

• (T1, T2) where T1 is a struct and T2 is a type that would store a value of type T1 <…> for 

some instantiation. Here “X storing Y” means that X is Y or is a struct type with an 

instance field that stores Y. 

c) Check for cycles. 

The special case of a struct S<typars> storing a static field of type S<typars> is allowed. 

15. Collectively add the elaborated member items that represent the members for all new type 

definitions to the environment as a recursive group (§8.13), excluding interface implementation 

members. 



131 
 

16. If the type definition has a primary constructor, create a member item to represent the primary 

constructor. 

 

After these steps are complete for each type definition, check the members. For each member: 

1. If the member is in a generic type, create a copy of the type parameters for the generic type and 

add the copy to the environment for that member. 

2. If the member has explicit type parameters, elaborate these type parameters and any explicit 

constraints. 

3. If the member is an override, default, or interface implementation member, apply dispatch-slot 

inference. 

4. If the member has syntactic parameters, assign an initial type to the elaborated member item 

based on the patterns that specify arguments for the members. 

5. If the member is an instance member, assign a type to the instance variable. 

 

Finally, check the function, value, and member definitions of each new type definition in order as a 

recursive group. 

8.2 Type Kind Inference 
A type that is specified in one of the following ways has an anonymous type kind: 

• By using begin and end on the right-hand side of the = token.  

• In lightweight syntax, with an implicit begin/end.  

F# infers the kind of an anonymous type by applying the following rules, in order: 

1. If the type has a Class attribute, Interface attribute, or Struct attribute, this attribute identifies 

the kind of the type.  

2. If the type has any concrete elements, the type is a class. Concrete elements are primary 

constructors, additional object constructors, function definitions, value definitions, non-abstract 

members, and any inherit declarations that have arguments. 

3. Otherwise, the type is an interface type. 

 

For example: 

// This is implicitly an interface 

type IName = 

    abstract Name : string 

 

// This is implicitly a class, because it has a constructor 

type ConstantName(n:string) =  

    member x.Name = n 

 



132 
 

// This is implicitly a class, because it has a constructor 

type AbstractName(n:string) =  

    abstract Name : string  

    default x.Name = "<no-name>" 

If a type is not an anonymous type, any use of the Class attribute, Interface attribute, or Struct 

attribute must match the class/end, interface/end, and struct/end tokens, if such tokens are 

present. These attributes cannot be used with other kinds of type definitions such as type 

abbreviations, record, union, or enum types.  

8.3 Type Abbreviations 
Type abbreviations define new names for other types. For example: 

type PairOfInt = int * int 

Type abbreviations are expanded and erased during compilation and do not appear in the 

elaborated form of F# declarations, nor can they be referred to or accessed at runtime.  

The process of repeatedly eliminating type abbreviations in favor of their equivalent types must not 

result in an infinite type derivation. For example, the following are not valid type definitions: 

type X = option<X> 

 

type Identity<'T> = 'T 

and Y = Identity<Y> 

The constraints on a type abbreviation must satisfy any constraints that the abbreviated type 

requires.  

For example, assuming the following declarations: 

type IA =  

    abstract AbstractMember : int -> int 

 

type IB =  

    abstract AbstractMember : int -> int 

 

type C<'T when 'T :> IB>() =  

    static member StaticMember(x : 'a) = x.AbstractMember(1) 

the following is permitted: 

type D<'T when 'T :> IB> = C<'T> 

whereas the following is not permitted: 

type E<'T> = C<'T>  // invalid: missing constraint 

 

Type abbreviations can define additional constraints, so the following is permitted: 

type F<'T when 'T :> IA and 'T :> IB> = C<'T> 



133 
 

The right side of a type abbreviation must use all the declared type variables that appear on the left 

side. For this purpose, the order of type variables that are used on the right-hand side of a type 

definition is determined by their left-to-right occurrence in the type.  

For example, the following is not a valid type abbreviation.  

type Drop<'T,'U> = 'T * 'T // invalid: dropped type variable 

Note: This restriction simplifies the process of guaranteeing a stable and consistent 

compilation to generic CLI code.  

Flexible type constraints #type may not be used on the right side of a type abbreviation, because 

they expand to a type variable that has not been named in the type arguments of the type 

abbreviation. For example, the following type is disallowed:  

type BadType = #Exception -> int  // disallowed 

Type abbreviations may be declared internal or private.  

Note: Private type abbreviations are still, for all purposes, considered equivalent to the 

abbreviated types. 

8.4 Record Type Definitions 
A record type definition introduces a type in which all the inputs that are used to construct a value 

are accessible as properties on values of the type. For example: 

type R1 =  

    { x : int;  

      y : int }  

    member this.Sum = this.x + this.y  

In this example, the integers x and y can be accessed as properties on values of type R1.  

Record fields may be marked mutable. For example: 

type R2 =  

    { mutable x : int;  

      mutable y : int }  

    member this.Move(dx,dy) =  

        this.x <- this.x + dx 

        this.y <- this.y + dy 

The mutable attribute on x and y makes the assignments valid. 

Record types are implicitly sealed and may not be given the Sealed attribute. Record types may not 

be given the AbstractClass attribute.  

Record types are implicitly marked serializable unless the AutoSerializable(false) attribute is used.  



134 
 

8.4.1 Members in Record Types 

Record types may declare members (§8.13), overrides, and interface implementations. Like all types 

with overrides and interface implementations, they are subject to Dispatch Slot Checking (§14.8). 

8.4.2 Name Resolution and Record Field Labels 

For a record type, the record field labels field1 ... fieldN are added to the FieldLabels table of the 

current name resolution environmentunless the record type has the RequireQualifiedAccess 

attribute. 

Record field labels in the FieldLabels table play a special role in Name Resolution for Members 

(§14.1): an expression’s type may be inferred from a record label. For example: 

type R = { dx : int; dy: int } 

let f x = x.dx // x is inferred to have type R 

In this example, the lookup .dx is resolved to be a field lookup. 

8.4.3 Structural Hashing, Equality, and Comparison for Record Types 

Record types implicitly implement the following interfaces and dispatch slots unless they are 

explicitly implemented as part of the definition of the record type:  

interface System.Collections.IStructuralEquatable 
interface System.Collections.IStructuralComparable 
interface System.IComparable 
override GetHashCode : unit -> int 
override Equals : obj -> bool 

The implicit implementations of these interfaces and overrides are described in §8.15. 

8.4.4 With/End in Record Type Definitions 

Record type definitions can include with/end tokens, as the following shows: 

type R1 =  

    { x : int;  

      y : int }  

    with  

        member this.Sum = this.x + this.y  

    end 

The with/end tokens can be omitted if the type-defn-elements vertically align with the { in the 

record-fields. The semicolon (;) tokens can be omitted if the next record-field vertically aligns 

with the previous record-field. 

8.4.5 CLIMutable Attributes 

Adding the CLIMutable attribute to a record type causes it to be compiled to a CLI representation as 

a plain-old CLR object (POCO) with a default constructor along with property getters and setters. 

Adding the default constructor and mutable properties makes objects of the record type usable with 

.NET tools and frameworks such as database queries, serialization frameworks, and data models in 

XAML programming.  



135 
 

For example, an F# immutable record cannot be serialized because it does not have a constructor. 

However, if you attach the CLIMutable attribute as in the following example, the XmlSerializer is 

enable to serialize or deserialize this record type:  

[<CLIMutable>] 

type R1 = { x : string;  y : int }  

 

8.5 Union Type Definitions 
A union type definition is a type definition that includes one or more union cases. For example: 

type Message =  

    | Result of string 

    | Request of int * string 

    member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm 

Union case names must begin with an uppercase letter, which is defined to mean any character for 

which the CLI library function System.Char.IsUpper returns true and System.Char.IsLower returns 

false.  

The union cases Case1 ... CaseN have module scope and are added to the ExprItems and PatItems 

tables in the name resolution environment. This means that their unqualified names can be used to 

form both expressions and patterns, unless the record type has the RequireQualifiedAccess 

attribute. 

Parentheses are significant in union definitions. Thus, the following two definitions differ: 

type CType = C of int * int 

type CType = C of (int * int) 

The lack of parentheses in the first example indicates that the union case takes two arguments. The 

parentheses in the second example indicate that the union case takes one argument that is a first-

class tuple value.  

Union fields may optionally be named within each case of a union type. For example: 

type Shape =  

    | Rectangle of width: float * length: float 

    | Circle of radius: float  

    | Prism of width: float * float * height: float 

The names are referenced when pattern matching on union values of this type. When using pattern 

matching with multiple fields, semicolons are used to delimit the named fields, e.g. Prism(width=w; 

height=h). 

The following declaration defines a type abbreviation if the named type A exists in the name 

resolution environment. Otherwise it defines a union type. 

type OneChoice = A 



136 
 

To disambiguate this case and declare an explicit union type, use the following: 

type OneChoice =  

    | A 

Union types are implicitly marked serializable unless the AutoSerializable(false) attribute is used.  

8.5.1 Members in Union Types 

Union types may declare members (§8.13), overrides, and interface implementations. As with all 

types that declare overrides and interface implementations, they are subject to Dispatch Slot 

Checking (§14.8). 

8.5.2 Structural Hashing, Equality, and Comparison for Union Types 

Union types implicitly implement the following interfaces and dispatch slots unless they are explicitly 

implemented as part of the definition of the union type: 

interface System.Collections.IStructuralEquatable 

interface System.Collections.IStructuralComparable 

interface System.IComparable 

override GetHashCode : unit -> int 

override Equals : obj -> bool 

The implicit implementations of these interfaces and overrides are described in §8.15. 

8.5.3 With/End in Union Type Definitions 

Union type definitions can include with/end tokens, as the following shows: 

type R1 =  

    { x : int;  

      y : int }  

    with  

        member this.Sum = this.x + this.y  

    end 

The with/end tokens can be omitted if the type-defn-elements vertically align with the { in the 

record-fields. The semicolon (;) tokens can be omitted if the next record-field vertically aligns 

with the previous record-field. 

For union types, the with/end tokens can be omitted if the type-defn-elements vertically alignwith 

the first | in the union-type-cases. However, with/end must be present if the | tokens align with the 

type token. For example: 

/// Note: this layout is permitted 

type Message =  

  | Result of string 

  | Request of int * string 

  member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm 

 

/// Note: this layout is not permitted 

type Message =  

| Result of string 

| Request of int * string 

member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm 



137 
 

8.5.4 Compiled Form of Union Types for Use from Other CLI Languages 

A compiled union type U has: 

• One CLI static getter property U.C for each null union case C. This property gets a singleton 

object that represents each such case. 

• One CLI nested type U.C for each non-null union case C. This type has instance properties Item1, 

Item2.... for each field of the union case, or a single instance property Item if there is only one 

field. However, a compiled union type that has only one case does not have a nested type. 

Instead, the union type itself plays the role of the case type. 

• One CLI static method U.NewC for each non-null union case C. This method constructs an object 

for that case. 

• One CLI instance property U.IsC for each case C. This property returns true or false for the case. 

• One CLI instance property U.Tag for each case C. This property fetches or computes an integer 

tag corresponding to the case. 

• If U has more than one case, it has one CLI nested type U.Tags. The U.Tags typecontains one 

integer literal for each case, in increasing order starting from zero. 

• A compiled union type has the methods that are required to implement its auto-generated 

interfaces, in addition to any user-defined properties or methods. 

These methods and properties may not be used directly from F#. However, these types have user-

facing List.Empty, List.Cons, Option.None, and Option.Some properties and/or methods.  

A compiled union type may not be used as a base type in another CLI language, because it has at 

least one assembly-private constructor and no public constructors. 

8.6 Class Type Definitions 
A class type definition encapsulates values that are constructed by using one or more object 

constructors. Class types have the form: 

type type-name patopt as-defnopt =  
    class 
        class-inherits-declopt 
        class-function-or-value-defnsopt 
        type-defn-elements  
    end 

The class/end tokens can be omitted, in which case Type Kind Inference (§8.2) is used to determine 

the kind of the type. 

In F#, class types are implicitly marked serializable unless the AutoSerializable(false) attribute is 

present.  



138 
 

8.6.1 Primary Constructors in Classes 

An object constructor represents a way of initializing an object. Object constructors can create values 

of the type and can partially initialize an object from a subclass. A class can have an optional primary 

constructor and zero or more additional object constructors.  

If a type definition has a pattern immediately after the type-name and any accessibility annotation, 

then it has a primary constructor. For example, the following type has a primary constructor: 

type Vector2D(dx : float, dy : float) =  

    let length = sqrt(dx*x + dy*dy) 

    member v.Length = length 

    member v.DX = dx 

    member v.DY = dy  

Class definitions that have a primary constructor may contain function and value definitions, 

including those that use let rec.  

The pattern for a primary constructor must have zero or more patterns of the following form:  

(simple-pat, ..., simple-pat)  

Each simple-pat has this form: 

simple-pat :=  
    | ident 
    | simple-pat : type 

Specifically, nested patterns may not be used in the primary constructor arguments. For example, 

the following is not permitted because the primary constructor arguments contain a nested tuple 

pattern: 

type TwoVectors((px, py), (qx, qy)) =  

    member v.Length = sqrt((qx-px)*(qx-px) + (qy-py)*(qy-py)) 

Instead, one or more value definitions should be used to accomplish the same effect: 

type TwoVectors(pv, qv) =  

    let (px, py) = pv 

    let (qx, qy) = qv 

    member v.Length = sqrt((qx-px)*(qx-px) + (qy-py)*(qy-py)) 

When a primary constructor is evaluated, the inheritance and function and value definitions are 

evaluated in order.  

8.6.1.1 Object References in Primary Constructors 

For types that have a primary constructor, the name of the object parameter can be bound and used 

in the non-static function, value, and member definitions of the type definition as follows: 

type X(a:int) as x =  

    let mutable currentA = a 

    let mutable currentB = 0 

    do x.B <- x.A + 3 

    member self.GetResult()=  currentA + currentB 

    member self.A with get() = currentA and set v = currentA <- v  

    member self.B with get() = currentB and set v = currentB <- v  



139 
 

During construction, no member on the type may be called before the last value or function 

definition in the type has completed; such a call results in an InvalidOperationException. For 

example, the following code raises this exception: 

type C() as self =  

    let f = (fun (x:C) -> x.F()) 

    let y = f self 

    do printfn "construct" 

    member this.F() = printfn "hi, y = %A" y 

 

let r = new C() // raises InvalidOperationException 

The exception is raised because an attempt may be made to access the value of the field y before 

initialization is complete. 

8.6.1.2 Inheritance Declarations in Primary Constructors 

An inherit declaration specifies that the type being defined is an extension of an existing type. Such 

declarations have the following form: 

class-inherits-decl := inherit type expropt 

For example: 

type MyDerived(...) = 

   inherit MyBase(...) 

If a class definition does not contain an inherit declaration, the class inherits fromSystem.Object by 

default.  

The inherit declaration for a type must have arguments if and only if the type has a primary 

constructor. 

Unlike §8.6.1.2, members of a base type can be accessed during construction of the derived class. 

For example, the following code does not raise an exception: 

type B() =  

    member this.G() = printfn "hello " 

 

type C() as self =  

    inherit B() 

    let f = (fun (x:C) -> x.G()) 

    let y = f self 

    do printfn "construct" 

    member this.F() = printfn "hi, y = %A" y 

 

let r = new C() // does not raise InvalidOperationException   

 

8.6.1.3 Instance Function and Value Definitions in Primary Constructors  

Classes that have primary constructors may include function definitions, value definitions, and “do” 

statements. The following rules apply to these definitions: 

• Each definition may be marked static (see §8.6.2.1). If the definition is not marked static, it is 

called an instance definition. 



140 
 

• The functions and values defined by instance definitions are lexically scoped (and thus implicitly 

private) to the object being defined. 

• Each value definition may optionally be marked mutable. 

• A group of function and value definitions may optionally be marked rec. 

• Function and value definitions are generalized. 

• Value definitions that declared in classes are represented in compiled code as follows:  

• If a value definition is not mutable, and is not used in any function or member, then the 

value is represented as a local value in the object constructor. 

• If a value definition is mutable, or used in any function or member, then the value is 

represented as an instance field in the corresponding CLI type. 

• Function definitions are represented in compiled code as private members of the corresponding 

CLI type. 

For example, consider this type: 

type C(x:int,y:int) =  

    let z = x + y 

    let f w = x + w 

    member this.Z = z 

    member this.Add(w) = f w 

The input y is used only during construction, and no field is stored for it. Likewise the function f 

is represented as a member rather than a field that is a function value. 

A value definition is considered a function definition if its immediate right-hand-side is an 

anonymous function, as in this example:  

let f = (fun w -> x + w) 

Function and value definitions may have attributes as follows: 

• Value definitions represented as fields may have attributes that target fields. 

• Value definitions represented as locals may have attributes that target fields, but these 

attributes will not be attached to any construct in the resulting CLI assembly. 

• Function definitions represented as methods may have attributes that target methods. 
 

For example: 

type C(x:int) =  

    [<System.Obsolete>]   

    let unused = x 

    member __.P = 1 

In this example, no field is generated for unused, and no corresponding compiled CLI attribute is 

generated. 

8.6.1.4 Static Function and Value Definitions in Primary Constructors 

Classes that have primary constructors may have function definitions, value definitions, and “do” 

statements  that are marked as static:  



141 
 

• The values that are defined by static function and value definitions are lexically scoped (and thus 

implicitly private) to the type being defined.  

• Each value definition may optionally be marked mutable.  

• A group of function and value definitions may optionally be marked rec.  

• Static function and value definitions are generalized. 

• Static function and value definitions are computed once per generic instantiation. 

• Static function and value definitions are elaborated to a static initializer associated with each 

generic instantiation of the generated class. Static initializers are executed on demand in the 

same way as static initializers for implementation files §12.5. 

• The compiled representation for static value definitions is as follows:  

• If the value is not used in any function or member then the value is represented as a local 

value in the CLI class initializer of the type. 

• If the value is used in any function or member, then the value is represented as a static field 

of the CLI class for the type. 

• The compiled representation for a static function definition is a private static member of the 

corresponding CLI type. 

Static function and value definitions may have attributes as follows: 

• Static function and value definitions represented as fields may have attributes that target fields. 

• Static function and value definitions represented as methods may have attributes that target 

methods. 
 

For example: 

type C<'T>() =  

    static let mutable v = 2 + 2 

    static do v <- 3 

     

    member x.P = v 

    static member P2 = v+v 

 

printfn "check: %d = 3" (new C<int>()).P 

printfn "check: %d = 3" (new C<int>()).P 

printfn "check: %d = 3" (new C<string>()).P 

printfn "check: %d = 6" (C<int>.P2) 

printfn "check: %d = 6" (C<string>.P2) 

In this example, the value v is represented as a static field in the CLI type for C. One instance of this 

field exists for each generic instantiation of C. The output of the program is 

check: 3 = 3  

check: 3 = 3 

check: 3 = 3 

check: 6 = 6 

check: 6 = 6 



142 
 

8.6.2 Members in Classes 

Class types may declare members (§8.13), overrides, and interface implementations. As with all 

types that have overrides and interface implementations, such class types are subject to Dispatch 

Slot Checking (§14.8). 

8.6.3 Additional Object Constructors in Classes  

Although the use of primary object constructors is generally preferable, additional object 

constructors may also be specified. Additional object constructors are required in two situations:  

• To define classes that have more than one constructor.  

• To specify explicit val fields without the DefaultValue attribute. 
 

For example, the following statement adds a second constructor to a class that has a primary 

constructor: 

type PairOfIntegers(x:int,y:int) =  

    new (x) = PairOfIntegers(x,x) 

The next example declares a class without a primary constructor: 

type PairOfStrings =  

    val s1 : string 

    val s2 : string 

    new (s) = { s1 = s; s2 = s } 

    new (s1,s2) = { s1 = s1; s2 = s2 } 

If a primary constructor is present, additional object constructors must call another object 

constructor in the same type, which may be another additional constructor or the primary 

constructor.  

If no primary constructor is present, additional constructors must initialize any val fields of the 

object that do not have the DefaultValue attribute. They must also specify a call to a base class 

constructor for any inherited class type. A call to a base class constructor is not required if the base 

class is System.Object.  

The use of additional object constructors and val fields is required if a class has multiple object 

constructors that must each call different base class constructors. For example: 

type BaseClass =  

    val s1 : string 

    new (s) = { s1 = s } 

    new () = { s1 = "default" } 

 

type SubClass =  

    inherit BaseClass 

    val s2 : string 

    new (s1,s2) = { inherit BaseClass(s1); s2 = s2 } 

    new (s2) = { inherit BaseClass(); s2 = s2 } 

To implement additional object constructors, F# uses a restricted subset of expressions that ensure 

that the code generated for the constructor is valid according to the rules of object construction for 



143 
 

CLI objects. Note that precisely one additional-constr-init-expr occurs for each branch of a 

construction expression.  

For classes without a primary constructor, side effects can be performed after the initialization of 

the fields of the object by using the additional-constr-expr then stmt form. For example: 

type PairOfIntegers(x:int,y:int) =  

    // This additional constructor has a side effect after initialization. 

    new(x) =  

       PairOfIntegers(x, x) 

       then  

          printfn "Initialized with only one integer" 

The name of the object parameter can be bound within additional constructors. For example: 

type X =  

    val a : (unit -> string)  

    val mutable b : string 

    new() as x = { a = (fun () -> x.b); b = "b" } 

A warning is given if x occurs syntactically in or before the additional-constr-init-expr of the 

construction expression. If any member is called before the completion of execution of the 

additional-constr-init-expr within the additional-constr-expr then an InvalidOperationException 

is thrown.  

8.6.4 Additional Fields in Classes 

Additional field declarations indicate that a value is stored in an object. They are generally used only 

for classes without a primary constructor, or for mutable fields that use default initialization, and 

typically occur only in generated code. For example:  

type PairOfIntegers =  

    val x : int 

    val y : int 

    new(x, y) = {x = x; y = y} 

The following shows an additional field declaration as a static field in an explicit class type: 

type TypeWithADefaultMutableBooleanField =  

    [<DefaultValue>] 

    static val mutable ready : bool 

At runtime, such a field is initially assigned the zero value for its type (§6.9.3). For example: 

type MyClass(name:string) = 

    // Keep a global count. It is initially zero. 

    [<DefaultValue>] 

    static val mutable count : int 

 

    // Increment the count each time an object is created 

    do MyClass.count <- MyClass.count + 1 

 

    static member NumCreatedObjects = MyClass.count 

 

    member x.Name = name 



144 
 

A val specification in a type that has a primary constructor must be marked mutable and must have 

the DefaultValue attribute. For example: 

type X() =  

    [<DefaultValue>] 

    val mutable x : int 

The DefaultValue attribute takes a check parameter, which indicates whether to ensure that the val 

specification does not create unexpected null values. The default value for check is true. If this 

parameter is true, the type of the field must permit default initialization (§5.4.8). For example, the 

following type is rejected: 

type MyClass<'T>() = 

    [<DefaultValue>] 

    static val mutable uninitialized : 'T 

The reason is that the type 'T does not admit default initialization. However, in compiler-generated 

and hand-optimized code it is sometimes essential to be able to emit fields that are completely 

uninitialized. In this case, DefaultValue(false) can be used. For example: 

type MyNullable<'T>() = 

    [<DefaultValue>] 

    static val mutable ready : bool 

 

    [<DefaultValue(false)>]  

    static val mutable uninitialized : 'T 

8.7 Interface Type Definitions 
An interface type definition represents a contract that an object may implement. Such a type 

definition containsonly abstract members. For example: 

type IPair<'T,'U> = 

    interface 

        abstract First: 'T 

        abstract Second: 'U 

    end 

 

type IThinker<'Thought> = 

    abstract Think: ('Thought -> unit) -> unit 

    abstract StopThinking: (unit -> unit) 

Note: The interface/end tokens can be omitted when lightweight syntax is used, in 

which case Type Kind Inference (§8.2) is used to determine the kind of the type. The 

presence of any non-abstract members or constructors means a type is not an interface 

type. 

By convention, interface type names start with I, as in IEvent. However, this convention 

is not followed as strictly in F# as in other CLI languages. 

Interface types may be arranged hierarchically by specifying inherit declarations. For example: 

type IA = 

    abstract One: int -> int 



145 
 

 

type IB = 

    abstract Two: int -> int 

 

type IC = 

    inherit IA 

    inherit IB 

    abstract Three: int -> int 

Each inherit declaration must itself be an interface type. Circular references are not allowed among 

inherit declarations. F# uses  the named types of the inherited interface types to determine 

whether references are circular.  

8.8 Struct Type Definitions 
A struct type definition is a type definition whose instances are stored inline inside the stack frame or 

object of which they are a part. The type is represented as a CLI struct type, also called a value type. 

For example: 

type Complex =  

    struct 

        val real: float;  

        val imaginary: float 

        member x.R = x.real 

        member x.I = x.imaginary 

    end 

Note: The struct/end tokens can be omitted when lightweight syntax is used, in which 

case Type Kind Inference (§8.2) is used to determine the kind of the type.  

 

Becaues structs undergo type kind inference (§8.2), the following is valid: 

[<Struct>] 

type Complex(r:float, i:float) =  

    member x.R = r 

    member x.I = i 

Structs may have primary constructors: 

[<Struct>] 

type Complex(r : float, I : float) =  

    member x.R = r 

    member x.I = i 

Structs that have primary constructors must accept at least one argument. 

Structs may have additional constructors. For example: 

[<Struct>] 

type Complex(r : float, I : float) =  

    member x.R = r 

    member x.I = i 

    new(r : float) = new Complex(r, 0.0) 



146 
 

The fields in a struct may be mutable only if the struct does not have a primary constructor. For 

example: 

[<Struct>] 

type MutableComplex =  

    val mutable real : float;  

    val mutable imaginary : float 

    member x.R = x.real 

    member x.I = x.imaginary 

    member x.Change(r, i) = x.real <- r; x.imaginary <- i 

    new (r, i) = { real = r; imaginary = i } 

Struct types may declare members, overrides, and interface implementations. As for all types that 

declare overrides and interface implementations, struct types are subject to Dispatch Slot Checking 

(§14.8). 

Structs may not have inherit declarations. 

Structs may not have “let” or “do” statements unless they are static. For example, the following is 

not valid: 

[<Struct>] 

type BadStruct1 (def : int) = 

    do System.Console.WriteLine("Structs cannot use 'do'!") 

Structs may have static “let” or “do” statements. For example, the following is valid: 

[<Struct>] 

type GoodStruct1 (def : int) = 

    static do System.Console.WriteLine("Structs can use 'static do'") 

A struct type must be valid according to the CLI rules for structs; in particular, recursively 

constructed structs are not permitted. For example, the following type definition is not permitted, 

because the size of BadStruct2 would be infinite:  

[<Struct>] 

type BadStruct2 =  

    val data : float;  

    val rest : BadStruct2 

    new (data, rest) = { data = data; rest = rest } 

Likewise, the implied size of the following struct would be infinite: 

[<Struct>] 

type BadStruct3 (data : float, rest : BadStruct3) = 

    member s.Data = data 

    member s.Rest = rest 

If the types of all the fields in a struct type permit default initialization, the struct type has an implicit 

default constructor,which initializes all the fields to the default value. For example, the Complex type 

defined earlier in this section permits default initialization. 

[<Struct>] 

type Complex(r : float, I : float) =  

    member x.R = r 

    member x.I = i 



147 
 

    new(r : float) = new Complex(r, 0.0) 

 

let zero = Complex() 

Note: The existence of the implicit default constructor for structs is not recorded in CLI 

metadata and is an artifact of the CLI specification and implementation itself. A CLI 

implementation permits default constructors for all struct types, although F# does not 

permit their direct use for F# struct types unless all field types admit default 

initialization. This is similar to the way that F# considers some types to have null as an 

abnormal value. 

Public struct types for use from other CLI languages should be designed with the 

existence of the default zero-initializing constructor in mind. 

8.9 Enum Type Definitions 
Occasionally the need arises to represent a type that compiles as a CLI enumeration type. An enum 

type definition has values that are represented by integer constants and has a CLI enumeration as its 

compiled form. Enum type definitions are declared by specifying integer constants in a format that is 

syntactically similar to a union type definition. For example: 

type Color =  

   | Red = 0 

   | Green = 1 

   | Blue = 2 

 

let rgb = (Color.Red, Color.Green, Color.Blue) 

 

let show(colorScheme) =  

     match colorScheme with  

     | (Color.Red, Color.Green, Color.Blue) -> printfn "RGB in use" 

     | _ -> printfn "Unknown color scheme in use" 

 

The example defines the enum type Color, which has the values Red, Green, and Blue, mapped to 

the constants 0, 1, and 2 respectively. The values are accessed by their qualified names: Color.Red, 

Color.Green, and Color.Blue. 

Each case must be given a constant value of the same type. The constant values dictate the 

underlying type of the enum, and must be one of the following types: 

• sbyte, int16, int32, int64, byte, uint16, uint32, uint64, char 

The declaration of an enumeration type in an implementation file has the following effects on the 

typing environment: 

• Brings a named type into scope. 

• Adds the named type to the inferred signature of the containing namespace or module. 
 

Enum types coerce to System.Enum and satisfy the enum<underlying-type> constraint for their 

underlying type. 



148 
 

Each enum type declaration is implicitly annotated with the RequiresQualifiedAccess attribute and 

does not add the tags of the enumeration to the name environment.  

type Color =  

    | Red = 0 

    | Green = 1 

    | Blue = 2 

 

let red = Red // not accepted, must use Color.Red 

Unlike unions, enumeration types are fundamentally “incomplete,” because CLI enumerations can 

be converted to and from their underlying primitive type representation. For example, a Color value 

that is not in the above enumeration can be generated by using the enum function from the F# 

library: 

let unknownColor : Color = enum<Color>(7) 

This statement adds the value named unknownColor, equal to the constant 7, to the Color 

enumeration. 

8.10 Delegate Type Definitions 
Occasionally the need arises to represent a type that compiles as a CLI delegate type. A delegate 

type definition has as its values functions that are represented as CLI delegate values. A delegate 

type definition is declared by using the delegate keyword with a member signature. For example: 

type Handler<'T> = delegate of obj * 'T -> unit  

Delegates are often used when using Platform Invoke (P/Invoke) to interface with CLI libraries, as in 

the following example: 

type ControlEventHandler = delegate of int -> bool 

 

[<DllImport("kernel32.dll")>] 

extern void SetConsoleCtrlHandler(ControlEventHandler callback, bool add) 

8.11 Exception Definitions 
An exception definition defines a new way of constructing values of type exn (a type abbreviation for 

System.Exception). Exception definitions have the form: 

exception ident of type1 * … * typen  

An exception definition has the following effect: 

• The identifier ident can be used to generate values of type exn. 

• The identifier ident can be used to pattern match on values of type exn. 

• The definition generates a type with name ident that derives from exn. 
 

For example: 



149 
 

exception Error of int * string 

raise (Error (3, "well that didn't work did it")) 

 

try  

    raise (Error (3, "well that didn't work did it")) 

with  

    | Error(sev, msg) -> printfn "severity = %d, message = %s" sev msg  

 

The type that corresponds to the exception definition can be used as a type in F# code. For example: 

let exn = Error (3, "well that didn't work did it") 

let checkException() =  

    if (exn :? Error) then printfn "It is of type Error" 

    if (exn.GetType() = typeof<Error>) then printfn "Yes, it really is of type Error" 

Exception abbreviations may abbreviate existing exception constructors. For example: 

exception ThatWentBadlyWrong of string * int 

exception ThatWentWrongBadly = ThatWentBadlyWrong 

 

let checkForBadDay() =  

    if System.DateTime.Today.DayOfWeek = System.DayOfWeek.Monday then 

        raise (ThatWentWrongBadly("yes indeed",123)) 

Exception values may also be generated by defining and using classes that extend System.Exception.  

8.12 Type Extensions 
A type extension associates additional members with an existing type. For example, the following 

associates the additional member IsLong with the existing type System.String: 

type System.String with  
    member x.IsLong = (x.Length > 1000) 

Type extensions may be applied to any accessible type definition except those defined by type 

abbreviations. For example, to add an extension method to a list type, use 'a List because 'a list 

is a type abbreviation of 'a List. For example: 

type 'a List with  
  member x.GetOrDefault(n) =   
    if x.Length > n then x.[n]  
    else Unchecked.defaultof<'a>  
 
let intlst = [1; 2; 3] 
intlst.GetOrDefault(1) //2  
intlst.GetOrDefault(4) //0 
 

For an array type, backtick marks can be used to define an extension method to the array type: 

type 'a ``[]`` with  
  member x.GetOrDefault(n) =   
    if x.Length > n then x.[n]  
    else Unchecked.defaultof<'a>  
 
let arrlist = [| 1; 2; 3 |] 
arrlist.GetOrDefault(1) //2  



150 
 

arrlist.GetOrDefault(4) //0 

A type can have any number of extensions. 

If the type extension is in the same module or namespace declaration group as the original type 

definition, it is called an intrinsic extension. Members that are defined in intrinsic extensions follow 

the same name resolution and other language rules as members that are defined as part of the 

original type definition.  

If the type extension is not intrinsic, it must be in a module, and it is called an extension member. 

Opening a module that contains an extension member extends the name resolution of the dot 

syntax for the extended type. That is, extension members are accessible only if the module that 

contains the extension is open.  

Name resolution for members that are defined in type extensions behaves as follows: 

• In method application resolution (see §14.4), regular members (that is, members that are part of 

the original definition of a type, plus intrinsic extensions) are preferred to extension members. 

• Extension members that are in scope and have the correct name are included in the group of 

members considered for method application resolution (see §14.4). 

• An intrinsic member is always preferred to an extension member. If an extension member has 

the same name and type signature as a member in the original type definition or an inherited 

member, then it will be inaccessible. 
 

The following illustrates the definition of one intrinsic and one extension member for the same type: 

namespace Numbers 

  type Complex(r : float, i : float) = 

      member x.R = r 

      member x.I = i 

 

  // intrinsic extension 

  type Complex with  

      static member Create(a, b) = new Complex (a, b) 

      member x.RealPart = x.R 

      member x.ImaginaryPart = x.I 

 

namespace Numbers 

 

  module ComplexExtensions =  

 

      // extension member 

      type Numbers.Complex with  

          member x.Magnitude = ... 

          member x.Phase = ... 

 

Extensions may define both instance members and static members. 

Extensions are checked as follows: 

• Checking applies to the member definitions in an extension together with the members and 

other definitions in the group of type definitions of which the extension is a part. 



151 
 

• Two intrinsic extensions may not contain conflicting members because intrinsic extensions are 

considered part of the definition of the type. 

• Extensions may not define fields, interfaces, abstract slots, inherit declarations, or dispatch slot 

(interface and override) implementations. 

• Extension members must be in modules. 

• Extension members are compiled as CLI static members with encoded names. 

• The elaborated form of an application of a static extension member C.M(arg1,…,argn) is a call 

to this static member with arguments arg1,…,argn.. 

• The elaborated form of an application of an instance extension member obj.M(arg1,…,argn) 

is an invocation of the static instance member where the object parameter is supplied as the 

first argument to the extension member followed by arguments arg1 … argn. 

8.12.1 Imported CLI C# Extensions Members 

The CLI C# language defines an “extension member,” which commonly occurs in CLI libraries, along 

with some other CLI languages. C# limits extension members to instance methods. 

C#-defined extension members are made available to F# code in environments where the C#-

authored assembly is referenced and an open declaration of the corresponding namespace is in 

effect.  

The encoding of compiled names for F# extension members is not compatible with C# encodings of 

C# extension members. However, for instance extension methods, the naming can be made 

compatible. For example: 

open System.Runtime.CompilerServices  

 

[<Extension>] 

module EnumerableExtensions = 

    [<CompiledName("OutputAll"); Extension>] 

    type System.Collections.Generic.IEnumerable<'T> with  

        member x.OutputAll (this:seq<'T>) =  

            for x in this do  

                System.Console.WriteLine (box x)  

C#-style extension members may also be declared directly in F#. When combined with the “inline” 

feature of F#, this allows the definition of generic, constrained extension members that are not 

otherwise definable in C# or F#.  

[<Extension>] 

type ExtraCSharpStyleExtensionMethodsInFSharp () = 

    [<Extension>] 

    static member inline Sum(xs: seq<'T>) = Seq.sum xs 

 

Such an extension member can be used as follows: 

let listOfIntegers = [ 1 .. 100 ] 

let listOfBigIntegers = [ 1I .. 100I ] 

listOfIntegers.Sum() 

listOfBigIntegers.Sum() 



152 
 

8.13 Members 
Member definitions describe functions that are associated with type definitions and/or values of 

particular types. Member definitions can be used in type definitions. Members can be classified as 

follows: 

• Property members 

• Method members 
 

A static member is prefixed by static and is associated with the type, rather than with any particular 

object. Here are some examples of static members: 

type MyClass() = 

    static let mutable adjustableStaticValue = "3" 

    static let staticArray = [| "A"; "B" |] 

    static let staticArray2 = [|[| "A"; "B" |]; [| "A"; "B" |] |] 

 

    static member StaticMethod(y:int) = 3 + 4 + y 

 

    static member StaticProperty = 3 + staticArray.Length 

 

    static member StaticProperty2  

        with get() = 3 + staticArray.Length 

 

    static member MutableStaticProperty 

        with get()         = adjustableStaticValue  

        and  set(v:string) = adjustableStaticValue <- v 

 

    static member StaticIndexer 

        with get(idx) = staticArray.[idx] 

 

    static member StaticIndexer2 

        with get(idx1,idx2) = staticArray2.[idx1].[idx2] 

 

    static member MutableStaticIndexer 

        with get (idx1) = staticArray.[idx1] 

        and  set (idx1) (v:string) = staticArray.[idx1] <- v 

An instance member is a member without static. Here are some examples of instance members: 

type MyClass() = 

    let mutable adjustableInstanceValue = "3" 

    let instanceArray = [| "A"; "B" |] 

    let instanceArray2 = [| [| "A"; "B" |]; [| "A"; "B" |] |] 

 

    member x.InstanceMethod(y:int) = 3 + y + instanceArray.Length 

 

    member x.InstanceProperty = 3 + instanceArray.Length 

 

    member x.InstanceProperty2  

        with get () = 3 + instanceArray.Length 

 

    member x.InstanceIndexer 

        with get (idx) = instanceArray.[idx] 

 

    member x.InstanceIndexer2 

        with get (idx1,idx2) = instanceArray2.[idx1].[idx2] 

 



153 
 

    member x.MutableInstanceProperty 

        with get ()         = adjustableInstanceValue 

        and  set (v:string) = adjustableInstanceValue <- v 

 

    member x.MutableInstanceIndexer 

        with get (idx1) = instanceArray.[idx1] 

        and  set (idx1) (v:string) = instanceArray.[idx1] <- v 

Members from a set of mutually recursive type definitions are checked as a single mutually recursive 

group. As with collections of recursive functions, recursive calls to potentially-generic methods may 

result in inconsistent type constraints:  

type Test() = 

   static member Id x = x 

   member t.M1 (x: int) = Test.Id(x) 

   member t.M2 (x: string) = Test.Id(x) // error, x has type 'string' not 'int' 

A target method that has a full type annotation is eligible for early generalization (§14.6.7). 

type Test() = 

   static member Id<'T> (x:'T) : 'T = x 

   member t.M1 (x: int) = Test.Id(x) 

   member t.M2 (x: string) = Test.Id(x) 

8.13.1 Property Members 

A property member is a method-or-prop-defn in one of the following forms: 

staticopt member ident.opt ident = expr  

staticopt member ident.opt ident with get pat = expr 

staticopt member ident.opt ident with set patopt pat= expr 

staticopt member ident.opt ident with get pat = expr and set patopt pat = expr  
staticopt member ident.opt ident with set patopt pat = expr and get pat = expr  

A property member in the form 

staticopt member ident.opt ident with get pat1 = expr1 and set pat2a pat2b opt = expr2 

is equivalent to two property members of the form: 

staticopt member ident.opt ident with get pat1 = expr1  

staticopt member ident.opt ident with set pat2a pat2b opt = expr2 

Furthermore, the following two members are equivalent: 

staticopt member ident.opt ident = expr  

staticopt member ident.opt ident with get () = expr 

These two are also equivalent: 

staticopt member ident.opt ident with set pat = expr2 

staticopt member ident.opt ident with set () pat = expr 

Thus, property members may be reduced to the following two forms: 

staticopt member ident.opt ident with get patidx = expr  

staticopt member ident.opt ident with set patidx pat = expr 



154 
 

The ident.opt must be present if and only if the property member is an instance member. When 

evaluated, the identifier ident is bound to the “this” or “self” object parameter that is associated 

with the object within the expression expr. 

A property member is an indexer property if patidx is not the unit pattern (). Indexer properties 

called Item are special in the sense that they are accessible via the .[] notation. An Item property 

that takes one argument is accessed by using x.[i]; with two arguments by x.[i,j], and so on. 

Setter properties must return type unit. 

Note: As of F# 3.1, the special .[] notation for Item properties is available only for 

instance members. A static indexer property cannot be accessible by using the .[] 

notation. 

Property members may be declared abstract. If a property has both a getter and a setter, then both 

must be abstract or neither must be abstract. 

Each property member has an implied property type. The property type is the type of the value that 

the getter property returns or the setter property accepts. If a property member has both a getter 

and a setter, and neither is an indexer property, the signatures of both the getter and the setter 

must imply the same property type.  

Static and instance property members are evaluated every time the member is invoked. For 

example, in the following, the body of the member is evaluated each time C.Time is evaluated: 

type C () =  

    static member Time = System.DateTime.Now 

Note that a static property member may also be written with an explicit get method: 

static member ComputerName  

    with get() = System.Environment.GetEnvironmentVariable("COMPUTERNAME") 

Property members that have the same name may not appear in the same type definition even if 

their signatures are different. For example:  

type C () =  

    static member P = false // error: Duplicate property.  

    member this.P = true 

However, methods that have the same name can be overloaded when their signatures are different. 

8.13.2 Auto-implemented Properties 

Properties can be declared in two ways: either explicitly specified with the underlying value or 

automatically generated by the compiler. The compiler creates a backing field automatically if all of 

the following are true for the declaration: 

• The declaration uses the member val keywords. 

• The declaration omits the self-identifier. 

• The declaration includes an expression to initialize the property.  

To create a mutable property, include with get, with set,or both: 



155 
 

staticopt member val accessopt ident : tyopt = expr 

staticopt member val accessopt ident : tyopt = expr with get 

staticopt member val accessopt ident : tyopt = expr with set 

staticopt member val accessopt ident : tyopt = expr with get, set 

Automatically implemented properties are part of the initialization of a type, so they must be 

included before any other member definitions, in the same way as let bindings and do bindings in a 

type definition. The expression that initializes an automatically implemented property is evaluated 

only at initialization, and not every time the property is accessed. This behavior is different from the 

behavior of an explicitly implemented property. 

For example, the following class type includes two automatically implemented properties. Property1 

is read-only and is initialized to the argument provided to the primary constructor and Property2 is a 

settable property that is initialized to an empty string: 

type D (x:int) =  

    member val Property1 = x  

    member val Property2 = "" with get, set 

Auto-implemented properties can also be used to implement default or override properties:  

type MyBase () =  

 abstract Property : string with get, set 

 default val Property = “default” with get, set 

 

type MyDerived() = 

 inherit MyBase() 

    override val Property = "derived" with get, set 

The following example shows how to use an auto-implemented property to implement an interface: 

type MyInterface () =  

 abstract Property : string with get, set 

 

type MyImplementation () = 

 interface MyInterface with 

    member val Property = "implemented" with get, set 

8.13.3 Method Members 

A method member is of the form: 

staticopt member ident.opt ident pat1 ... patn = expr  

The ident.opt can be present if and only if the property member is an instance member. In this case, 

the identifier ident corresponds to the “this” (or “self”) variable associated with the object on which 

the member is being invoked. 

Arity analysis (§14.10) applies to method members. This is because F# members must compile to CLI 

methods, which accept only a single fixed collection of arguments. 

8.13.4 Curried Method Members 

Methods that take multiple arguments may be written in iterated (“curried”) form. For example: 

static member StaticMethod2 s1 s2 =  



156 
 

    sprintf "In StaticMethod(%s,%s)" s1 s2 

The rules of arity analysis (§14.10) determine the compiled form of these members. 

The following limitations apply to curried method members: 

• Additional argument groups may not include optional or byref parameters. 

• When the member is called, additional argument groups may not use named 

arguments(§8.13.5). 

• Curried members may not be overloaded. 
 

The compiled representation of a curried method member is a .NET method in which the arguments 

are concatenated into a single argument group. 

Note: It is recommended that curried argument members do not appear in the public 

API of an F# assembly that is designed for use from other .NET languages. Information 

about the currying order is not visible to these languages.  

8.13.5 Named Arguments to Method Members 

Calls to methods—but not to let-bound functions or function values—may use named arguments. 

For example: 

System.Console.WriteLine(format = "Hello {0}", arg0 = "World") 

System.Console.WriteLine("Hello {0}", arg0 = "World") 

System.Console.WriteLine(arg0 = "World", format = "Hello {0}") 

The argument names that are associated with a method declaration are derived from the names 

that appear in the first pattern of a member definition, or from the names used in the signature for a 

method member. For example: 

type C() =  
    member x.Swap(first, second) = (second, first) 
 
let c = C() 
c.Swap(first = 1,second = 2)  // result is '(2,1)' 
c.Swap(second = 1,first = 2)  // result is '(1,2)' 

Named arguments may be used only with the arguments that correspond to the arity of the 

member. That is, because members have an arity only up to the first set of tupled arguments, named 

arguments may not be used with subsequent curried arguments of the member. 

The resolution of calls that use named arguments is specified in Method Application Resolution (see 

§14.4). The rules in that section describe how resolution matches a named argument with either a 

formal parameter of the same name or a “settable” return property of the same name. For example, 

the following code resolves the named argument to a settable property: 

System.Windows.Forms.Form(Text = "Hello World") 

If an ambiguity exists, assigning the named argument is assigned to a formal parameter rather than 

to a settable return property. 

The Method Application Resolution (§14.4) rules ensure that: 



157 
 

• Named arguments must appear after all other arguments, including optional arguments that 

are matched by position. 

 

After named arguments have been assigned, the remaining required arguments are called the 

required unnamed arguments. The required unnamed arguments must precede the named 

arguments in the argument list. The n unnamed arguments are matched to the first n formal 

parameters; the subsequent named arguments must include only the remaining formal parameters. 

In addition, the arguments must appear in the correct sequence.  

For example, the following code is invalid: 

// error: unnamed args after named 

System.Console.WriteLine(arg0 = "World", "Hello {0}") 

Similarly, the following code is invalid: 

type Foo() =  

    static member M (arg1, arg2, arg3) = 1 

// error: arg1, arg3 not a prefix of the argument list 

Foo.M(1, 2, arg2 = 3)  

The following code is valid: 

type Foo() =  

    static member M (arg1, arg2, arg3) = 1 

 

Foo.M (1, 2, arg3 = 3)  

The names of arguments to members may be listed in member signatures. For example, in a 

signature file: 

type C =  

    static member ThreeArgs : arg1:int * arg2:int * arg3:int -> int 

    abstract TwoArgs : arg1:int * arg2:int -> int 

8.13.6 Optional Arguments to Method Members 

Method members—but not functions definitions—may have optional arguments. Optional 

arguments must appear at the end of the argument list. An optional argument is marked with a ? 

before its name in the method declaration. Inside the member, the argument has type 

option<argType>.  

The following example declares a method member that has two optional arguments: 

let defaultArg x y = match x with None -> y | Some v -> v 

 

type T() =  

    static member OneNormalTwoOptional (arg1, ?arg2, ?arg3) =  

        let arg2 = defaultArg arg2 3 

        let arg3 = defaultArg arg3 10 

        arg1 + arg2 + arg3 

Optional arguments may be used in interface and abstract members. In a signature, optional 

arguments appear as follows: 



158 
 

static member OneNormalTwoOptional : arg1:int * ?arg2:int * ?arg3:int -> int 

Callers may specify values for optional arguments in the following ways: 

• By name, such as arg2 = 1.  

• By propagating an existing optional value by name, such as ?arg2=None or ?arg2=Some(3) or 

?arg2=arg2. This can be useful when building a method that passes optional arguments on to 

another method. 

• By using normal, unnamed arguments that are matched by position. 
  

For example: 

T.OneNormalTwoOptional(3) 

T.OneNormalTwoOptional(3, 2) 

T.OneNormalTwoOptional(arg1 = 3) 

T.OneNormalTwoOptional(arg1 = 3, arg2 = 1) 

T.OneNormalTwoOptional(arg2 = 3, arg1 = 0) 

T.OneNormalTwoOptional(arg2 = 3, arg1 = 0, arg3 = 11) 

T.OneNormalTwoOptional(0, 3, 11) 

T.OneNormalTwoOptional(0, 3, arg3 = 11) 

T.OneNormalTwoOptional(arg1 = 3, ?arg2 = Some 1) 

T.OneNormalTwoOptional(arg2 = 3, arg1 = 0, arg3 = 11) 

T.OneNormalTwoOptional(?arg2 = Some 3, arg1 = 0, arg3 = 11) 

T.OneNormalTwoOptional(0, 3, ?arg3 = Some 11) 

The resolution of calls that use optional arguments is specified in Method Application Resolution (see 

§14.4). 

Optional arguments may not be used in member constraints.  

Note: Imported CLI metadata may specify arguments as optional and may additionally 

specify a default value for the argument. These are treated as F# optional arguments. CLI 

optional arguments can propagate an existing optional value by name; for example, 

?ValueTitle = Some (…). 

For example, here is a fragment of a call to a Microsoft Excel COM automation API that 

uses named and optional arguments. 

chartobject.Chart.ChartWizard(Source = range5, 
                              Gallery = XlChartType.xl3DColumn, 
                              PlotBy = XlRowCol.xlRows, 
                              HasLegend = true, 
                              Title = "Sample Chart", 
                              CategoryTitle = "Sample Category Type", 
                              ValueTitle = "Sample Value Type")  

CLI optional arguments are not passed as values of type Option<_>. If the optional 

argument is present, its value is passed. If the optional argument is omitted, the default 

value from the CLI metadata is supplied instead. The value 

System.Reflection.Missing.Value is supplied for any CLI optional arguments of type 

System.Object that do not have a corresponding CLI default value, and the default (zero-

bit pattern) value is supplied for other CLI optional arguments of other types that have 

no default value. 



159 
 

The compiled representation of members varies as additional optional arguments are added. The 

addition of optional arguments to a member signature results in a compiled form that is not binary-

compatible with the previous compiled form. 

Marking an argument as optional is equivalent to adding the FSharp.Core.OptionalArgument 

attribute (§17.1) to a required argument. This attribute is added implicitly for optional arguments. 

Adding the [<OptionalArgument>] attribute to a parameter of type 'a option in a virtual method 

signature is equivalent to using the (?x:'a) syntax in a method definition. If the attribute is applied 

to an argument of a method, it should also be applied to all subsequent arguments of the method. 

Otherwise, it has no effect and callers must provide all of the arguments. 

8.13.7 Type-directed Conversions at Member Invocations 

As described in Method Application Resolution (see §14.4), three type-directed conversions  are 

applied at method invocations. 

8.13.7.1 Conversion to Delegates 

The first type-directed conversion converts anonymous function expressions and other function-

valued arguments to delegate types. Given: 

• A formal parameter of delegate type D 

• An actual argument farg of known type ty1 -> ... -> tyn -> rty 

• Precisely n arguments to the Invoke method of delegate type D  
 

Then: 

• The parameter is interpreted as if it were written:  

new D(fun arg1 ... argn -> farg arg1 ... argn) 

 

If the type of the formal parameter is a variable type, then F# uses the known inferred type of the 

argument including instantiations to determine whether a formal parameter has delegate type. For 

example, if an explicit type instantiation is given that instantiates a generic type parameter to a 

delegate type, the following conversion can apply: 

type GenericClass<'T>() =  

    static member M(arg: 'T) = () 

 

GenericClass<System.Action>.M(fun () -> ())  // allowed 

8.13.7.2 Conversion to Reference Cells 

The second type-directed conversion enables an F# reference cell to be passed where a byref<ty> is 

expected. Given:  

• A formal out parameter of type byref<ty> 

• An actual argument that is not a byref type 
 

Then:  

• The actual parameter is interpreted as if it had type ref<ty>.  
 



160 
 

For example: 

type C() =  

    static member M1(arg: System.Action) = () 

    static member M2(arg: byref<int>) = () 

 

C.M1(fun () -> ())                  // allowed 

let f = (fun () -> ()) in C.M1(f)   // not allowed 

 

let result = ref 0 

C.M2(result)   // allowed 

Note: These type-directed conversions are primarily for interoperability with existing 

member-based .NET libraries and do not apply at invocations of functions defined in 

modules or bound locally in expressions. 

A value of type ref<ty> may be passed to a function that accepts a byref parameter. The interior 

address of the heap-allocated cell that is associated with such a parameter is passed as the pointer 

argument. 

For example, consider the following C# code: 

public class C 

{ 

    static public void IntegerOutParam(out int x) { x = 3; } 

} 

public class D 

{ 

    virtual public void IntegerOutParam(out int x) { x = 3; } 

} 

 

This C# code can be called by the following F# code: 

let res1 = ref 0  

C.IntegerOutParam(res1) 

// res1.contents now equals 3 

 

Likewise, the abstract signature can be implemented as follows: 

let x = {new D() with IntegerOutParam(res : byref<int>) = res <- 4}  

let res2 = ref 0  

x.IntegerOutParam(res2); 

// res2.contents now equals 4 

8.13.7.3 Conversion to Quotation Values 

The third type-directed conversion enables an F# expression to be implicitly quoted at a member 

call. 

Conversion to a quotation value is driven by the ReflectedDefinition attribute to a method argument 

of type FSharp.Quotations.Expr<_>: 

static member Plot([<ReflectedDefinition>] values:Expr<int>) = (...) 

The intention is that this gives an implicit quotation from X --> <@ X @> at the callsite. So for 

Chart.Plot(f x + f y) 



161 
 

the caller becomes: 

Chart.Plot(<@ f x + f y @>) 

Additionally, the method can declare that it wants both the quotation and the evaluation of the 

expression, by giving "true" as the "includeValue" argument of the ReflectedDefinitionAttribute. 

static member Plot([<ReflectedDefinition(true)>] values:Expr<X>) = (...) 

So for 

Chart.Plot(f x + f y) 

the caller becomes: 

Chart.Plot(Expr.WithValue(f x + f y, <@ f x + f y @>)) 

and the quotation value Q received by Chart.Plot matches: 

match Q with  

| Expr.WithValue(v, ty) --> // v = f x + f y 

| … 

Methods with ReflectedDefinition arguments may be used as first class values 

(including pipelined uses), but it will not normally be useful to use them in this way. This 

is because, in the above example, a first-class use of the method Chart.Plot is 

considered shorthand for (fun x -> C.Plot(x)) for some compiler-generated local 

name “x”, which will become (fun x -> C.Plot( <@ x @> )), so the implicit quotation 

will just be a local value substitution. This means a pipelines use expr |> C.Plot will not 

capture a full quotation for expr, but rather just its value. 

The same applies to auto conversions for LINQ expressions: if you pipeline a method 

accepting Expression arguments. This is an intrinsic cost of having an auto-quotation 

meta-programming facility. All uses of auto-quotation need careful use API designers. 

Auto-quotation of arguments only applies at method calls, and not function calls.  

The conversion only applies if the called-argument-type is type Expr for some type T, and 

if the caller-argument type is not of the form Expr for any U. 

The caller-argument-type is determined as normal, with the addition that a caller 

argument of the form <@ … @> is always considered to have a type of the form Expr<>, 

in the same way that caller arguments of the form (fun x -> …) are always assumed to 

have type of the form `` -> _`` (i.e. a function type) 

 

8.13.7.4 Conversion to LINQ Expressions 

The third type-directed conversion enables an F# expression to be implicitly converted to a LINQ 

expression at a method call. Conversion is driven by an argument of type 

System.Linq.Expressions.Expression. 

static member Plot(values:Expression<Func<int,int>>) = (...) 



162 
 

This attribute results in an implicit quotation from X --> <@ X @> at the callsite and a call for a 

helper function. So for 

Chart.Plot(f x + f y) 

the caller becomes: 

Chart.Plot(FSharp.Linq.RuntimeHelpers.LeafExpressionConverter. 

QuotationToLambdaExpression <@ f x + f y @>) 

8.13.8 Overloading of Methods  

Multiple methods that have the same name may appear in the same type definition or extension. 

For example: 

type MyForm() =  

    inherit System.Windows.Forms.Form() 

 

    member x.ChangeText(text: string) =  

        x.Text <- text 

 

    member x.ChangeText(text: string, reason: string) =  

        x.Text <- text 

        System.Windows.Forms.MessageBox.Show ("changing text due to " + reason) 

Methods must be distinct based on their name and fully inferred types, after erasure of type 

abbreviations and unit-of-measure annotations.  

Methods that take curried arguments may not be overloaded. 

8.13.9 Naming Restrictions for Members 

A member in a record type may not have the same name as a record field in that type. 

A member may not have the same name and signature as another method in the type. This check 

ignores return types except for members that are named op_Implicit or op_Explicit. 

8.13.10 Members Represented as Events 

Events are the CLI notion of a “listening point”—that is, a configurable object that holds a set of 

callbacks, which can be triggered, often by some external action such as a mouse click or timer tick. 

In F#, events are first-class values; that is, they are objects that mediate the addition and removal of 

listeners from a backing list of listeners. The F# library supports the type 

FSharp.Control.IEvent<_,_> and the module FSharp.Control.Event, which contains operations to 

map, fold, create, and compose events. The type is defined as follows: 

type IDelegateEvent<'del when 'del :> System.Delegate > = 
    abstract AddHandler : 'del -> unit 
    abstract RemoveHandler : 'del -> unit  
 
type IEvent<'Del,'T when 'Del : delegate<'T,unit> and 'del :> System.Delegate > = 
    abstract Add : event : ('T -> unit) -> unit 
    inherit IDelegateEvent<'del> 
 
type Handler<'T> =  delegate of sender : obj * 'T -> unit  



163 
 

 
type IEvent<'T> = IEvent<Handler<'T>, 'T> 

The following shows a sample use of events: 

open System.Windows.Forms 

 

type MyCanvas() =  

    inherit Form() 

    let event = new Event<PaintEventArgs>() 

    member x.Redraw = event.Publish 

    override x.OnPaint(args) = event.Trigger(args) 

 

let form = new MyCanvas() 

form.Redraw.Add(fun args -> printfn "OnRedraw") 

form.Activate() 

Application.Run(form) 

Events from CLI languages are revealed as object properties of type 

FSharp.Control.IEvent<tydelegate, tyargs>. The F# compiler determines the type arguments, which 

are derived from the CLI delegate type that is associated with the event. 

Event declarations are not built into the F# language, and event is not a keyword. However, property 

members that are marked with the CLIEvent attribute and whose type coerces to 

FSharp.Control.IDelegateEvent<tydelegate> are compiled to include extra CLI metadata and methods 

that mark the property name as a CLI event. For example, in the following code, the 

ChannelChanged property is currently compiled as a CLI event: 

type ChannelChangedHandler = delegate of obj * int -> unit 

 

type C() = 

    let channelChanged = new Event<ChannelChangedHandler,_>() 

    [<CLIEvent>] 

    member self.ChannelChanged = channelChanged.Publish 

Similarly, the following shows the definition and implementation of an abstract event: 

type I =  

    [<CLIEvent>]     

    abstract ChannelChanged : IEvent<ChannelChanged,int> 

 

type ImplI() =  

    let channelChanged = new Event<ChannelChanged,_>() 

    interface I with  

        [<CLIEvent>]  

        member self.ChannelChanged = channelChanged.Publish 

8.13.11 Members Represented as Static Members 

Most members are represented as their corresponding CLI method or property. However, in certain 

situations an instance member may be compiled as a static method. This happens when either of the 

following is true:  

• The type definition uses null as a representation by placing the 

CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue) attribute on 

the type that declares the member. 



164 
 

• The member is an extension member. 
 

Compilation of an instance member as a static method can affect the view of the type when seen 

from other languages or from System.Reflection. A member that might otherwise have a static 

representation can be reverted to an instance member representation by placing the attribute 

CompilationRepresentation(CompilationRepresentationFlags.Instance) on the member. 

For example, consider the following type: 

[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>] 

type option<'T> =  

    | None  

    | Some of 'T 

 

    member x.IsNone = match x with None -> true | _ -> false 

    member x.IsSome = match x with Some _ -> true | _ -> false 

 

    [<CompilationRepresentation(CompilationRepresentationFlags.Instance)>] 

    member x.Item =  

        match x with  

        | Some x -> x  

        | None -> failwith "Option.Item" 

The IsNone and IsSome properties are represented as CLI static methods. The Item property is 

represented as an instance property. 

8.14 Abstract Members and Interface Implementations  
Abstract member definitions and interface declarations in a type definition represent promises that 

an object will provide an implementation for a corresponding contract.  

8.14.1 Abstract Members  

An abstract member definition in a type definition represents a promise that an object will provide 

an implementation for a dispatch slot. For example: 

type IX = 

    abstract M : int -> int 

The abstract member M indicates that an object of type IX will implement a displatch slot for a 

member that returns an int.  

A class definition may contain abstract member definitions, but the definition must be labeled with 

the AbstractClass attribute: 

[<AbstractClass>] 

type X() = 

    abstract M : int -> int 

An abstract member definition has the form  

abstract accessopt member-sig  

where a member signature has one of the following forms 



165 
 

ident typar-defnsopt : curried-sig  

ident typar-defnsopt : curried-sig with get  

ident typar-defnsopt : curried-sig with set  

ident typar-defnsopt : curried-sig with get, set 

ident typar-defnsopt : curried-sig with set, get  

and the curried signature has the form 

args-spec1 -> ... -> args-specn -> type  

If n ≥ 2, then args-spec2 … args-specn must all be patterns without attribute or optional argument 

specifications.  

If get or set is specified, the abstract member is a property member. If both get and set are 

specified, the abstract member is equivalent to two abstract members, one with get and one with 

set. 

8.14.2 Members that Implement Abstract Members 

An implementation member has the form: 

override ident.ident pat1 ... patn = expr  

default ident.ident pat1 ... patn = expr  

Implementation members implement dispatch slots. For example: 

[<AbstractClass>] 

type BaseClass() = 

    abstract AbstractMethod : int -> int 

 

type SubClass(x: int) = 

    inherit BaseClass() 

    override obj.AbstractMethod n = n + x 

 

let v1  = BaseClass()              // not allowed – BaseClass is abstract 

let v2  = (SubClass(7) :> BaseClass)   

 

v2.AbstractMethod 6  // evaluates to 13 

In this example, BaseClass() declares the abstract slot AbstractMethod and the SubClass type 

supplies an implementation member obj.AbstractMethod, which takes an argument n and returns 

the sum of n and the argument that was passed in the instantiation of SubClass. The v2 object 

instantiates SubClass with the value 7, so v2.AbstractMethod 6 evaluates to 13. 

The combination of an abstract slot declaration and a default implementation of that slot create the 

F# equivalent of a “virtual” method in some other languages—that is, an abstract member that is 

guaranteed to have an implementation. For example: 

type BaseClass() = 

    abstract AbstractMethodWithDefaultImplementation : int -> int 

    default obj.AbstractMethodWithDefaultImplementation n = n 

 

type SubClass1(x: int) = 

    inherit BaseClass() 

    override obj.AbstractMethodWithDefaultImplementation n = n + x 

 



166 
 

type SubClass2() = 

    inherit BaseClass() 

 

let v1  = BaseClass()    // allowed -- BaseClass contains a default implementation 

let v2  = (SubClass1(7) :> BaseClass)   

let v3  = (SubClass2() :> BaseClass)   

 

v1.AbstractMethodWithDefaultImplementation 6  // evaluates to 6 

v2.AbstractMethodWithDefaultImplementation 6  // evaluates to 13 

v3.AbstractMethodWithDefaultImplementation 6  // evaluates to 6 

Here, the BaseClass type contains a default implementation, so F# allows the instantiation of v1. The 

instantiation of v2 is the same as in the previous example. The instantiation of v3 is similar to that of 

v1, because SubClass2 inherits directly from BaseClass and does not override the default method.  

Note: The keywords override and default are synonyms. However, it is recommended 

that default be used only when the implementation is in the same class as the 

corresponding abstract definition; override should be used in other cases. This records 

the intended role of the member implementation.  

Implementations may override methods from System.Object: 

type BaseClass() = 

    override obj.ToString() = "I'm an instance of BaseClass" 

 

type SubClass(x: int) = 

    inherit BaseClass() 

    override obj.ToString() = "I'm an instance of SubClass" 

In this example, BaseClass inherits from System.Object and overrides the ToString method from 

that class. The SubClass, in turn, inherits from BaseClass and overrides its version of the ToString 

method.  

Implementations may include abstract property members: 

[<AbstractClass>] 

type BaseClass() = 

    let mutable data1 = 0 

    let mutable data2 = 0 

    abstract AbstractProperty : int 

    abstract AbstractSettableProperty : int  with get, set 

 

    abstract AbstractPropertyWithDefaultImplementation : int  

    default obj.AbstractPropertyWithDefaultImplementation = 3 

 

    abstract AbstractSettablePropertyWithDefaultImplementation : int  with get, set 

    default obj.AbstractSettablePropertyWithDefaultImplementation 

        with get() = data2 

        and set v = data2 <- v 

 

type SubClass(x: int) = 

    inherit BaseClass() 

    let mutable data1b = 0 

    let mutable data2b = 0 

    override obj.AbstractProperty = 3 + x 

    override obj.AbstractSettableProperty  

        with get() = data1b  + x 



167 
 

        and set v = data1b <- v - x 

    override obj.AbstractPropertyWithDefaultImplementation = 6 + x 

    override obj.AbstractSettablePropertyWithDefaultImplementation  

        with get() = data2b  + x 

        and set v = data2b <- v - x 

The same rules apply to both property members and method members. In the preceding example, 

BaseClass includes abstract properties named AbstractProperty, AbstractSettableProperty, 

AbstractPropertyWithDefaultImplementation, and 

AbstractSettablePropertyWithDefaultImplementation and provides default implementations for the 

latter two. SubClass provides implementations for AbstractProperty and AbstractSettableProperty, 

and overrides the default implementations for AbstractPropertyWithDefaultImplementation and 

AbstractSettablePropertyWithDefaultImplementation. 

Implementation members may also implement CLI events (§8.13.10). In this case, the member 

should be marked with the CLIEvent attribute. For example: 

type ChannelChangedHandler = delegate of obj * int -> unit 

 

[<AbstractClass>] 

type BaseClass() = 

    [<CLIEvent>] 

    abstract ChannelChanged : IEvent<ChannelChangedHandler, int> 

 

type SubClass() =  

    inherit BaseClass() 

    let mutable channel = 7 

    let channelChanged = new Event<ChannelChangedHandler, int>() 

 

    [<CLIEvent>] 

    override self.ChannelChanged = channelChanged.Publish 

    member self.Channel  

        with get () = channel  

        and set v = channel <- v; channelChanged.Trigger(self, channel) 

BaseClass implements the CLI event IEvent, so the abstract member ChannelChanged is marked with 

[<CLIEvent>] as described earlier in §8.13.10. SubClass provides an implementation of the abstract 

member, so the [<CLIEvent>] attribute must also precede the override declaration in SubClass.  

8.14.3 Interface Implementations  

An interface implementation specifies how objects of a given type support a particular interface. An 

interface in a type definition indicates that objects of the defined type support the interface. For 

example: 

type IIncrement =  

    abstract M : int -> int 

 

type IDecrement =  

    abstract M : int -> int 

 

type C() =  

    interface IIncrement with  

        member x.M(n) = n + 1 

    interface IDecrement with  

        member x.M(n) = n - 1 



168 
 

The first two definitions in the example are implementations of the interfaces IIncrement and 

IDecrement. In the last definition,the type C supports these two interfaces. 

No type may implement multiple different instantiations of a generic interface, either directly or 

through inheritance. For example, the following is not permitted: 

// This type definition is not permitted because it implements two instantiations 

// of the same generic interface 

type ClassThatTriesToImplemenTwoInstantiations() =  

    interface System.IComparable<int> with  

        member x.CompareTo(n : int) = 0 

    interface System.IComparable<string> with  

        member x.CompareTo(n : string) = 1 

Each member of an interface implementation is checked as follows: 

• The member must be an instance member definition. 

• Dispatch Slot Inference (§14.7) is applied. 

• The member is checked under the assumption that the “this” variable has the enclosing type. 
 

In the following example, the value x has type C. 

type C() =  

    interface IIncrement with  

        member x.M(n) = n + 1 

    interface IDecrement with  

        member x.M(n) = n - 1 

All interface implementations are made explicit. In its first implementation, every interface must be 

completely implemented, even in an abstract class. However, interface implementations may be 

inherited from a base class. In particular, if a class C implements interface I, and a base class of C 

implements interface I, then C is not required to implement all the methods of I;it can implement 

all, some, or none of the methods instead. For example: 

type I1 =  

    abstract V1 : string  

    abstract V2 : string  

     

type I2 =  

    inherit I1  

    abstract V3 : string  

     

type C1() =  

    interface I1 with  

        member this.V1 = "C1"  

        member this.V2 = "C2"  

 

// This is OK 

type C2() =  

    inherit C1()  

 

// This is also OK; C3 implements I2 but not I1. 

type C3() =  

    inherit C1()  

    interface I2 with  

        member this.V3 = "C3" 



169 
 

 

// This is also OK; C4 implements one method in I1. 

type C4() =  

    inherit C1()  

    interface I1 with  

        member this.V2 = "C2b" 

8.15  Equality, Hashing, and Comparison  
Functional programming in F# frequently involves the use of structural equality, structural hashing, 

and structural comparison. For example, the following expression evaluates to true, because tuple 

types support structural equality: 

(1, 1 + 1) = (1, 2) 

Likewise, these two function calls return identical values: 

hash (1, 1 +1 ) 
hash (1,2) 

Similarly, an ordering on constituent parts of a tuple induces an ordering on tuples themselves, so all 

the following evaluate to true: 

(1, 2) < (1, 3) 
(1, 2) < (2, 3) 
(1, 2) < (2, 1) 
(1, 2) > (1, 0) 

The same applies to lists, options, arrays, and user-defined record, union, and struct types whose 

constituent field types permit structural equality, hashing, and comparison. For example, given: 

type R = R of int * int 

then all of the following also evaluate to true: 

R (1, 1 + 1) = R (1, 2) 

 

R (1, 3) <> R (1, 2) 

 

hash (R (1, 1 + 1)) = hash (R (1, 2)) 

 

R (1, 2) < R (1, 3) 

R (1, 2) < R (2, 3) 

R (1, 2) < R (2, 1) 

R (1, 2) > R (1, 0) 

To facilitate this, by default, record, union, and struct type definitions—called structural types—

implicitly include compiler-generated declarations for structural equality, hashing, and comparison. 

These implicit declarations consist of the following for structural equality and hashing: 

override x.GetHashCode() = ... 
override x.Equals(y:obj) = ... 
interface System.Collections.IStructuralEquatable with  
    member x.Equals(yobj: obj, comparer: System.Collections.IEqualityComparer) = ... 
    member x.GetHashCode(comparer: System.IEqualityComparer) = ... 



170 
 

The following declarations enable structural comparison: 

interface System.IComparable with    
    member x.CompareTo(y:obj) = ... 
interface System.Collections.IStructuralComparable with  
    member x.CompareTo(yobj: obj, comparer: System.Collections.IComparer) = ... 

For exception types, implicit declarations for structural equality and hashings are generated, but 

declarations for structural comparison are not generated. Implicit declarations are never generated 

for interface, delegate, class, or enum types. Enum types implicitly derive support for equality, 

hashing, and comparison through their underlying representation as integers. 

8.15.1 Equality Attributes  

Several attributes affect the equality behavior of types:  

FSharp.Core.NoEquality 

FSharp.Core.ReferenceEquality 

FSharp.Core.StructuralEquality 

FSharp.Core.CustomEquality 

The following table lists the effects of each attribute on a type:  

Attrribute Effect 
NoEquality ▪ No equality or hashing is generated for the type. 

▪ The type does not satisfy the ty : equality constraint. 
ReferenceEquality ▪ No equality or hashing is generated for the type.  

▪ The defaults for System.Object will implicitly be used. 
StructuralEquality ▪ The type must be a structural type. 

▪ All structural field types ty must satisfy ty : equality. 
CustomEquality ▪ The type must have an explicit implementation of 

override Equals(obj: obj) 

None ▪ For a non-structural type, the default is ReferenceEquality. 

▪ For a structural type: 
The default is NoEquality if any structural field type F fails F : equality.  
The default is StructuralEquality if all structural field types F satisfy 
F : equality. 

 

Equality inference also determines the constraint dependencies of a generic structural type. That is:  

• If a structural type has a generic parameter 'T and T : equality is necessary to make the type 

default to StructuralEquality, then the EqualityConditionalOn constraint dependency is 

inferred for 'T. 

8.15.2 Comparison Attributes  

The comparison behavior of types can be affected by the following attributes:  

FSharp.Core.NoComparison 

FSharp.Core.StructuralComparison 

FSharp.Core.CustomComparison 

The following table lists the effects of each attribute on a type. 

Attribute Effect 



171 
 

Attribute Effect 
NoComparison ▪ No comparisons are generated for the type. 

▪ The type does not satisfy the ty : comparison constraint. 
StructuralComparison ▪ The type must be a structural type other than an exception type. 

▪ All structural field types must ty satisfy ty : comparison. 

▪ An exception type may not have the StructuralComparison attribute. 
CustomComparison ▪ The type must have an explicit implementation of one or both of the following: 

interface System.IComparable 
interface System.Collections.IStructuralComparable 

▪ A structural type that has an explicit implementation of one or both of these 
contracts must specify the CustomComparison attribute. 

None ▪ For a non-structural or exception type, the default is NoComparison. 

▪ For any other structural type: 

The default is NoComparison if any structural field type F fails F : comparison.  

The default is StructuralComparison if all structural field types F satisfy 
F : comparison. 

 

This check also determines the constraint dependencies of a generic structural type. That is:  

• If a structural type has a generic parameter 'T and T : comparison is necessary to make the type 

default to StructuralComparison, then the ComparisonConditionalOn constraint dependency is 

inferred for 'T. 
 

For example: 

[<StructuralEquality; StructuralComparison>] 

type X = X of (int -> int) 

results in the following message: 

The struct, record or union type 'X' has the 'StructuralEquality' attribute  

but the component type '(int -> int)' does not satisfy the 'equality' constraint 

For example, given 

type R1 =  

    { myData : int } 

    static member Create() = { myData = 0 } 

 

[<ReferenceEquality>] 

type R2 =  

    { mutable myState : int } 

    static member Fresh() = { myState = 0 } 

 

[<StructuralEquality; NoComparison >] 

type R3 =  

    { someType : System.Type } 

    static member Make() = { someType = typeof<int> } 

then the following expressions all evaluate to true: 

R1.Create() = R1.Create() 

not (R2.Fresh() = R2.Fresh()) 

R3.Make() = R3.Make() 



172 
 

Combinations of equality and comparion attributes are restricted. If any of the following attributes 

are present, they may be used only in the following combinations: 

• No attributes 

• [<NoComparison>] on any type 

• [<NoEquality; NoComparison>] on any type 

• [<CustomEquality; NoComparison>] on a structural type 

• [<ReferenceEquality>] on a non-struct structural type 

• [<ReferenceEquality; NoComparison>] on a non-struct structural type 

• [<StructuralEquality; NoComparison>] on a structural type 

• [<CustomEquality; CustomComparison>] on a structural type 

• [<StructuralEquality; CustomComparison>] on a structural type 

• [<StructuralEquality; StructuralComparison>] on a structural type 

8.15.3 Behavior of the Generated Object.Equals Implementation 

For a type definition T, the behavior of the generated override x.Equals(y:obj) = ... 

implementation is as follows.  

1. If the interface System.IComparable has an explicit implementation, then just call 

System.IComparable.CompareTo: 

override x.Equals(y : obj) =  

     ((x :> System.IComparable).CompareTo(y) = 0) 

2. Otherwise:  

• Convert the y argument to type T. If the conversion fails, return false. 

• Return false if T is a reference type and y is null. 

• If T is a struct or record type, invoke FSharp.Core.Operators.(=) on each corresponding pair 

of fields of x and y in declaration order. This method stops at the first false result and 

returns false. 

• If T is a union type, invoke FSharp.Core.Operators.(=) first on the index of the union cases 

for the two values, then on each corresponding field pair of x and y for the data carried by 

the union case. This method stops at the first false result and returns false.  

• If T is an exception type, invoke FSharp.Core.Operators.(=) on the index of the tags for the 

two values, then on each corresponding field pair for the data carried by the exception. This 

method stops at the first false result and returns false. 

8.15.4 Behavior of the Generated CompareTo Implementations 

For a type T, the behavior of the generated System.IComparable.CompareTo implementation is as 

follows: 



173 
 

• Convert the y argument to type T . If the conversion fails, raise the InvalidCastException. 

• If T is a reference type and y is null, return 1. 

• If T is a struct or record type, invoke FSharp.Core.Operators.compare on each corresponding pair 

of fields of x and y in declaration order, and return the first non-zero result. 

• If T is a union type, invoke FSharp.Core.Operators.compare first on the index of the union cases 

for the two values, and then on each corresponding field pair of x and y for the data carried by 

the union case. Return the first non-zero result. 
 

The first few lines of this code can be written: 

interface System.IComparable with 

    member x.CompareTo(y:obj) = 

        let y = (obj :?> T) in  

        match obj with 

        | null -> 1 

        | _ -> ... 

8.15.5 Behavior of the Generated GetHashCode Implementations 

For a type T, the generated System.Object.GetHashCode() override implements a combination hash 

of the structural elements of a structural type. 

8.15.6 Behavior of Hash, =, and Compare 

The generated equality, hashing, and comparison declarations that are described in sections 8.15.3, 

8.15.4, and 8.15.5 use the hash, = and compare functions from the F# library. The behavior of these 

library functions is defined by the pseudocode later in this section. This code ensures: 

• Ordinal comparison for strings 

• Structural comparison for arrays 

• Natural ordering for native integers (which do not support System.IComparable) 

8.15.6.1 Pseudocode for FSharp.Core.Operators.compare 

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to 

(=), compare, and hash for all base types, and faster paths are used for comparing most 

arrays. 

open System   

 

/// Pseudo code for code implementation of generic comparison. 

let rec compare x y =  

    let xobj = box x 

    let yobj = box y 

    match xobj, yobj  with  

    | null, null -> 0 

    | null, _ -> -1 

    | _, null -> 1 

 

    // Use Ordinal comparison for strings 

    | (:? string as x),(:? string as y) ->  

        String.CompareOrdinal(x, y) 



174 
 

 

    // Special types not supporting IComparable 

    | (:? Array as arr1), (:? Array as arr2) -> 

        ... compare the arrays by rank, lengths and elements ... 

    | (:? nativeint as x),(:? nativeint as y) ->  

        ... compare the native integers x and y.... 

    | (:? unativeint as x),(:? unativeint as y) ->  

        ... compare the unsigned integers x and y.... 

 

    // Check for IComparable 

    | (:? IComparable as x),_ -> x.CompareTo(yobj) 

    | _,(:? IComparable as yc) -> -(sign(yc.CompareTo(xobj))) 

 

    // Otherwise raise a runtime error 

    | _ -> raise (new ArgumentException(...)) 

 

8.15.6.2 Pseudo code for FSharp.Core.Operators.(=) 

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to 

(=), compare, and hash for all base types, and faster paths are used for comparing most 

arrays  

open System  

 

/// Pseudo code for core implementation of generic equality. 

let rec (=) x y =  

      let xobj = box x 

      let yobj = box y 

      match xobj,yobj with  

       | null,null -> true 

       | null,_ -> false 

       | _,null -> false 

 

       // Special types not supporting IComparable 

       | (:? Array as arr1), (:? Array as arr2) ->  

            ... compare the arrays by rank, lengths and elements ... 

 

       // Ensure NaN semantics on recursive calls 

       | (:? float as f1), (:? float as f2) ->  

            ... IEEE equality on f1 and f2... 

       | (:? float32 as f1), (:? float32 as f2) ->  

            ... IEEE equality on f1 and f2... 

 

       // Otherwise use Object.Equals. This is reference equality 

       // for reference types unless an override is provided (implicitly 

       // or explicitly). 

       | _ -> xobj.Equals(yobj)



9. Units Of Measure 
F# supports static checking of units of measure. Units of measure, or measures for short, are like 

types in that they can appear as parameters to other types and values (as in float<kg>, vector<m/s>, 

add<m>), can contain variables (as in float<'U>), and are checked for consistency by the type-checker.  

However, measures differ from types in several important ways: 

• Measures play no role at runtime; in fact, they are erased.  

• Measures obey special rules of equivalence, so that N m can be interchanged with m N. 

• Measures are supported by special syntax. 
 

The syntax of constants (§4.3) is extended to support numeric constants with units of measure. The 

syntax of types is extended with measure type annotations. 

measure-literal-atom := 
    long-ident -- named measure e.g. kg 
    ( measure-literal-simp ) -- parenthesized measure, such as (N m) 
 
measure-literal-power := 
    measure-literal-atom 
    measure-literal-atom ^ int32 -- power of measure, such as m^3 
 
measure-literal-seq :=  
    measure-literal-power 
    measure-literal-power measure-literal-seq 
 
measure-literal-simp := 
    measure-literal-seq  -- implicit product, such as m s^-2 
    measure-literal-simp * measure-literal-simp -- product, such as m * s^3 
    measure-literal-simp / measure-literal-simp -- quotient, such as m/s^2 
    / measure-literal-simp -- reciprocal, such as /s 
    1 -- dimensionless 
 
measure-literal := 
    _ -- anonymous measure 
    measure-literal-simp  -- simple measure, such as N m 
 
const :=  
    ... 
    sbyte < measure-literal > -- 8-bit integer constant 
    int16 < measure-literal > -- 16-bit integer constant 
    int32 < measure-literal > -- 32-bit integer constant 
    int64 < measure-literal > -- 64-bit integer constant 
    ieee32 < measure-literal > -- single-precision float32 constant 
    ieee64 < measure-literal > -- double-precision float constant 
    decimal < measure-literal > -- decimal constant 
 
measure-atom := 
    typar   -- variable measure, such as 'U 
    long-ident   -- named measure, such as kg  
    ( measure-simp )  -- parenthesized measure, such as (N m) 
 
measure-power := 
    measure-atom 
    measure-atom ^ int32  -- power of measure, such as m^3 
 



176 
 

measure-seq := 
    measure-power 
    measure-power measure-seq 
 
measure-simp := 
    measure-seq   -- implicit product, such as 'U 'V^3 
    measure-simp * measure-simp -- product, such as 'U * 'V 
    measure-simp / measure-simp -- quotient, such as 'U / 'V 
    / measure-simp  -- reciprocal, such as /'U 
    1 -- dimensionless measure (no units) 
 
measure := 
    _   -- anonymous measure 
    measure-simp -- simple measure, such as 'U 'V 

Measure definitions use the special  Measure attribute on type definitions. Measure parameters use 

the syntax of generic parameters with the same special Measure attribute to parameterize types and 

members by units of measure. The primitive types sbyte, int16, int32, int64, float, float32, and 

decimal have non-parameterized (dimensionless) and parameterized versions.  

Here is a simple example: 

[<Measure>] type m   // base measure: meters 
[<Measure>] type s   // base measure: seconds 
[<Measure>] type sqm = m^2  // derived measure: square meters 
let areaOfTriangle (baseLength:float<m>, height:float<m>) : float<sqm> =  
    baseLength*height/2.0 
 
let distanceTravelled (speed:float<m/s>, time:float<s>) : float<m> = speed*time 

As with ordinary types, F# can infer that functions are generic in their units. For example, consider 

the following function definitions: 

let sqr (x:float<_>) = x*x 
 
let sumOfSquares x y = sqr x + sqr y 

The inferred types are: 

val sqr : float<'u> -> float<'u ^ 2> 
 
val sumOfSquares : float<'u> -> float<'u> -> float<'u ^ 2> 
 

Measures are type-like annotations such as kg or m/s or m^2. Their special syntax includes the use of * 

and / for product and quotient of measures, juxtaposition as shorthand for product, and ^ for 

integer powers.  

9.1 Measures 
Measures are built from:  

• Atomic measures from long identifiers such as SI.kg or MyUnits.feet. 

• Product measures, which are written measure measure (juxtaposition ) or measure * measure. 

• Quotient measures, which are written measure / measure. 



177 
 

• Integer powers of measures, which are written measure ^ int.  

• Dimensionless measures, which are written 1.  

• Variable measures, which are written 'u or 'U. Variable measures  can include anonymous 

measures _, which indicates that the compiler can infer the measure from the context. 

Dimensionless measures indicate “without units,” but are rarely needed, because non-

parameterized types such as float are aliases for the parameterized type with 1 as parameter, that 

is, float = float<1>. 

The precedence of operations involving measure is similar to that for floating-point expressions:  

• Products and quotients (* and /) have the same precedence, and associate to the left, but 

juxtaposition has higher syntactic precedence than both * and /. 

• Integer powers (^) have higher precedence than juxtaposition.  

• The / symbol can also be used as a unary reciprocal operator.  

9.2 Constants Annotated by Measures 
A floating-point constant can be annotated with its measure by specifying a literal measure in angle 

brackets following the constant.  

Measure annotations on constants may not include measure variables. 

Here are some examples of annotated constants: 

let earthGravity = 9.81f<m/s^2> 

let atmosphere = 101325.0<N m^-2> 

let zero = 0.0f<_> 

Constants that are annotated with units of measure are assigned a corresponding numeric type with 

the measure parameter that is specified in the annotation. In the example above, earthGravity is 

assigned the type float32<m/s^2>, atmosphere is assigned the type float<N/m^2> and zero is assigned 

the type float<'U>. 

9.3 Relations on Measures  
After measers are parsed and checked, they are maintained in the following normalized form: 

measure-int := 1 | long-ident | measure-par | measure-int measure-int | / measure-int 

Powers of measures are expanded. For example, kg^3 is equivalent to kg kg kg. 

Two measures are indistinguishable if they can be made equivalent by repeated application of the 

following rules: 

• Commutativity. measure-int1 measure-int2 is equivalent to measure-int2 measure-int1. 



178 
 

• Associativity. It does not matter what grouping is used for juxtaposition (product) of measures, 

so parentheses are not required. For example, kg m s can be split as the product of kg m and s, 

or as the product of kg and m s. 

• Identity. 1 measure-int is equivalent to measure-int. 

• Inverses. measure-int / measure-int is equivalent to 1. 

• Abbreviation. long-ident is equivalent to measure if  a measure abbreviation of the form 

[<Measure>] type long-ident = measure is currently in scope. 
 

Note that these are the laws of Abelian groups together with expansion of abbreviations. 

For example, kg m / s^2 is the same as m kg / s^2.  

For presentation purposes (for example, in error messages), measures are presented in the 

normalized form that appears at the beginning of this section, but with the following restrictions: 

• Powers are positive and greater than 1. This splits the measure into positive powers and 

negative powers, separated by /. 

• Atomic measures are ordered as follows: measure parameters first, ordered alphabetically, 

followed by measure identifiers, ordered alphabetically. 
 

For example, the measure expression m^1 kg s^-1 would be normalized to kg m / s. 

This normalized form provides a convenient way to check the equality of measures: given two 

measure expressions measure-int1 and measure-int2, reduce each to normalized form by using the 

rules of commutativity, associativity, identity, inverses and abbreviation, and then compare the 

syntax. 

To check the equality of two measures, abbreviations are expanded to compare their normalized 

forms. However, abbreviations are not expanded for presentation. For example, consider the 

following definitions: 

[<Measure>] type a 

[<Measure>] type b = a * a 

let x = 1<b> / 1<a> 

 

The inferred type is presented as int<b/a>, not int<a>. If a measure is equivalent to 1, however, abbreviations 

are expanded to cancel each other and are presented without units: 

 

let y = 1<b> / 1<a a> // val y : int = 1 

9.3.1 Constraint Solving 

The mechanism described in §14.5 is extended to support equational constraints between measure 

expressions. Such expressions arise from equations between parameterized types—that is, when 

type<tyarg11,..., tyarg1n> = type<tyarg21,..., tyarg2n> is reduced to a series of constraints 

tyarg1i = tyarg2i. For the arguments that are measures, rather than types, the rules listed in §9.3 

are applied to obtain primitive equations of the form 'U = measure-int where 'U is a measure 

variable and measure-int is a measure expression in internal form. The variable 'U is then replaced 

by measure-int wherever else it occurs. For example, the equation float<m^2/s^2> = float<'U^2> 



179 
 

would be reduced to the constraint m^2/s^2 = 'U^2, which would be further reduced to the primitive 

equation 'U = m/s.  

If constraints cannot be solved, a type error occurs. For example, the following expression 

fun (x : float<m^2>, y : float<s>) -> x + y 

would eventually)result in the constraint m^2 = s, which cannot be solved, indicating a type error. 

9.3.2 Generalization of Measure Variables 

Analogous to the process of generalization of type variables described in §14.6.7, a generalization 

procedure produces measure variables over which a value, function, or member can be generalized.  

9.4 Measure Definitions 
Measure definitions define new named units of measure by using the same syntax as for type 

definitions, with the addition of the Measure attribute. For example: 

[<Measure>] type kg 

[<Measure>] type m 

[<Measure>] type s 

[<Measure>] type N = kg / m s^2 

A primitive measure abbreviation defines a fresh, named measure that is distinct from other 

measures. Measure abbreviations, like type abbreviations, define new names for existing measures. 

Also like type abbreviations, repeatedly eliminating measure abbreviations in favor of their 

equivalent measures must not result in infinite measure expressions. For example, the following is 

not a valid measure definition because it results in the infinite squaring of X: 

[<Measure>] type X = X^2 

Measure definitions and abbreviations may not have type or measure parameters. 

9.5 Measure Parameter Definitions 
Measure parameter definitions can appear wherever ordinary type parameter definitions can (see 

§5.2.9). If an explicit parameter definition is used, the parameter name is prefixed by the special 

Measure attribute. For example: 

val sqr<[<Measure>] 'U> : float<'U> -> float<'U^2> 

 

type Vector<[<Measure>] 'U> =  

    { X: float<'U>;  

      Y: float<'U>;  

      Z: float<'U>} 

 

type Sphere<[<Measure>] 'U> =  

    { Center:Vector<'U>;  

      Radius:float<'U> } 

 



180 
 

type Disc<[<Measure>] 'U> =  

    { Center:Vector<'U>;  

      Radius:float<'U>;  

      Norm:Vector<1> } 

 

type SceneObject<[<Measure>] 'U> =  

    | Sphere of Sphere<'U>  

    | Disc of Disc<'U>  

Internally, the type checker distinguishes between type parameters and measure parameters by 

assigning one of two sorts (Type or Measure) to each parameter. This technique is used to check the 

actual arguments to types and other parameterized definitions. The type checker rejects ill-formed 

types such as float<int> and IEnumerable<m/s>. 

9.6 Measure Parameter Erasure 
In contrast to type parameters on generic types, measure parameters are not exposed in the 

metadata that the runtime interprets; instead, measures are erased. Erasure has several 

consequences: 

• Casting is with respect to erased types. 

• Method application resolution (see §14.4) is with respect to erased types. 

• Reflection is with respect to erased types. 

9.7 Type Definitions with Measures in the F# Core Library 
The F# core library defines the following types: 

type float<[<Measure>] 'U> 

type float32<[<Measure>] 'U> 

type decimal<[<Measure>] 'U> 

type int<[<Measure>] 'U> 

type sbyte<[<Measure>] 'U> 

type int16<[<Measure>] 'U> 

type int64<[<Measure>] 'U> 

Note: These definitions are called measure-annotated base types and are marked with 

the MeasureAnnotatedAbbreviation attribute in the implementation of the library. The 

MeasureAnnotatedAbbreviation attribute is not for use in user code and in future 

revisions of the language may result in a warning or error. 

These type definitions have the following special properties: 

• They extend System.ValueType. 

• They explicitly implement System.IFormattable, System.IComparable, System.IConvertible, and 

corresponding generic interfaces, instantiated at the given type—for example, 

System.IComparable<float<'u>> and System.IEquatable<float<'u>> (so that you can invoke, for 

example, CompareTo after an explicit upcast). 



181 
 

• As a result of erasure, their compiled form is the corresponding primitive type. 

• For the purposes of constraint solving and other logical operations on types, a type equivalence 

holds between the unparameterized primitive type and the corresponding measured type 

definition that is instantiated at <1>: 

sbyte = sbyte<1> 

int16 = int16<1> 

int32 = int32<1> 

int64 = int64<1> 

float = float<1> 

float32 = float32<1> 

decimal = decimal<1> 

• The measured type definitions sbyte, int16, int32, int64, float32, float, and decimal are 

assumed to have additional static members that have the measure types that are listed in the 

table. Note that N is any of these types, and F is either float32 or float. 

Member Measure Type 
Sqrt  F<'U^2> -> F<'U> 
Atan2  F<'U> -> F<'U> -> F<1> 
op_Addition  
op_Subtraction  
op_Modulus  

N<'U> -> N<'U> -> N<'U> 

op_Multiply N<'U> -> N<'V> -> N<'U 'V> 
op_Division N<'U> -> N<'V> -> N<'U/'V> 
Abs  
op_UnaryNegation  
op_UnaryPlus 

N<'U> -> N<'U> 

Sign N<'U> -> int 
 

This mechanism is used to support units of measure in the following math functions of the F# 
library:  
(+),(-), (*), (/),(%),(~+),(~-),abs, sign, atan2 and sqrt. 

9.8 Restrictions 
Measures can be used in range expressions but a properly measured step is required. For example, 

these are not allowed: 

[<Measure>] type s 

[1<s> .. 5<s>]  // error: The type 'int<s>' does not match the type 'int' 

[1<s> .. 1 .. 5<s>] // error: The type 'int<s>' does not match the type 'int' 

However, the following range expression is valid: 

[1<s> .. 1<s> .. 5<s>] // int<s> list = [1; 2; 3; 4; 5] 





10. Namespaces and Modules  
F# is primarily an expression-based language. However, F# source code units are made up of 

declarations, some of which can contain further declarations. Declarations are grouped using 

namespace declaration groups, type definitions, and module definitions. These also have 

corresponding forms in signatures. For example, a file may contain multiple namespace declaration 

groups, each of which defines types and modules, and the types and modules may contain member, 

function, and value definitions, which contain expressions. 

Declaration elements are processed in the context of an environment. The definition of the elements 

of an environment is found in §14.1. 

namespace-decl-group := 
    namespace long-ident module-elems -- elements within a namespace 
    namespace global module-elems  -- elements within no namespace 
 
module-defn :=  
    attributesopt module accessopt ident = module-defn-body 
 
module-defn-body :=  
    begin module-elemsopt end  
 
module-elem :=  
    module-function-or-value-defn   -- function or value definitions 
    type-defns     -- type definitions 
    exception-defn      -- exception definitions 
    module-defn            -- module definitions 
    module-abbrev   -- module abbreviations 
    import-decl   -- import declarations 
    compiler-directive-decl  -- compiler directives 
 
module-function-or-value-defn := 
    attributesopt let function-defn   
    attributesopt let value-defn   
    attributesopt let recopt function-or-value-defns  
    attributesopt do expr     
 
import-decl := open long-ident  
 
module-abbrev := module ident = long-ident 
 
compiler-directive-decl := # ident string ... string  
 
module-elems := module-elem ... module-elem 
 
access :=  
    private  
    internal  
    public  

10.1 Namespace Declaration Groups 
Modules and types in an F# program are organized into namespaces, which encompass the 

identifiers that are defined in the modules and types. New components may contribute entities to 



184 
 

existing namespaces. Each such contribution to a namespace is called a namespace declaration 

group.  

In the following example, the MyCompany.MyLibrary namespace contains Values and x: 

namespace MyCompany.MyLibrary 

 

    module Values1 = 

        let x = 1 

A namespace declaration group is the basic declaration unit within an F# implementation file and is 

of the form 

namespace long-ident 

 

    module-elems  

The long-ident must be fully qualified. Each such group contains a series of module and type 

definitions that contribute to the indicated namespace. An implementation file may contain multiple 

namespace declaration groups, as in this example: 

namespace MyCompany.MyOtherLibrary 

 

    type MyType() =  

      let x = 1 

        member v.P = x + 2 

 

    module MyInnerModule = 

        let myValue = 1 

 

namespace MyCompany.MyOtherLibrary.Collections 

 

    type MyCollection(x : int) =  

      member v.P = x 

Namespace declaration groups may not be nested. 

A namespace declaration group can contain type and module definitions, but not function or value 

definitions. For example: 

namespace MyCompany.MyLibrary 

 

   // A type definition in a namespace 

   type MyType() =         

      let x = 1 

       member v.P = x+2 

 

   // A module definition in a namespace 

   module MyInnerModule =  

        let myValue = 1 

 

   // The following is not allowed: value definitions are not allowed in namespaces 

   let addOne x = x + 1    

When a namespace declaration group N is checked in an environment env, the individual 

declarations are checked in order and an overall namespace declaration group signature Nsig is 



185 
 

inferred for the module. An entry for N is then added to the ModulesAndNamespaces table in the 

environment env (see §14.1.3). 

Like module declarations, namespace declaration groups are processed sequentially rather than 

simultaneously, so that later namespace declaration groups are not in scope when earlier ones are 

processed. This prevents invalid recursive definitions.  

In the following example, the declaration of x in Module1 generates an error because the 

Utilities.Part2 namespace is not in scope:  

namespace Utilities.Part1 

 

    module Module1 = 

        let x = Utilities.Part2.Module2.x + 1  // error (Part2 not yet declared) 

 

namespace Utilities.Part2 

 

    module Module2 =  

        let x = Utilities.Part1.Module1.x + 2 

Within a namespace declaration group, the namespace itself is implicitly opened if any preceding 

namespace declaration groups or referenced assemblies contribute to it. For example:  

namespace MyCompany.MyLibrary 

 

   module Values1 = 

      let x = 1 

 

namespace MyCompany.MyLibrary 

 

   // Here, the implicit open of MyCompany.MyLibrary brings Values1 into scope 

 

   module Values2 = 

      let x = Values1.x 

10.2 Module Definitions 
A module definition is a named collection of declarations such as values, types, and function values. 

Grouping code in modules helps keep related code together and helps avoid name conflicts in your 

program. For example: 

module MyModule =  

    let x = 1 

    type Foo = A | B 

    module MyNestedModule =  

        let f y = y + 1 

        type Bar = C | D 

When a module definition M is checked in an environment env0, the individual declarations are 

checked in order and an overall module signature Msig is inferred for the module. An entry for M is 

then added to the ModulesAndNamespaces table to environment env0 to form the new environment 

used for checking subsequent modules. 



186 
 

Like namespace declaration groups, module definitions are processed sequentially rather than 

simultaneously, so that later modules are not in scope when earlier ones are processed.  

module Part1 = 

 

   let x = Part2.StorageCache()  // error (Part2 not yet declared) 

 

module Part2 = 

 

   type StorageCache() =  

      member cache.Clear() = () 

No two types or modules may have identical names in the same namespace. The  

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] attribute adds the 

suffix Module to the name of a module to distinguish the module name from a type of a similar name.  

For example, this is frequently used when defining a type and a set of functions and values to 

manipulate values of this type.  

type Cat(kind: string) =  

   member x.Meow() = printfn "meow" 

   member x.Purr() = printfn "purr" 

   member x.Kind = kind 

 

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] 

module Cat = 

 

   let tabby = Cat "Tabby"  

   let purr (c:Cat) = c.Purr() 

   let purrTwice (c:Cat) = purr(); purr() 

 

Cat.tabby |> Cat.purr |> Cat.purrTwice 

10.2.1 Function and Value Definitions in Modules 

Function and value definitionsin modules  introduce named values and functions.  

  let recopt function-or-value-defn1 and ... and function-or-value-defnn  

The following example defines value x and functions id and fib: 

module M =  

    let x = 1 

    let id x = x 

    let rec fib x = if x <= 2 then 1 else fib (n - 1) + fib (n - 2) 

Function and value definitions in modules may declare explicit type variables and type constraints: 

    let pair<'T>(x : 'T) = (x, x) 

    let dispose<'T when 'T :> System.IDisposable>(x : 'T) = x.Dispose() 

    let convert<'T, 'U>(x) = unbox<'U>(box<'T>(x)) 

A value definition that has explicit type variables is called a type function (§10.2.3). 

Function and value definitions may specify attributes:  

    // A value definition with the System.Obsolete attribute 



187 
 

    [<System.Obsolete("Don't use this")>] 

    let oneTwoPair = (1, 2) 

 

    // A function definition with an attribute 

    [<System.Obsolete("Don't use this either")>] 

    let pear v = (v, v) 

By the use of pattern matching, a value definition can define more than one value . In such cases, 

the attributes apply to each value. 

    // A value definition that defines two values, each with an attribute 

    [<System.Obsolete("Don't use this")>] 

    let (a, b) = (1, 2) 

Values may be declared mutable: 

    // A value definition that defines a mutable value 

    let mutable count = 1 

    let freshName() = (count <- count + 1; count) 

Function and value definitions in modules are processed in the same way as function and value 

definitions in expressions (§14.6), with the following adjustments:  

• Each defined value may have an accessibility annotation (§10.5). By default, the accessibility 

annotation of a function or value definition in a module is public. 

• Each defined value is externally accessible if its accessibility annotation is public and it is not 

hidden by an explicit signature. Externally accessible values are guaranteed to have compiled CLI 

representations in compiled CLI binaries. 

• Each defined value can be used to satisfy the requirements of any signature for the module 

(§11.2). 

• Each defined value is subject to arity analysis (§14.10). 

• Values may have attributes, including the ThreadStatic or ContextStatic attribute. 

10.2.2 Literal Definitions in Modules 

Value definitions in modules may have the Literal attribute. This attribute causes the value to be 

compiled as a constant. For example:  

[<Literal>] 

let PI = 3.141592654 

Literal values may be used in custom attributes and pattern matching. For example: 

[<Literal>] 

let StartOfWeek = System.DayOfWeek.Monday 

 

[<MyAttribute(StartOfWeek)>] 

let feeling(day) =  

    match day with  

    | StartOfWeek -> "rough" 

    | _ -> "great"  

 

A value that has the Literal attribute is subject to the following restrictions: 



188 
 

• It may not be marked mutable or inline. 

• It may not also have the ThreadStatic or ContextStatic attributes. 

• The right-hand side expression must be a literal constant expression that is both a valid 

expression after checking, and is made up of either: 

• A simple constant expression, with the exception of (), native integer literals, unsigned native 

integer literals, byte array literals, BigInteger literals, and user-defined numeric literals. 

—OR— 

• A reference to another literal 

—OR— 

• A bitwise combination of literal constant expressions 

—OR— 

• A “+” concatenation of two literal constant expressions which are strings 

—OR— 

• “enum x” or “LanguagePrimitives.EnumOfValue x” where “x” is a literal constant expression.  

10.2.3 Type Function Definitions in Modules 

Value definitions within modules may have explicit generic parameters. For example, ‘T is a generic 

parameter to the value empty: 

let empty<'T> : (list<'T> * Set<'T>) = ([], Set.empty) 

A value that has explicit generic parameters but has arity [] (that is, no explicit function parameters) 

is called a type function. The following are some example type functions from the F# library: 

val typeof<'T> : System.Type 

val sizeof<'T> : int 

module Set = 

    val empty<'T> : Set<'T> 

module Map = 

    val empty<'Key,'Value> : Map<'Key,'Value> 

Type functions are rarely used in F# programming, although they are convenient in certain 

situations. Type functions are typically used for: 

• Pure functions that compute type-specific information based on the supplied type arguments. 

• Pure functions whose result is independent of inferred type arguments, such as empty sets and 

maps. 
 

Type functions receive special treatment during generalization (§14.6.7) and signature conformance 

(§11.2). They typically have either the RequiresExplicitTypeArguments attribute or the 

GeneralizableValue attribute. Type functions may not be defined inside types, expressions, or 

computation expressions. 



189 
 

In general, type functions should be used only for computations that do not have observable side 

effects. However, type functions may still perform computations. In this example, r is a type function 

that calculates the number of times it has been called 

    let mutable count = 1 

    let r<'T> = (count <- count + 1); ref ([] : 'T list);; 

    // count = 1 

    let x1 = r<int> 

    // count = 2 

    let x2 = r<int> 

    // count = 3 

    let z0 =  x1 

    // count = 3 

The elaborated form of a type function is that of a function definition that takes one argument of 

type unit. That is, the elaborated form of 

let ident typar-defns  = expr 

is the same as the compiled form for the following declaration: 

let ident typar-defns () = expr 

References to type functions are elaborated to invocations of such a function. 

10.2.4 Active Pattern Definitions in Modules 

A value definition within a module that has an active-pattern-op-name  introduces pattern-matching 

tags into the environment when the module is accessed or opened. For example,  

let (|A|B|C|) x = if x < 0 then A elif x = 0 then B else C 

introduces pattern tags A, B, and C into the PatItems table in the name resolution environment. 

10.2.5 “do” statements in Modules 

A “do” statement within a module has the following form: 

do expr 

The expression expr is checked with an arbitrary initial type ty. After checking expr, ty is asserted to 

be equal to unit. If the assertion fails, a warning rather than an error is reported. This warning is 

suppressed for plain expressions without do in script files (that is, .fsx and .fsscript files). 

A “do” statement may have attributes. In this example, the STAThread attribute specifies that main 

uses the single-threaded apartment (STA) threading model of COM: 

let main() = 

    let form = new System.Windows.Forms.Form() 

    System.Windows.Forms.Application.Run(form) 

 

[<STAThread>] 

do main() 



190 
 

10.3 Import Declarations 
Namespace declaration groups and module definitions can include import declarations in the 

following form: 

open long-ident  

Import declarations make elements of other namespace declaration groups and modules accessible 

by the use of unqualified names. For example: 

open FSharp.Collections 

open System 

Import declarations can be used in: 

• Module definitions and their signatures. 

• Namespace declaration groups and their signatures. 
 

An import declaration is processed by first resolving the long-ident to one or more namespace 

declaration groups and/or modules [F1, ..., Fn] by Name Resolution in Module and Namespace Paths 

(§14.1.2). For example, System.Collections.Generic may resolve to one or more namespace 

declaration groups—one for each assembly that contributes a namespace declaration group in the 

current environment. Next, each Fi is added to the environment successively by using the technique 

specified in §14.1.3. An error occurs if any Fi is a module that has the RequireQualifiedAccess 

attribute. 

10.4 Module Abbreviations 
A module abbreviation defines a local name for a module long identifier, as follows:  

module ident = long-ident 

For example: 

module Ops = FSharp.Core.Operators 

Module abbreviations can be used in: 

• Module definitions and their signatures. 

• Namespace declaration groups and their signatures. 
 

Module abbreviations are implicitly private to the module or namespace declaration group in which 

they appear. 

A module abbreviation is processed by first resolving the long-ident to a list of modules by Name 

Resolution in Module and Namespace Paths (see §14.1). The list is then appended to the set of 

names that are associated with ident in the ModulesAndNamespaces table. 

Module abbreviations may not be used to abbreviate namespaces. 



191 
 

10.5 Accessibility Annotations  
Accessibilities may be specified on declaration elements in namespace declaration groups and 

modules, and on members in types. The table lists the accessibilities that can appear in user code: 

Accessibility Description 
public No restrictions on access. 
private Access is permitted only from the enclosing type, module, or namespace 

declaration group. 
internal Access is permitted only from within the enclosing assembly, or from 

assemblies whose name is listed using the InternalsVisibleTo attribute in 
the current assembly. 

 

The default accessibilities are public. Specifically: 

• Function definitions, value definitions, type definitions, and exception definitions in modules are 

public. 

• Modules, type definitions, and exception definitions in namespaces are public. 

• Members in type definitions are public. 
 

Some function and value definitions may not be given an accessibility and, by their nature, have 

restricted lexical scope. In particular: 

• Function and value definitions in classes are lexically available only within the class being 

defined, and only from the point of their definition onward. 

• Module type abbreviations are lexically available only within the module or namespace 

declaration group being defined, and only from their point of their definition onward. 
 

Note that: 

• private on a member means “private to the enclosing type or module.” 

• private on a function or value definition in a module means “private to the module or 

namespace declaration group.” 

• private on a type, module, or type representation in a module means “private to the module.” 
 

The CLI compiled form of all non-public entities is internal. 

Note: The family and protected specifications are not supported in this version of the F# 

language. 

Accessibility modifiers can appear only in the locations summarized in the following table.  

Component Location Example 

Function or value 
definition in module 

Precedes identifier let private x = 1 
let inline private f x = 1 
let mutable private x = 1 

Module definition Precedes identifier module private M =  
    let x = 1 

Type definition  Precedes identifier type private C = A | B 
type private C<'T> = A | B 

val definition in a class Precedes identifier val private x : int 

Explicit constructor  Precedes identifier private new () = { inherit Base } 



192 
 

Component Location Example 

Implicit constructor  Precedes identifier type C private() = ... 

Member definition Precedes identifier, but cannot 
appear on: 

▪ inherit definitions  

▪ interface definitions  

▪ abstract definitions  

▪ Individual union cases 

 

Accessibility for inherit, 
interface, and abstract 
definitions is always the same as 
that of the enclosing class. 

member private x.X = 1  

Explicit property get or set 
in a class 

Precedes identifier member __.Item  
    with private get i = 1 
    and  private set i v = () 

Type representation Precedes identifier type Cases =  
    private 
        | A 
        | B 



11. Namespace and Module 
Signatures 

A signature file contains one or more namespace or module signatures, and specifies the 

functionality that is implemented by its corresponding implementation file. It also can hide 

functionality that the corresponding implementation file contains.  

namespace-decl-group-signature := 
    namespace long-ident module-signature-elements   
 
module-signature =  
    module ident = module-signature-body  
 
module-signature-element :=  
    val mutableopt curried-sig -- value signature 
    val value-defn  -- literal value signature 
    type type-signatures  -- type(s) signature 
    exception exception-signature -- exception signature 
    module-signature  -- submodule signature 
    module-abbrev  -- local alias for a module 
    import-decl  -- locally import contents of a module 
 
module-signature-elements := module-signature-element ... module-signature-element 
 
module-signature-body =  
    begin module-signature-elements end  
 
type-signature := 
    abbrev-type-signature 
    record-type-signature 
    union-type-signature 
    anon-type-signature 
    class-type-signature 
    struct-type-signature 
    interface-type-signature 
    enum-type-signature 
    delegate-type-signature 
    type-extension-signature 
 
type-signatures := type-signature ... and ... type-signature  
 
type-signature-element := 
    attributesopt accessopt new : uncurried-sig -- constructor signature 
    attributesopt member  accessopt member-sig -- member signature 
    attributesopt abstract accessopt member-sig -- member signature 
    attributesopt override member-sig  -- member signature 
    attributesopt default member-sig                 -- member signature 
    attributesopt static member accessopt member-sig  -- static member signature 
    interface type    -- interface signature 
 
abbrev-type-signature := type-name '=' type  
 
union-type-signature := type-name '=' union-type-cases type-extension-elements-
signatureopt 
 
record-type-signature := type-name '=' '{' record-fields '}' type-extension-
elements-signatureopt  
 
anon-type-signature := type-name '=' begin type-elements-signature end 



194 
 

 
class-type-signature := type-name '=' class type-elements-signature end 
 
struct-type-signature := type-name '=' struct type-elements-signature end 
 
interface-type-signature := type-name '=' interface type-elements-signature end 
 
enum-type-signature := type-name '=' enum-type-cases 
 
delegate-type-signature :=  type-name '=' delegate-sig 
 
type-extension-signature := type-name type-extension-elements-signature 
 
type-extension-elements-signature := with type-elements-signature end 

The begin and end tokens are optional when lightweight syntax is used. 

Like module declarations, signature declarations are processed sequentially rather than 

simultaneously, so that later signature declarations are not in scope when earlier ones are 

processed.  

namespace Utilities.Part1 

 

    module Module1 =  

        val x : Utilities.Part2.StorageCache  // error (Part2 not yet declared) 

 

namespace Utilities.Part2 

 

   type StorageCache =  

      new : unit -> unit 

11.1 Signature Elements 
A namespace or module signature declares one or more value signatures and one or more type 

definition signatures. A type definition signature may include one or more member signatures, in 

addition to other elements of type definitions that are specified in the signature grammar at the 

start of this chapter. 

11.1.1 Value Signatures 

A value signature indicates that a value exists in the implementation. For example, in the signature 

of a module, the following declares two value signatures: 

module MyMap =  

    val mapForward : index1: int * index2: int -> string 

    val mapBackward : name: string -> (int * int) 

The corresponding implementation file might contain the following implementation: 

module MyMap =  

    let mapForward (index1:int, index2:int) = string index1 + "," + string index2 

    let mapBackward (name:string) = (0, 0) 



195 
 

11.1.2 Type Definition and Member Signatures 

A type definition signature indicates that a corresponding type definition appears in the 

implementation. For example, in an interface type, the following declares a type definition signature 

for Forward and Backward: 

type IMap =  

    interface  

        abstract Forward : index1: int * index2: int -> string 

        abstract Backward : name: string -> (int * int) 

    end 

A member signature indicates that a corresponding member appears on the corresponding type 

definition in the implementation. Member specifications must specify argument and return types, 

and can optionally specify names and attributes for parameters.  

For example, the following declares a type definition signature for a type with one constructor 

member, one property member Kind and one method member Purr: 

type Cat =  

    new : kind:string -> Cat 

    member Kind : string 

    member Purr : unit -> Cat 

The corresponding implementation file might contain the following implementation: 

type Cat(kind: string) =  

   member x.Meow() = printfn "meow" 

   member x.Purr() = printfn "purr" 

   member x.Kind = kind 

11.2 Signature Conformance 
Values, types, and members that are present in implementations can be omitted in signatures, with 

the following exceptions: 

• Type abbreviations may not be hidden by signatures. That is, a type abbreviation type T = ty in 

an implementation does not match type T (without an abbreviation) in a signature. 

• Any type that is represented as a record or union must reveal either all or none of its fields or 

cases, in the same order as that specified in the implementation. Types that are represented as 

classes may reveal some, all, or none of their fields in a signature. 

• Any type that is revealed to be an interface, or a type that is a class or struct with one or more 

constructors may not hide its inherit declaration, abstract dispatch slot declarations, or abstract 

interface declarations. 
 

Note: This section does not yet document all checks made by the F# 3.1 language 

implementation. 



196 
 

11.2.1 Signature Conformance for Functions and Values 

If both a signature and an implementation contain a function or value definition with a given name, 

the signature and implementation must conform as follows: 

• The declared accessibilities, inline, and mutable modifiers must be identical in both the 

signature and the implementation. 

• If either the signature or the implementation has the [<Literal>] attribute, both must have this 

attribute. Furthermore, the declared literal values must be identical. 

• The number of generic parameters—both inferred and explicit—must be identical. 

• The types and type constraints must be identical up to renaming of inferred and/or explicit 

generic parameters. For example, assume a signature is written “val head : seq<'T> -> 'T” and 

the compiler could infer the type “val head : seq<'a> -> 'a” from the implementation. These 

are considered identical up to renaming the generic parameters. 

• The arities must match, as described in the next section. 

11.2.1.1 Arity Conformance for Functions and Values 

Arities of functions and values must conform between implementation and signature. Arities of 

values are implicit in module signatures. A signature that contains the following results in the arity 

[A1...An] for F: 

val F : ty1,1 * ... * ty1,A1 -> ... -> tyn,1 * ... * tyn,An -> rty  

Arities in a signature must be equal to or shorter than the corresponding arities in an 

implementation, and the prefix must match. This means that F# makes a deliberate distinction 

between the following two signatures: 

val F: int -> int 

and 

val F: (int -> int) 

The parentheses indicate a top-level function, which might be a first-class computed expression that 

computes to a function value, rather than a compile-time function value.  

The first signature can be satisfied only by a true function; that is, the implementation must be a 

lambda value as in the following:  

let F x = x + 1 

Note: Because arity inference also permits right-hand-side function expressions, the 

implementation may currently also be: 

let F = fun x -> x + 1 

The second signature  

val F: (int -> int) 

can be satisfied by any value of the appropriate type. For example:  



197 
 

let f = 

    let myTable = new System.Collections.Generic.Dictionary<int,int>(4)  

    fun x -> 

        if myTable.ContainsKey x then  

            myTable.[x]  

        else 

            let res = x * x  

            myTable.[x] <- res 

            res 

—or— 

let f = fun x -> x + 1 

—or— 

// throw an exception as soon as the module initialization is triggered 

let f : int -> int = failwith "failure" 

For both the first and second signatures, you can still use the functions as first-class function values 

from client code—the parentheses simply act as a constraint on the implementation of the value.  

The reason for this interpretation of types in value and member signatures is that CLI 

interoperability requires that F# functions compile to methods, rather than to fields that are 

function values. Thus, signatures must contain enough information to reveal the desired arity of a 

method as it is revealed to other CLI programming languages.  

11.2.1.2 Signature Conformance for Type Functions 

If a value is a type function, then its corresponding value signature must have explicit type 

arguments. For example, the implementation 

let empty<'T> : list<'T> = printfn "hello"; [] 

conforms to this signature: 

val empty<'T> : list<'T> 

but not to this signature: 

val empty : list<'T> 

The reason for this rule is that the second signature indicates that the value is, by default, 

generalizable (§14.6.7). 

11.2.2 Signature Conformance for Members 

If both a signature and an implementation contain a member with a given name, the signature and 

implementation must conform as follows: 

• If one is an extension member, both must be extension members. 

• If one is a constructor, then both must be constructors. 

• If one is a property, then both must be properties. 



198 
 

• The types must be identical up to renaming of inferred or explicit type parameters (as for 

functions and values). 

• The static, abstract, and override qualifiers must match precisely. 

• Abstract members must be present in the signature if a representation is given for a type. 
 

Note: This section does not yet document all checks made by the F# 3.1 language 

implementation. 



12. Program Structure and 
Execution 

F# programs are made up of a collection of assemblies. F# assemblies are made up of static 

references to existing assemblies, called the referenced assemblies, and an interspersed sequence of 

signature (.fsi) files, implementation (.fs) files, script (.fsx or .fsscript) files, and interactively 

executed code fragments. 

implementation-file := 
    namespace-decl-group ... namespace-decl-group 
    named-module 
    anonynmous-module 
 
script-file := implementation-file  
    -- script file, additional directives allowed 
 
signature-file:=  
    namespace-decl-group-signature ... namespace-decl-group-signature 
    anonynmous-module-signature 
    named-module-signature 
 
named-module := 
    module long-ident module-elems   
 
anonymous-module :=  
    module-elems   
 
named-module-signature := 
    module long-ident module-signature-elements   
 
anonymous-module-signature :=  
    module-signature-elements 
 
script-fragment :=  
    module-elems -- interactively entered code fragment 

A sequence of implementation and signature files is checked as follows.  

1. Form an initial environment sig-env0 and impl-env0 by adding all assembly references to the 

environment in the order in which they are supplied to the compiler. This means that the 

following procedure is applied for each referenced assembly: 

• Add the top level types, modules, and namespaces to the environment. 

• For each AutoOpen attribute in the assembly, find the types, modules, and namespaces that 

the attribute references and add these to the environment. 
 

The resulting environment becomes the active environment for the first file to be processed. 

2. For each file: 

• If the ith file is a signature file file.fsi: 



200 
 

a. Check it against the current signature environment sig-envi-1, which generates the 

signature Sigfile for the current file.  

b. Add Sigfile to sig-envi-1 to produce sig-envi to make it available for use in later 

signature files.  
 

The processing of the signature file has no effect on the implementation environment, so 

impl-envi is identical to impl-envi-1. 

• If the file is an implementation file file.fs, check it against the environment impl-envi-1, 

which gives elaborated namespace declaration groups Implfile.  

a. If a corresponding signature Sigfile exists, check Implfile against Sigfile during this 

process (§11.2). Then add Sigfile to impl-envi-1 to produce impl-envi. This step makes 

the signature-constrained view of the implementation file available for use in later 

implementation files. The processing of the implementation file has no effect on the 

signature environment, so sig-envi is identical to sig-envi-1. 

b. If the implementation file has no signature file, add Implfile to both sig-envi-1 and impl-

envi-1, to produce sig-envi and impl-envi. This makes the contents of the 

implementation available for use in both later signature and implementation files. 
 

The signature file for a particular implementation must occur before the implementation file in the 

compilation order. For every signature file, a corresponding implementation file must occur after the 

file in the compilation order. Script files may not have signatures. 

12.1 Implementation Files 
Implementation files consist of one or more namespace declaration groups. For example: 

namespace MyCompany.MyOtherLibrary 

 

    type MyType() =  

      let x = 1 

      member v.P = x + 2 

 

   module MyInnerModule =  

        let myValue = 1 

 

namespace MyCompany. MyOtherLibrary.Collections 

 

    type MyCollection(x : int) =  

        member v.P = x 

An implementation file that begins with a module declaration defines a single namespace declaration 

group with one module. For example: 

module MyCompany.MyLibrary.MyModule 

 

let x = 1 

is equivalent to: 

namespace MyCompany.MyLibrary 



201 
 

 

module MyModule =  

    let x = 1 

The final identifier in the long-ident that follows the module keyword is interpreted as the module 

name, and the preceding identifiers are interpreted as the namespace. 

Anonymous implementation files do not have either a leading module or namespace declaration. Only 

the scripts and the last file within an implementation group for an executable image (.exe) may be 

anonymous. An anonymous implementation file contains module definitions that are implicitly 

placed in a module. The name of the module is generated from the name of the source file by 

capitalizing the first letter and removing the filename extensionIf the filename contains characters 

that are not valid in an F# identifier, the resulting module name is unusable and a warning occurs. 

Given an initial environment env0, an implementation file is checked as follows: 

• Create a new constraint solving context. 

• Check the namespace declaration groups in the file against the existing environment  envi-1 and 

incrementally add them to the environment (§10.1) to create a new environment envi. 

• Apply default solutions to any remaining type inference variables that include default 

constraints. The defaults are applied in the order that the type variables appear in the type-

annotated text of the checked namespace declaration groups. 

• Check the inferred signature of the implementation file against any required signature by using 

Signature Conformance (§11.2). The resulting signature of an implementation file is the required 

signature, if it is present; otherwise it is the inferred signature. 

• Report a “value restriction” error if the resulting signature of any item that is not a member, 

constructor, function, or type function contains any free inference type variables.  

• Choose solutions for any remaining type inference variables in the elaborated form of an 

expression. Process any remaining type variables in the elaborated form from  left-to-right to 

find  a minimal type solution that is consistent with constraints on the type variable. If no unique 

minimal solution exists for a type variable, report an error. 
 

The result of checking an implementation file is a set of elaborated namespace declaration groups. 

12.2 Signature Files 
Signature files specify the functionality that is implemented by a corresponding implementation file. 

Each signature file contains a sequence of namespace-decl-group-signature elements. The inclusion 

of a signature file in compilation implicitly applies that signature type to the contents of a 

corresponding implementation file. 

Anonymous signature files do not have either a leading module or namespace declaration. Anonymous 

signature files contain module-elems that are implicitly placed in a module. The name of the module 

is generated from the name of the source file by capitalizing the first letter and removing the 

filename extension. If the filename contains characters that are not valid in an F# identifier, the 

resulting module name is unusable and a warning occurs. 



202 
 

Given an initial environment env, a signature file is checked as follows: 

• Create a new constraint solving context. 

• Check each namespace-decl-group-signaturei in envi-1 and add the result to that environment to 

create a new environment envi. 
 

The result of checking a signature file is a set of elaborated namespace declaration group types. 

12.3 Script Files 
Script files have the.fsx or .fsscript filename extension. They are processed in the same way as 

files that have the .fs extension, with the following exceptions: 

• Side effects from all scripts are executed at program startup. 

• For script files, the namespace FSharp.Compiler.Interactive.Settings is opened by default. 

• F# Interactive references the assembly FSharp.Compiler.Interactive.Settings.dll by default, 

but the F# compiler does not. If the script uses the script helper fsi object, then the script 

should explicitly reference FSharp.Compiler.Interactive.Settings.dll. 
 

Script files may add to the set of referenced assemblies by using the #r directive (§12.312.4). 

Script files may add other signature, implementation, and script files to the list of sources by using 

the #load directive. Files are compiled in the same order that was passed to the compiler, except 

that each script is searched for #load directives and the loaded files are placed before the script, in 

the order they appear in the script. If a filename appears in more than one #load directive, the file is 

placed in the list only once, at the position it first appeared. 

Script files may have #nowarn directives, which disable a warning for the entire compilation. 

The F# compiler defines the COMPILED compilation symbol for input files that it has processed. F# 

Interactive defines the INTERACTIVE symbol. 

Script files may not have corresponding signature files. 

12.4 Compiler Directives 
Compiler directives are declarations in non-nested modules or namespace declaration groups in the 

following form: 

# id string ... string 

The lexical preprocessor directives #if, #else, #endif and #indent "off" are similar to compiler 

directives. For details on #if, #else, #endif, see §3.3. The #indent "off" directive is described in 

§19.4. 

The following directives are valid in all files: 



203 
 

Directive  Example Short Description  
#nowarn #nowarn "54" For signature (.fsi) files and implementation 

(.fs) files, turns off warnings within this lexical 
scope.  
For script (.fsx or .fsscript) files, turns off 
warnings globally. 

 

  



204 
 

The following directives are valid in script files: 

Directive  Example Short Description  
#r 
#reference 

#r "System.Core" 
#r @"Nunit.Core.dll" 
#r @"c:\NUnit\Nunit.Core.dll" 
#r "nunit.core, Version=2.2.2.0, 
Culture=neutral, 
PublicKeyToken=96d09a1eb7f44a77" 

References a DLL within this entire 
script. 

#I 
#Include 

#I @"c:\Projects\Libraries\Bin" Adds a path to the search paths for DLLs 
that are referenced within this entire 
script. 

#load #load "library.fs" 
#load "core.fsi" "core.fs" 

Loads a set of signature and 
implementation files into the script 
execution engine. 

#time #time 
#time "on" 
#time "off"  

Enables or disables the display of 
performance information, including 
elapsed real time, CPU time, and 
garbage collection information for each 
section of code that is interpreted and 
executed. 

#help #help Asks the script execution environment 
for help. 

#q 
#quit 

#q 
#quit 

Requests the script execution 
environment to halt execution and exit. 

12.5 Program Execution  
Execution of F# code occurs in the context of an executing CLI program into which one or more 

compiled F# assemblies or script fragments is loaded. During execution, the CLI program can use the 

functions, values, static members, and object constructors that the assemblies and script fragments 

define.  

12.5.1 Execution of Static Initializers 

Each implementation file, script file, and script fragment involves a static initializer. The execution of 

the static initializer is triggered as follows: 

• For executable (.exe) files that have an explicit entry point function, the static initializer for the 

last file that appears on the command line is forced immediately as the first action in the 

execution of the entry point function. 

• For executable files that have an implicit entry point, the static initializer for the last file that 

appears on the command line is the body of the implicit entry point function. 

• For scripts, F# Interactive executes the static initializer for each program fragment immediately. 

• For all other implementation files, the static initializer for the file is executed on first access of a 

value that has observable initialization according to the rules that follow, or first access to any 

member of any type in the file that has at least one “static let” or “static do” declaration.  
 



205 
 

At runtime, the static initializer evaluates, in order, the definitions in the file that have observable 

initialization according to the rules that follow. Definitions with observable initialization in nested 

modules and types are included in the static initializer for the overall file.  

All definitions have observable initialization except for the following definitions in modules: 

• Function definitions 

• Type function definitions 

• Literal definitions 

• Value definitions that are generalized to have one or more type variables 

• Non-mutable, non-thread-local values that are bound to an initialization constant expression, 

which is an expression whose elaborated form is one of the following: 

• A simple constant expression.  

• A null expression. 

• A use of the typeof<_> or sizeof<_> operator from FSharp.Core.Operators, or the 

defaultof<_> operator from FSharp.Core.Operators.Unchecked. 

• A let expression where the constituent expressions are initialization constant expressions. 

• A match expression where the input is an initialization constant expression, each case is a 

test against a constant, and each target is an initialization constant expression. 

• A use of one of the unary or binary operators =, <>, <, >, <=, >=, +, -, * , <<<, >>>, |||, &&&, ^^^, 

~~~, enum<_>, not, compare, prefix –, and prefix + from FSharp.Core.Operators on one or two 

arguments, respectively. The arguments themselves must be initialization constant

expressions, but cannot be operations on decimals or strings. Note that the operators are

unchecked for arithmetic operations, and that the operators % and / are not included

because their use can raise division-by-zero exceptions.

• A use of a [<Literal>] value.

• A use of a case from an enumeration type.

• A use of a null case from a union type.

• A use of a value that is defined in the same assembly and does not have observable

initialization, or the use of a value that is defined by a “let” or “match” expression within the

expression itself.

If the execution environment supports the concurrent execution of multiple threads of F# code, each

static initializer runs as a mutual exclusion region. The use of a mutual exclusion region ensures that

if another thread attempts to access a value that has observable initialization, that thread pauses

until static initialization is complete. A static initializer runs only once, on the first thread that

acquires entry to the mutual exclusion region.

206

Values that have observable initialization have implied CLI fields that are private to the assembly. If

such a field is accessed by using CLI reflection before the execution of the corresponding

initialization code, then the default value for the type of the field will be returned.

Within implementation files, generic types that have static value definitions receive a static initializer

for each generic instantiation. These initializers are executed immediately before the first

dereference of the static fields for the generic type, subject to any limitations present in the specific

CLI implementation in used. If the static initializer for the enclosing file is first triggered during

execution of the static initializer for a generic instantiation, references to static values definition in

the generic class evaluate to the default value.

For example, if external code accesses data in this example, the static initializer runs and the

program prints “hello”:

module LibraryModule

printfn "hello"

let data = new Dictionary<int,int>()

That is, the side effect of printing “hello” is guaranteed to be triggered by an access to the value

data.

If external code calls id or accesses size in the following example, the execution of the static

initializer is not yet triggered. However if external code calls f(),the execution of the static initializer

is triggered because the body refers to the value data, which has observable initialization.

module LibraryModule

printfn "hello"

let data = new Dictionary<int,int>()

let size = 3

let id x = x

let f() = data

All of the following represent definitions that do not have observable initialization because they are

initialization constant expressions.

let x = System.DayOfWeek.Friday

let x = 1.0

let x = "two"

let x = enum<System.DayOfWeek>(0)

let x = 1 + 1

let x : int list = []

let x : int option = None

let x = compare 1 1

let x = match true with true -> 1 | false -> 2

let x = true && true

let x = 42 >>> 2

let x = typeof<int>

let x = Unchecked.defaultof<int>

let x = Unchecked.defaultof<string>

let x = sizeof<int>

207

12.5.2 Explicit Entry Point

The last file that is specified in the compilation order for an executable file may contain an explicit

entry point. The entry point is indicated by annotating a function in a module with EntryPoint

attribute:

• The EntryPoint attribute applies only to a “let”-bound function in a module. The function cannot

be a member.

• This attribute can apply to only one function, and the function must be the last declaration in the

last file processed on the command line. The function may be in a nested module.

• The function is asserted to have type string[] -> int before type checking. If the assertion fails,

an error occurs.

• At runtime, the entry point is passed one argument at startup: an array that contains the same

entries as System.Environment.GetCommandLineArgs(), minus the first entry in that array.

The function becomes the entry point to the program. At startup, F# immediately forces execution

of the static initializer for the file in which the function is declared, and then evaluates the body of

the function.

13. Custom Attributes and
Reflection

CLI languages use metadata inspection and the System.Reflection libraries to make guarantees

about how compiled entities appear at runtime. They also allow entities to be attributed by static

data, and these attributes may be accessed and read by tools and running programs. This chapter

describes these mechanisms for F#.

Attributes are given by the following grammar:

attribute := attribute-target:opt object-construction

attribute-set := [< attribute ; ... ; attribute >]

attributes := attribute-set ... attribute-set

attribute-target :=
 assembly
 module
 return
 field
 property
 param
 type
 constructor
 event

13.1 Custom Attributes
CLI languages support the notion of custom attributes which can be added to most declarations.

These are added to the corresponding elaborated and compiled forms of the constructs to which

they apply.

Custom attributes can be applied only to certain target language constructs according to the

AttributeUsage attribute, which is found on the attribute class itself. An error occurs if an attribute is

attached to a language construct that does not allow that attribute.

Custom attributes are not permitted on function or value definitions in expressions or computation

expressions. Attributes on parameters are given as follows:

let foo([<SomeAttribute>] a) = a + 5

If present, the arguments to a custom attribute must be literal constant expressions, or arrays of the

same.

Custom attributes on return values are given as follows:

let foo a : [<SomeAttribute>] = a + 5

210

Custom attributes on primary constructors are given before the arguments and before any

accessibility annotation:

type Foo1 [<System.Obsolete("don't use me")>] () =

 member x.Bar() = 1

type Foo2 [<System.Obsolete("don't use me")>] private () =

 member x.Bar() = 1

Custom attributes are mapped to compiled CLI metadata as follows:

• Custom attributes map to the element that is specified by their target, if a target is given.

• A custom attribute on a type type is compiled to a custom attribute on the corresponding CLI

type definition, whose System.Type object is returned by typeof<type>.

• By default, a custom attribute on a record field F for a type T is compiled to a custom attribute

on the CLI property for the fieldthat is named F, unless the target of the attribute is field, in

which case it becomes a custom attribute on the underlying backing field for the CLI property

that is named _F.

• A custom attribute on a union case ABC for a type T is compiled to a custom attribute on a static

method on the CLI type definition T. This method is called:

• get_ABC if the union case takes no arguments

• ABC otherwise

• Custom attributes on arguments are propagated only for arguments of member definitions, and

not for “let”-bound function definitions.

• Custom attributes on generic parameters are not propagated.

Custom attributes that appear immediately preceding “do” statements in modules anywhere in an

assembly are attached to one of the following:

• The main entry point of the program.

• The compiled module.

• The compiled assembly.

Custom attributes are attached to the main entry point if it is valid for them to be attached to a

method according to the AttributeUsage attribute that is found on the attribute class itself, and

likewise for the assembly. If it is valid for the attribute to be attached to either the main method or

the assembly. the main method takes precedence.

For example, the STAThread attribute should be placed immediately before a top-level “do”

statement.

 let main() =

 let form = new System.Windows.Forms.Form()

 System.Windows.Forms.Application.Run(form)

 [<STAThread>]

 do main()

211

13.1.1 Custom Attributes and Signatures

During signature checking, custom attributes attached to items in F# signature files (.fsi files) are

combined with custom attributes on the corresponding element from the implementation file

according to the following algorithm:

• Start with lists AImpl and ASig containing the attributes in the implementation and signature, in

declaration order.

• Check each attribute in AImpl against the available attributes in ASig.

• If ASig contains an attribute that is an exact match after evaluating attribute arguments, then

ignore the attribute in the implementation, remove the attribute from ASig, and continue

checking;

• If ASig contains an attribute that has the same attribute type but is not an exact match, then

give a warning and ignore the attribute in the implementation;

• Otherwise, keep the attribute in the implementation.

The compiled element contains the compiled forms of the attributes from the signature and the

retained attributes from the implementation.

This means:

• When an implementation has an attribute X("abc") and the signature is missing the

attribute, then no warning is given and the attribute appears in the compiled assembly.

• When a signature has an attribute X("abc") and the implementation is missing the attribute,

then no warning is given, and the attribute appears in the compiled assembly.

• When an implementation has an attribute X("abc") and the signature has attribute

X("def"), then a warning is given, and only X("def") appears in the compiled assembly.

13.2 Reflected Forms of Declaration Elements
The typeof and typedefof F# library operators return a System.Type object for an F# type definition.

According to typical implementations of the CLI execution environment, the System.Type object in

turn can be used to access further information about the compiled form of F# member declarations.

If this operation is supported in a particular implementation of F#, then the following rules describe

which declaration elements have corresponding System.Reflection objects:

• All member declarations are present as corresponding methods, properties or events.

• Private and internal members and types are included.

• Type abbreviations are not given corresponding System.Type definitions.

In addition:

• F# modules are compiled to provide a corresponding compiled CLI type declaration and

System.Type object, although the System.Type object is not accessible by using the typeof

operator.

212

However:

• Internal and private function and value definitions are not guaranteed to be given corresponding

compiled CLI metadata definitions. They may be removed by optimization.

• Additional internal and private compiled type and member definitions may be present in the

compiled CLI assembly as necessary for the correct implementation of F# programs.

• The System.Reflection operations return results that are consistent with the erasure of F# type

abbreviations and F# unit-of-measure annotations.

• The definition of new units of measure results in corresponding compiled CLI type declarations

with an associated System.Type.

14. Inference Procedures

14.1 Name Resolution
The following sections describe how F# resolves names in various contexts.

14.1.1 Name Environments

Each point in the interpretation of an F# program is subject to an environment. The environment

encompasses:

• All referenced external DLLs (assemblies).

• ModulesAndNamespaces: a table that maps long-idents to a list of signatures. Each signature is

either a namespace declaration group signature or a module signature.

For example, System.Collections may map to one namespace declaration group signature for

each referenced assembly that contributes to the System.Collections namespace, and to a

module signature, if a module called System.Collections is declared or in a referenced

assembly.

If the program references multiple assemblies, the assemblies are added to the name resolution

environment in the order in which the references appear on the command line. The order is

important only if ambiguities occur in referencing the contents of assemblies—for example, if

two assemblies define the type MyNamespace.C.

• ExprItems: a table that maps names to the following items:

• A value

• A union case for use when constructing data

• An active pattern result tag for use when returning results from active patterns

• A type name for each class or struct type

• FieldLabels: a table that maps names to sets of field references for record types

• PatItems: a table that maps names to the following items:

• A union case, for use when pattern matching on data

• An active pattern case name, for use when specifying active patterns

• A literal definition

• Types: a table that maps names to type definitions. Two queries are supported on this table:

• Find a type by name alone. This query may return multiple types. For example, in the default

type-checking environment, the resolution of System.Tuple returns multiple tuple types.

214

• Find a type by name and generic arity n. This query returns at most one type. For example, in

the default type-checking environment, the resolution of System.Tuple with n = 2 returns a

single type.

• ExtensionsInScope: a table that maps type names to one or more member definitions

The dot notation is resolved during type checking by consulting these tables.

14.1.2 Name Resolution in Module and Namespace Paths

Given an input long-ident and environment env, Name Resolution in Module and Namespace Paths

computes the result of interpreting long-ident as a module or namespace. The procedure returns a

list of modules and namespace declaration groups.

Name Resolution in Module and Namespace Paths proceeds through the following steps:

1. Consult the ModulesAndNamespaces table to resolve the long-ident prefix to a list of modules

and namespace declaration group signatures.

2. If any identifiers remain unresolved, recursively consult the declared modules and sub-modules

of these namespace declaration groups.

3. Concatenate all the results.

If the long-ident starts with the special pseudo-identifier keyword global, the identifier is resolved

by consulting the ModulesAndNamespaces table and ignoring all open directives, including those

implied by AutoOpen attributes.

For example, if the environment contains two referenced DLLs, and each DLL has namespace

declaration groups for the namespaces System, System.Collections, and

System.Collections.Generic, Name Resolution in Module and Namespace Paths for

System.Collections returns the two namespace declaration groups named System.Collections, one

from each assembly.

14.1.3 Opening Modules and Namespace Declaration Groups

When a module or namespace declaration group F is opened, the compiler adds items to the name

environment as follows:

1. Add each exception label for each exception type definition (§8.11) in F to the ExprItems and

PatItems tables in the original order of declaration in F.

2. Add each type definition in the original order of declaration in F. Adding a type definition

involves the following procedure:

a. If the type is a class or struct type (or an abbreviation of such a type), add the type name to

the ExprItems table.

b. If the type definition is a record, add the record field labels to the FieldLabels table, unless

the type has the RequireQualifiedAccess attribute.

215

c. If the type is a union, add the union cases to the ExprItems and PatItems tables, unless the

type has the RequireQualifiedAccess attribute.

d. Add the type to the TypeNames table. If the type has a CLI-encoded generic name such as

List`1, add an entry under both List and List`1.

3. Add each value in the original order of declaration in F, as follows:

a. Add the value to the ExprItems table.

b. If any value is an active pattern, add the tags of that active pattern to the PatItems table

according to the original order of declaration.

c. If the value is a literal, add it to the PatItems table.

4. Add the member contents of each type extension in Fi to the ExtensionsInScope table according

to the original order of declaration in Fi.

5. Add each sub-module or sub-namespace declaration group in Fi to the ModulesAndNamespaces

table according to the original order of declaration in Fi.

6. Open any sub-modules that are marked with the FSharp.Core.AutoOpen attribute.

14.1.4 Name Resolution in Expressions

Given an input long-ident, environment env, and an optional count n of the number of subsequent

type arguments <_,...,_>, Name Resolution in Expressions computes a result that contains the

interpretation of the long-ident<_,...,_> prefix as a value or other expression item, and a residue

path rest.

How Name Resolution in Expressions proceeds depends on whether long-ident is a single identifier

or is composed of more than one identifier.

If long-ident is a single identifier ident:

1. Look up ident in the ExprItems table. Return the result and empty rest.

2. If ident does not appear in the ExprItems table, look it up in the Types table, with generic arity

that matches n if available. Return this type and empty rest.

3. If ident does not appear in either the ExprItems table or the Types table, fail.

If long-ident is composed of more than one identifier ident.rest, Name Resolution in Expressions

proceeds as follows:

1. If ident exists as a value in the ExprItems table, return the result, with rest as the residue.

2. If ident does not exist as a value in the ExprItems table, perform a backtracking search as

follows:

a. Consider each division of long-ident into [namespace-or-module-path].ident[.rest], in

which the namespace-or-module-path becomes successively longer.

216

b. For each such division, consider each module signature or namespace declaration group

signature F in the list that is produced by resolving namespace-or-module-path by using Name

Resolution in Module and Namespace Paths.

c. For each such F, attempt to resolve ident[.rest] in the following order. If any resolution

succeeds, then terminate the search:

1) A value in F. Return this item and rest.

2) A union case in F. Return this item and rest.

3) An exception constructor in F. Return this item and rest.

4) A type in F. If rest is empty, then return this type; if not, resolve using Name

Resolution for Members.

5) A [sub-]module in F. Recursively resolve rest against the contents of this module.

3. If steps 1 and 2 do not resolve long-ident, look up ident in the Types table.

a. If the generic arity n is available, then look for a type that matches both ident and n.

b. If no generic arity n is available, and rest is not empty:

1) If the Types table contains a type ident that does not have generic arguments,

resolve to this type.

2) If the Types table contains a unique type ident that has generic arguments, resolve

to this type. However, if the overall result of the Name Resolution in Expressions

operation is a member, and the generic arguments do not appear in either the

return or argument types of the item, warn that the generic arguments cannot be

inferred from the type of the item.

3) If neither of the preceding steps resolves the type, give an error.

c. If rest is empty, return the type, otherwise resolve using Name Resolution for Members.

4. If steps 1-3 do not resolve long-ident, look up ident in the ExprItems table and return the result

and residue rest.

5. Otherwise, if ident is a symbolic operator name, resolve to an item that indicates an implicitly

resolved symbolic operator.

6. Otherwise, fail.

If the expression contains ambiguities, Name Resolution in Expressions returns the first result that

the process generates. For example, consider the following cases:

217

module M =

 type C =

 | C of string

 | D of string

 member x.Prop1 = 3

 type Data =

 | C of string

 | E

 member x.Prop1 = 3

 member x.Prop2 = 3

 let C = 5

 open M

 let C = 4

 let D = 6

 let test1 = C // resolves to the value C

 let test2 = C.ToString() // resolves to the value C with residue ToString

 let test3 = M.C // resolves to the value M.C

 let test4 = M.Data.C // resolves to the union case M.Data.C

 let test5 = M.C.C // error: first part resolves to the value M.C,

 // and this contains no field or property "C"

 let test6 = C.Prop1 // error: the value C does not have a property Prop

 let test7 = M.E.Prop2 // resolves to M.E, and then a property lookup

The following example shows the resolution behavior for type lookups that are ambiguous by

generic arity:

module M =

 type C<'T>() =

 static member P = 1

 type C<'T,'U>() =

 static member P = 1

 let _ = new M.C() // gives an error

 let _ = new M.C<int>() // no error, resolves to C<'T>

 let _ = M.C() // gives an error

 let _ = M.C<int>() // no error, resolves to C<'T>

 let _ = M.C<int,int>() // no error, resolves to C<'T,'U>

 let _ = M.C<_>() // no error, resolves to C<'T>

 let _ = M.C<_,_>() // no error, resolves to C<'T,'U>

 let _ = M.C.P // gives an error

 let _ = M.C<_>.P // no error, resolves to C<'T>

 let _ = M.C<_,_>.P // no error, resolves to C<'T,'U>

218

The following example shows how the resolution behavior differs slightly if one of the types has no

generic arguments.

module M =

 type C() =

 static member P = 1

 type C<'T>() =

 static member P = 1

 let _ = new M.C() // no error, resolves to C

 let _ = new M.C<int>() // no error, resolves to C<'T>

 let _ = M.C() // no error, resolves to C

 let _ = M.C< >() // no error, resolves to C

 let _ = M.C<int>() // no error, resolves to C<'T>

 let _ = M.C< >() // no error, resolves to C

 let _ = M.C<_>() // no error, resolves to C<'T>

 let _ = M.C.P // no error, resolves to C

 let _ = M.C< >.P // no error, resolves to C

 let _ = M.C<_>.P // no error, resolves to C<'T>

In the following example, the procedure issues a warning for an incomplete type. In this case, the

type parameter 'T cannot be inferred from the use M.C.P, because 'T does not appear at all in the

type of the resolved element M.C<'T>.P.

module M =

 type C<'T>() =

 static member P = 1

 let _ = M.C.P // no error, resolves to C<'T>.P, warning given

The effect of these rules is to prefer value names over module names for single identifiers. For

example, consider this case:

let Foo = 1

module Foo =

 let ABC = 2

let x1 = Foo // evaluates to 1

The rules, however, prefer type names over value names for single identifiers, because type names

appear in the ExprItems table. For example, consider this case:

let Foo = 1

type Foo() =

 static member ABC = 2

let x1 = Foo.ABC // evaluates to 2

let x2 = Foo() // evaluates to a new Foo()

14.1.5 Name Resolution for Members

Name Resolution for Members is a sub-procedure used to resolve .member-ident[.rest] to a

member, in the context of a particular type type.

Name Resolution for Members proceeds through the following steps:

1. Search the hierarchy of the type from System.Object to type.

219

2. At each type, try to resolve member-ident to one of the following, in order:

a. A union case of type.

b. A property group of type.

c. A method group of type.

d. A field of type.

e. An event of type.

f. A property group of extension members of type, by consulting the ExtensionsInScope table.

g. A method group of extension members of type, by consulting the ExtensionsInScope table.

h. A nested type type-nested of type. Recursively resolve .rest if it is present, otherwise return

type-nested.

3. At any type, the existence of a property, event, field, or union case named member-ident causes

any methods or other entities of that same name from base types to be hidden.

4. Combine method groups with method groups from base types. For example:

type A() =

 member this.Foo(i : int) = 0

type B() =

 inherit A()

 member this.Foo(s : string) = 1

let b = new B()

b.Foo(1) // resolves to method in A

b.Foo("abc") // resolves to method in B

14.1.6 Name Resolution in Patterns

Name Resolution for Patterns is used to resolve long-ident in the context of pattern expressions.

The long-ident must resolve to a union case, exception label, literal value, or active pattern case

name. If it does not, the long-ident may represent a new variable definition in the pattern.

Name Resolution for Patterns follows the same steps to resolve the member-ident as Name

Resolution in Expressions (§14.1.4) except that it consults the PatItems table instead of the ExprItems

table. As a result, values are not present in the namespace that is used to resolve identifiers in

patterns. For example:

let C = 3

match 4 with

| C -> sprintf "matched, C = %d" C

| _ -> sprintf "no match, C = %d" C

results in "matched, C = 4", because C is not present in the PatItems table, and hence becomes a

value pattern. In contrast,

220

[<Literal>]

let C = 3

match 4 with

| C -> sprintf "matched, C = %d" C

| _ -> sprintf "no match, C = %d" C

results in "no match, C = 3", because C is a literal and therefore is present in the PatItems table.

14.1.7 Name Resolution for Types

Name Resolution for Types is used to resolve long-ident in the context of a syntactic type. A generic

arity that matches n is always available. The result is a type definition and a possible residue rest.

Name Resolution for Types proceeds through the following steps:

1. Given ident[.rest], look up ident in the Types table, with generic arity n. Return the result and

residue rest.

2. If ident is not present in the Types table:

a. Divide long-ident into [namespace-or-module-path].ident[.rest], in which the namespace-

or-module-path becomes successively longer.

b. For each such division, consider each module and namespace declaration group F in the list

that results from resolving namespace-or-module-path by using Name Resolution in Module

and Namespace Paths (§14.1.2).

c. For each such F, attempt to resolve ident[.rest] in the following order. Terminate the

search when the expression is successfully resolved.

1) A type in F. Return this type and residue rest.

2) A [sub-]module in F. Recursively resolve rest against the contents of this module.

In the following example, the name C on the last line resolves to the named type M.C<_,_> because C

is applied to two type arguments:

module M =

 type C<'T, 'U> = 'T * 'T * 'U

module N =

 type C<'T> = 'T * 'T

open M

open N

let x : C<int, string> = (1, 1, "abc")

221

14.1.8 Name Resolution for Type Variables

Whenever the F# compiler processes syntactic types and expressions, it assumes a context that

maps identifiers to inference type variables. This mapping ensures that multiple uses of the same

type variable name map to the same type inference variable. For example, consider the following

function:

let f x y = (x:'T), (y:'T)

In this case, the compiler assigns the identifiers x and y the same static type—that is, the same type

inference variable is associated with the name 'T. The full inferred type of the function is:

val f<'T> : 'T -> 'T -> 'T * 'T

The map is used throughout the processing of expressions and types in a left-to-right order. It is

initially empty for any member or any other top-level construct that contains expressions and types.

Entries are eliminated from the map after they are generalized. As a result, the following code

checks correctly:

let f () =

 let g1 (x:'T) = x

 let g2 (y:'T) = (y:string)

 g1 3, g1 "3", g2 "4"

The compiler generalizes g1, which is applied to both integer and string types. The type variable 'T in

(y:'T) on the third line refers to a different type inference variable, which is eventually constrained to

be type string.

14.1.9 Field Label Resolution

Field Label Resolution specifies how to resolve identifiers such as field1 in { field1 = expr; ...

fieldN = expr }.

Field Label Resolution proceeds through the following steps:

1. Look up all fields in all available types in the Types table and the FieldLabels table (§8.4.2).

2. Return the set of field declarations.

14.2 Resolving Application Expressions
Application expressions that use dot notation—such as x.Y<int>.Z(g).H.I.j—are resolved

according to a set of rules that take into account the many possible shapes and forms of these

expressions and the ambiguities that may occur during their resolution. This section specifies the

exact algorithmic process that is used to resolve these expressions.

Resolution of application expressions proceeds as follows:

1. Repeatedly decompose the application expression into a leading expression expr and a list of

projections projs. Each projection has the following form:

• .long-ident-or-op is a dot lookup projection.

222

• expr is an application projection.

• <types> is a type application projection.

For example:

• x.y.Z(g).H.I.j decomposes into x.y.Z and projections (g), .H.I.j.

• x.M<int>(g) decomposes into x.M and projections <int>, (g).

• f x decomposes into f and projection x.

Note: In this specification we write sequences of projections by juxtaposition; for

example, (expr).long-ident<types>(expr). We also write (.rest + projs) to refer to

adding a residue long identifier to the front of a list of projections, which results in projs

if rest is empty and .rest projs otherwise.

2. After decomposition:

• If expr is a long identifier expression long-ident, apply Unqualified Lookup (§14.2.1) on long-

ident with projections projs.

• If expr is not such an expression, check the expression against an arbitrary initial type ty, to

generate an elaborated expression expr. Then process expr, ty, and projs by using

Expression-Qualified Lookup (§14.2.3)

14.2.1 Unqualified Lookup

Given an input long-ident and projections projs, Unqualified Lookup computes the result of

“looking up” long-ident.projs in an environment env. The first part of this process resolves a prefix

of the information in long-ident.projs, and recursive resolutions typically use Expression-Qualified

Resolution to resolve the remainder.

For example, Unqualified Lookup is used to resolve the vast majority of identifier references in F#

code, from simple identifiers such as sin, to complex accesses such as

System.Environment.GetCommandLineArgs().Length.

Unqualified Lookup proceeds through the following steps:

1. Resolve long-ident by using Name Resolution in Expressions (§14.1). This returns a name

resolution item item and a residue long identifier rest.

For example, the result of Name Resolution in Expressions for v.X.Y may be a value reference v

along with a residue long identifier .X.Y. Likewise, N.X(args).Y may resolve to an overloaded

method N.X and a residue long identifier.Y.

Name Resolution in Expressions also takes as input the presence and count of subsequent type

arguments in the first projection. If the first projection in projs is <tyargs>, Unqualified Lookup

invokes Name Resolution in Expressions with a known number of type arguments. Otherwise, it

is invoked with an unknown number of type arguments.

2. Apply Item-Qualified Lookup for item and (rest + projs).

223

14.2.2 Item-Qualified Lookup

Given an input item item and projections projs, Item-Qualified Lookup computes the projection

item.projs. This computation is often a recursive process: the first resolution uses a prefix of the

information in item.projs, and recursive resolutions resolve any remaining projections.

Item-Qualified Lookup proceeds as follows:

1. If item is not one of the following, return an error:

• A named value

• A union case

• A group of named types

• A group of methods

• A group of indexer getter properties

• A single non-indexer getter property

• A static F# field

• A static CLI field

• An implicitly resolved symbolic operator name

2. If the first projection is <types>, then we say the resolution has a type application <types> with

remaining projections.

3. Otherwise, checking proceeds as shown in the table.

If item is: Action

A value reference v 1. Instantiate the type scheme of v, which results in a type ty. Apply these rules:

▪ If the first projection is <types>, process the types and use the results as the
arguments to instantiate the type scheme.

▪ If the first projection is not <types>, the type scheme is freshly instantiated.

▪ If the value has the RequiresExplicitTypeArguments attribute, the first
projection must be <types>.

▪ If the value has type byref<ty2>, add a byref dereference to the elaborated
expression.

▪ Insert implicit flexibility for the use of the value (§14.4.3).

2. Apply Expression-Qualified Lookup for type ty and any remaining projections.

A type name, where
projs begins with
<types>.long-ident

1. Process the types and use the results as the arguments to instantiate the named
type reference, thus generating a type ty.

2. Apply Name Resolution for Members to ty and long-ident, which generates a new
item.

3. Apply Item-Qualified Lookup to the new item and any remaining projections.

A group of type
names where projs
begins with <types>
or expr or projs is
empty

1. Process the types and use the results as the arguments to instantiate the named
type reference, thus generating a type ty.

2. Process the object construction ty(expr) as an object constructor call in the same
way as new ty(expr). If projs is empty then process the object construction ty as
an object constructor call in the same way as (fun arg -> new ty(arg)), i.e.
resolve the object constructor call with no arguments.

3. Apply Expression-Qualified Lookup to item and any remaining projections.

224

If item is: Action

A group of method
references

1. Apply Method Application Resolution for the method group. Method Application
Resolution accepts an optional set of type arguments and a syntactic expression
argument. Determine the arguments based on what projs begins with:

▪ <types> expr, then use <types> as the type arguments and expr as the
expression argument.

▪ expr, then use expr as the expression argument.

▪ anything else, use no expression argument or type arguments.

2. If the result of Method Application Resolution is labeled with the
RequiresExplicitTypeArguments attribute, then explicit type arguments are
required.

3. Let fty be the actual return type that results from Method Application Resolution.
Apply Expression-Qualified Lookup to fty and any remaining projections.

A group of property
indexer references

1. Apply Method Application Resolution, and use the underlying getter indexer
methods for the method group.

2. Determine the arguments to Method Application Resolution as described for a
group of methods.

A static field
reference

1. Check the field for accessibility and attributes.

2. Let fty be the actual type of the field, taking into account the type ty via which the
field was accessed in the case where this is a field in a generic type.

3. Apply Expression-Qualified Lookup to fty and projs.

A union case tag,
exception tag, or
active pattern result
element tag

1. Check the tag for accessibility and attributes.

2. If projs begins with expr, use expr as the expression argument.

3. Otherwise, use no expression argument or type arguments. In this case, build a
function expression for the union case.

4. Let fty be the actual type of the union case.

5. Apply Expression-Qualified Lookup to fty and remaining projs.

A CLI event reference 1. Check the event for accessibility and attributes.

2. Let fty be the actual type of the event.

3. Apply Expression-Qualified Lookup to fty and projs.

An implicitly resolved
symbolic operator
name op

1. If op is a unary, binary or the ternary operator ?<-, resolve to the following
expressions, respectively:
(fun (x:^a) -> (^a : static member (op) : ^a -> ^b) x)
(fun (x:^a) (y:^b) ->
 ((^a or ^b) : static member (op) : ^a * ^b -> ^c) (x,y))
(fun (x:^a) (y:^b) (z:^c) ->
 ((^a or ^b or ^c) : static member (op) : ^a * ^b * ^c -> ^d) (x,y,z))

2. The resulting expressions are static member constraint invocation expressions (§0),
which enable the default interpretation of operators by using type-directed
member resolution.

3. Recheck the entire expression with additional subsequent projections .projs.

14.2.3 Expression-Qualified Lookup

Given an elaborated expression expr of type ty, and projections projs, Expression-Qualified Lookup

computes the “lookups or applications” for expr.projs.

225

Expression-Qualified Lookup proceeds through the following steps:

1. Inspect projs and process according to the following table.

projs Action Comments

Empty Assert that the type of the overall,
original application expression is ty.

Checking is complete.

Starts with(expr2) Apply Function Application Resolution
(§14.3).

Checking is complete when Function
Application Resolution returns.

Starts with<types> Fail. Type instantiations may not be applied
to arbitrary expressions; they can apply
only to generic types, generic methods,
and generic values.

Starts with .long-ident Resolve long-ident using Name
Resolution for Members (§14.1.4).
Return a name resolution item item and
a residue long identifier rest. Continue
processing at step 2.

For example, for ty = string and
long-ident = Length , Name
Resolution for Members returns a
property reference to the CLI instance
property System.String.Length.

2. If Step 1 returned an item and rest, report an error if item is not one of the following:

• A group of methods.

• A group of instance getter property indexers.

• A single instance, non-indexer getter property.

• A single instance F# field.

• A single instance CLI field.

3. Proceed based on item as shown in the table:

If item is: Action

Group of methods 1. Apply Method Application Resolution for the method group. Method
Application Resolution accepts an optional set of type arguments and a
syntactic expression argument. If projs begins with:

▪ <types>(arg), then use <types> as the type arguments and arg as
the expression argument.

▪ (arg), then use arg as the expression argument.

▪ otherwise, use no expression argument or type arguments.

2. Let fty be the actual return type resulting from Method Application
Resolution. Apply Expression-Qualified Lookup to fty and any
remaining projections.

Group of indexer properties 1. Apply Method Application Resolution and use the underlying getter
indexer methods for the method group.

2. Determine the arguments to Method Application Resolution as
described for a group of methods.

Non-indexer getter property Apply Method Application Resolution for the method group that contains
only the getter method for the property, with no type arguments and
one () argument.

226

If item is: Action

Instance intermediate language
(IL) or F# field F

1. Check the field for accessibility and attributes.

2. Let fty be the actual type of the field (taking into account the type ty
by which the field was accessed).

3. Assert that ty is a subtype of the actual containing type of the field.

4. Produce an elaborated form for expr.F. If F is a field in a value type
then take the address of expr by using the AddressOf (expr ,
NeverMutates) operation §6.9.4.

5. Apply Expression-Qualified Lookup to fty and projs.

14.3 Function Application Resolution
Given expressions f and expr where f has type ty, and given subsequent projections projs, Function

Application Resolution does the following:

1. Asserts that f has type ty1 -> ty2 for new inference variables ty1 and ty2.

2. If the assertion succeeds:

a. Check expr with the initial type ty1.

b. Process projs using Expression-Qualified against ty2.

3. If the assertion fails, and expr has the form { computation-expr }:

a. Check the expression as the computation expression form f { computation-expr }, giving

result type ty1.

b. Process projs using Expression-Qualified Lookup against ty1.

14.4 Method Application Resolution
Given a method group M, optional type arguments <ActualTypeArgs>, an optional syntactic argument

obj, an optional syntactic argument arg, and overall initial type ty, Method Application Resolution

resolves the overloading based on the partial type information that is available. It also:

• Resolves optional and named arguments.

• Resolves “out” arguments.

• Resolves post-hoc property assignments.

• Applies method application resolution.

• Inserts ad hoc conversions that are only applied for method calls.

If no syntactic argument is supplied, Method Application Resolution tries to resolve the use of the

method as a first class value, such as the method call in the following example:

List.map System.Environment.GetEnvironmentVariable ["PATH"; "USERNAME"]

Method Application Resolution proceeds through the following steps:

227

1. Restrict the candidate method group M to those methods that are accessible from the point of

resolution.

2. If an argument arg is present, determine the sets of unnamed and named actual arguments,

UnnamedActualArgs and NamedActualArgs:

a. Decompose arg into a list of arguments:

• If arg is a syntactic tuple arg1 ,..., argN, use these arguments.

• If arg is a syntactic unit value (),use a zero-length list of arguments.

b. For each argument:

• If arg is a binary expression of the form name=expr, it is a named actual argument.

• Otherwise, arg is an unnamed actual argument.

If there are no named actual arguments, and M has only one candidate method, which accepts

only one required argument, ignore the decomposition of arg to tuple form. Instead,arg itself is

the only named actual argument.

All named arguments must appear after all unnamed arguments.

Examples:

x.M(1, 2) has two unnamed actual arguments.

x.M(1, y = 2) has one unnamed actual argument and one named actual argument.

x.M(1, (y = 2)) has two unnamed actual arguments.

x.M(printfn "hello"; ()) has one unnamed actual argument.

x.M((a, b)) has one unnamed actual argument.

x.M(()) has one unnamed actual argument.

3. Determine the named and unnamed prospective actual argument types, called ActualArgTypes.

• If an argument arg is present, the prospective actual argument types are fresh type

inference variables for each unnamed and named actual argument.

• If the argument has the syntactic form of an address-of expression &expr after ignoring

parentheses around the argument, equate this type with a type byref<ty> for a fresh

type ty.

• If the argument has the syntactic form of a function expression fun pat1 … patn -> expr

after ignoring parentheses around the argument, equate this type with a type ty1 -> …

tyn -> rty for fresh types ty1 … tyn.

• If no argument arg is present:

228

a. If the method group contains a single method, the prospective unnamed argument

types are one fresh type inference variable for each required, non-“out” parameter that

the method accepts.

b. If the method group contains more than one method, the expected overall type of the

expression is asserted to be a function type dty -> rty.

▪ If dty is a tuple type (dty1 * .. * dtyN), the prospective argument types are (dty1,

.. ,dtyN).

▪ If dty is unit, then the prospective argument types are an empty list.

▪ If dty is any other type, the prospective argument types are dty alone.

c. Subsequently:

▪ The method application is considered to have one unnamed actual argument for

each prospective unnamed actual argument type.

▪ The method application is considered to have no named actual arguments.

4. For each candidate method in M, attempt to produce zero, one, or two prospective method calls

Mpossible as follows:

a. If the candidate method is generic and has been generalized, generate fresh type inference

variables for its generic parameters. This results in the FormalTypeArgs for Mpossible.

b. Determine the named and unnamed formal parameters, called NamedFormalArgs and

UnnamedFormalArgs respectively, by splitting the formal parameters for M into parameters

that have a matching argument in NamedActualArgs and parameters that do not.

c. If the number of UnnamedFormalArgs exceeds the number of UnnamedActualArgs, then modify

UnnamedFormalArgs as follows:

• Determine the suffix of UnnamedFormalArgs beyond the number of UnnamedActualArgs.

• If all formal parameters in the suffix are “out” arguments with byref type, remove the

suffix from UnnamedFormalArgs and call it ImplicitlyReturnedFormalArgs.

• If all formal parameters in the suffix are optional arguments, remove the suffix from

UnnamedFormalArgs and call it ImplicitlySuppliedFormalArgs.

d. If the last element of UnnamedFormalArgs has the ParamArray attribute and type pty[] for

some pty, then modify UnnamedActualArgs as follows:

• If the number of UnnamedActualArgs exceeds the number of UnnamedFormalArgs-1,

produce a prospective method call named ParamArrayActualArgs that has the excess of

UnnamedActualArgs removed.

• If the number of UnnamedActualArgs equals the number of UnnamedFormalArgs-1, produce

two prospective method calls:

▪ One has an empty ParamArrayActualArgs.

229

▪ One has no ParamArrayActualArgs.

• If ParamArrayActualArgs has been produced, then Mpossible is said to use ParamArray

conversion with type pty.

e. Associate each name=arg in NamedActualArgs with a target. A target is a named formal

parameter, a settable return property, or a settable return field as follows:

• If one of the arguments in NamedFormalArgs has name name, that argument is the target.

• If the return type of M, before the application of any type arguments ActualTypeArgs,

contains a settable property name,then name is the target. The available properties

include any property extension members of type, found by consulting the

ExtensionsInScope table.

• If the return type of M, before the application of any type arguments ActualTypeArgs,

contains a settable field name, then name is the target.

f. No prospective method call is generated if any of the following are true:

• A named argument cannot be associated with a target.

• The number of UnnamedActualArgs is less than the number of UnnamedFormalArgs after

steps 4 a-e.

• The number of ActualTypeArgs, if any actual type arguments are present, does not

precisely equal the number of FormalTypeArgs for M.

• The candidate method is static and the optional syntactic argument obj is present, or

the candidate method is an instance method and obj is not present.

5. Attempt to apply initial types before argument checking. If only one prospective method call

Mpossible exists, assert Mpossible by performing the following steps:

a. Verify that each ActualTypeArgi is equal to its corresponding FormalTypeArgi.

b. Verify that the type of obj is a subtype of the containing type of the method M.

c. For each UnnamedActualArgi and UnnamedFormalArgi, verify that the corresponding

ActualArgType coerces to the type of the corresponding argument of M.

d. If Mpossible uses ParamArray conversion with type pty, then for each ParamArrayActualArgi,

verify that the corresponding ActualArgType coerces to pty.

e. For each NamedActualArgi that has an associated formal parameter target, verify that the

corresponding ActualArgType coerces to the type of the corresponding argument of M.

f. For each NamedActualArgi that has an associated property or field setter target, verify that

the corresponding ActualArgType coerces to the type of the property or field.

g. Verify that the prospective formal return type coerces to the expected actual return type. If

the method M has return type rty, the formal return type is defined as follows:

230

• If the prospective method call contains ImplicitlyReturnedFormalArgs with type ty1, ...,

tyN, the formal return type is rty * ty1 * ... * tyN. If rty is unit then the formal

return type is ty1 * ... * tyN.

• Otherwise the formal return type is rty.

6. Check and elaborate argument expressions. If arg is present:

• Check and elaborate each unnamed actual argument expression argi. Use the

corresponding type in ActualArgTypes as the initial type.

• Check and elaborate each named actual argument expression argi. Use the corresponding

type in ActualArgTypes as the initial type.

7. Choose a unique Mpossible according to the following rules:

• For each Mpossible, determine whether the method is applicable by attempting to assert

Mpossible as described in step 4a). If the actions in step 4a detect an inconsistent constraint set

(§14.5), the method is not applicable. Regardless, the overall constraint set is left unchanged

as a result of determining the applicability of each Mpossible.

• If a unique applicable Mpossible exists, choose that method. Otherwise, choose the unique best

Mpossible by applying the following criteria, in order:

1) Prefer candidates whose use does not constrain the use of a user-introduced generic

type annotation to be equal to another type.

2) Prefer candidates that do not use ParamArray conversion. If two candidates both use

ParamArray conversion with types pty1 and pty2, and pty1 feasibly subsumes pty2, prefer

the second; that is, use the candidate that has the more precise type.

3) Prefer candidates that do not have ImplicitlyReturnedFormalArgs.

4) Prefer candidates that do not have ImplicitlySuppliedFormalArgs.

5) If two candidates have unnamed actual argument types ty11 ... ty1n and ty21 ... ty2n, and

each ty1i either

a. feasibly subsumes ty2i, or

b. ty2i is a System.Func type and ty1i is some other delegate type,

 then prefer the second candidate. That is, prefer any candidate that has the more

specific actual argument types, and consider any System.Func type to be more specific

than any other delegate type.

6) Prefer candidates that are not extension members over candidates that are.

7) To choose between two extension members, prefer the one that results from the most

recent use of open.

231

8) Prefer candidates that are not generic over candidates that are generic—that is, prefer

candidates that have empty ActualArgTypes.

Report an error if steps 1) through 8) do not result in the selection of a unique better method.

8. Once a unique best Mpossible is chosen, commit that method.

9. Apply attribute checks.

10. Build the resulting elaborated expression by following these steps:

a. If the type of obj is a variable type or a value type, take the address of obj by using the

AddressOf(obj, PossiblyMutates) operation (§6.9.4).

b. Build the argument list by:

• Passing each argument corresponding to an UnamedFormalArgs where the argument is an

optional argument as a Some value.

• Passing a None value for each argument that corresponds to an

ImplicitlySuppliedFormalArgs.

• Applying coercion to arguments.

c. Bind ImplicitlyReturnedFormalArgs arguments by introducing mutable temporaries for each

argument, passing them as byref parameters, and building a tuple from these mutable

temporaries and any method return value as the overall result.

d. For each NamedActualArgs whose target is a settable property or field, assign the value into

the property.

e. If arg is not present, return a function expression that represents a first class function value.

Two additional rules apply when checking arguments (see §8.13.7 for examples):

• If a formal parameter has delegate type D, an actual argument farg has known type

ty1 -> ... -> tyn -> rty, and the number of arguments of the Invoke method of delegate type

D is precisely n, interpret the formal parameter in the same way as the following:

new D(fun arg1 ... argn -> farg arg1 ... argn).

For more information on the conversions that are automatically applied to arguments, see

§8.13.6.

• If a formal parameter is an “out” parameter of type byref<ty>, and an actual argument type is

not a byref type, interpret the actual parameter in the same way as type ref<ty>. That is, an F#

reference cell can be passed where a byref<ty> is expected.

One effect of these additional rules is that a method that is used as a first class function value can

resolve even if a method is overloaded and no further information is available. For example:

let r = new Random()

let roll = r.Next;;

232

Method Application Resolution results in the following, despite the fact that in the standard CLI

library, System.Random.Next is overloaded:

val roll : int -> int

The reason is that if the initial type contains no information about the expected number of

arguments, the F# compiler assumes that the method has one argument.

14.4.1 Additional Propagation of Known Type Information in F# 3.1

In the above descreiption of F# overload resolution, the argument expressions of a call to an
overloaded set of methods

callerObjArgTy.Method(callerArgExpr1, … callerArgExprN)

calling

calledObjArgTy.Method(calledArgTy1, … calledArgTyN)

In F# 3.1 and subsequently, immediately prior to checking argument expressions, each argument

position of the unnamed caller arguments for the method call is analysed to propagate type

information extracted from method overloads to the expected types of lambda expressions. The

new rule is applied when

• the candidates are overloaded

• the caller argument at the given unnamed argument position is a syntactic lambda, possible

parenthesized

• all the corresponding formal called arguments have calledArgTy either of

o function type “calledArgDomainTy1 -> … -> calledArgDomainTyN ->

calledArgRangeTy“ (after taking into account “function to delegate” adjustments), or

o some other type which would cause an overload to be discarded

• at least one overload has enough curried lambda arguments for it corresponding expected

function type

In this case, for each unnamed argument position, then for each overload:

• Attempt to solve “callerObjArgTy = calledObjArgTy” for the overload, if the overload is for an

instance member. When making this application, only solve type inference variables present in

the calledObjArgTy. If any of these conversions fail, then skip the overload for the purposes of

this rule

• Attempt to solve “callerArgTy = (calledArgDomainTy1 -> … -> calledArgDomainTyN -> ?)”. If

this fails, then skip the overload for the purposes of this rule

14.4.2 Conditional Compilation of Member Calls

If a member definition has the System.Diagnostics.Conditional attribute, then any application of

the member is adjusted as follows:

233

• The Conditional("symbol") attribute may apply to methods only.

• Methods that have the Conditional attribute must have return type unit. The return type may

be checked either on use of the method or definition of the method.

• If symbol is not in the current set of conditional compilation symbols, the compiler eliminates

application expressions that resolve to calls to members that have the Conditional attribute and

ensures that arguments are not evaluated. Elimination of such expressions proceeds first with

static members and then with instance members, as follows:

• Static members: Type.M(args) ()

• Instance members: expr.M(args) ()

14.4.3 Implicit Insertion of Flexibility for Uses of Functions and Members

At each use of a data constructor, named function, or member that forms an expression, flexibility is

implicitly added to the expression. This flexibility is associated with the use of the function or

member, according to the inferred type of the expression. The added flexibility allows the item to

accept arguments that are statically known to be subtypes of argument types to a function without

requiring explicit upcasts

The flexibility is added by adjusting each expression expr which represents a use of a function or

member as follows:

• The type of the function or member is decomposed to the following form:

ty11 * ... * ty1n -> ... -> tym1 * ... * tymn -> rty

• If the type does not decompose to this form, no flexibility is added.

• The positions tyij are called the “parameter positions” for the type. For each parameter position

where tyij is not a sealed type, and is not a variable type, the type is replaced by a fresh type

variable ty'ij with a coercion constraint ty'ij :> tyij.

• After the addition of flexibility, the expression elaborates to an expression of type

ty'11 * ... * ty'1n -> ... -> ty'm1 * ... * ty'mn -> rty

but otherwise is semantically equivalent to expr by creating an anonymous function expression

and inserting appropariate coercions on arguments where necessary.

This means that F# functions whose inferred type includes an unsealed type in argument position

may be passed subtypes when called, without the need for explicit upcasts. For example:

type Base() =

 member b.X = 1

type Derived(i : int) =

 inherit Base()

 member d.Y = i

let d = new Derived(7)

let f (b : Base) = b.X

234

// Call f: Base -> int with an instance of type Derived

let res = f d

// Use f as a first-class function value of type : Derived -> int

let res2 = (f : Derived -> int)

The F# compiler determines whether to insert flexibility after explicit instantiation, but before any

arguments are checked. For example, given the following:

let M<'b>(c :'b, d :'b) = 1

let obj = new obj()

let str = ""

these expressions pass type-checking:

M<obj>(obj, str)

M<obj>(str, obj)

M<obj>(obj, obj)

M<obj>(str, str)

M(obj, obj)

M(str, str)

These expressions do not, because the target type is a variable type:

M(obj, str)

M(str, obj)

14.5 Constraint Solving
Constraint solving involves processing (“solving”) non-primitive constraints to reduce them to

primitive, normalized constraints on type variables. The F# compiler invokes constraint solving every

time it adds a constraint to the set of current inference constraints at any point during type

checking.

Given a type inference environment, the normalized form of constraints is a list of the following

primitive constraints where typar is a type inference variable:

typar :> type

typar : null

(type or ... or type) : (member-sig)

typar : (new : unit -> 'T)

typar : struct

typar : unmanaged

typar : comparison

typar : equality

typar : not struct

typar : enum<type>

typar : delegate<type, type>

Each newly introduced constraint is solved as described in the following sections.

235

14.5.1 Solving Equational Constraints

New equational constraints in the form typar = type or type = typar, where typar is a type

inference variable, cause type to replace typar in the constraint problem; typar is eliminated. Other

constraints that are associated with typar are then no longer primitive and are solved again.

New equational constraints of the form type<tyarg11,..., tyarg1n> = type<tyarg21,..., tyarg2n>

are reduced to a series of constraints tyarg1i = tyarg2i on identical named types and solved again.

14.5.2 Solving Subtype Constraints

Primitive constraints in the form typar :> obj are discarded.

New constraints in the form type1 :> type2, where type2 is a sealed type, are reduced to the

constraint type1 = type2 and solved again.

New constraints in either of these two forms are reduced to the constraints tyarg11 = tyarg21 ...

tyarg1n = tyarg2n and solved again:

type<tyarg11,..., tyarg1n> :> type<tyarg21,..., tyarg2n>

type<tyarg11,..., tyarg1n> = type<tyarg21,..., tyarg2n>

Note: F# generic types do not support covariance or contravariance. That is, although

single-dimensional array types in the CLI are effectively covariant, F# treats these types

as invariant during constraint solving. Likewise, F# considers CLI delegate types as

invariant and ignores any CLI variance type annotations on generic interface types and

generic delegate types.

New constraints of the form type1<tyarg11,..., tyarg1n> :> type2<tyarg21,..., tyarg2n> where

type1 and type2 are hierarchically related, are reduced to an equational constraint on two

instantiations of type2 according to the subtype relation between type1 and type2, and solved again.

For example, if MySubClass<'T> is derived from MyBaseClass<list<'T>>, then the constraint

MySubClass<'T> :> MyBaseClass<int>

is reduced to the constraint

MyBaseClass<list<'T>> :> MyBaseClass<list<int>>

and solved again, so that the constraint 'T = int will eventually be derived.

Note: Subtype constraints on single-dimensional array types ty[] :> ty are reduced to

residual constraints, because these types are considered to be subtypes of System.Array,

System.Collections.Generic.IList<'T>, System.Collections.Generic.ICollection<'T>,

and System.Collections.Generic.IEnumerable<'T>. Multidimensional array types

ty[,…,] are also subtypes of System.Array.

236

Types from other CLI languages may, in theory, support multiple instantiations of the

same interface type, such as C : I<int>, I<string>. Consequently, it is more difficult to

solve a constraint such as C :> I<'T>. Such constraints are rarely used in practice in F#

coding. To solve this constraint, the F# compiler reduces it to a constraint C :> I<'T>,

where I<'T> is the first interface type that occurs in the tree of supported interface

types, when the tree is ordered from most derived to least derived, and iterated left-to-

right in the order of the declarations in the CLI metadata.

The F# compiler ignores CLI variance type annotations on interfaces.

New constraints of the form type :> 'b are solved again as type = 'b.

Note: Such constraints typically occur only in calls to generic code from other CLI

languages where a method accepts a parameter of a “naked” variable type—for

example, a C# 2.0 function with a signature such as T Choose<'T>(T x, T y).

14.5.3 Solving Nullness, Struct, and Other Simple Constraints

New constraints in any of the following forms, where type is not a variable type, are reduced to

further constraints:

type : null

type : (new : unit -> 'T)

type : struct

type : not struct

type : enum<type>

type : delegate<type, type>

type : unmanaged

The compiler then resolves them according to the requirements for each kind of constraint listed in

§5.2 and §5.4.8.

14.5.4 Solving Member Constraints

New constraints in the following form) are solved as member constraints (§5.2.3):

(type1 or ... or typen) : (member-sig)

A member constraint is satisfied if one of the types in the support set type1 ... typen satisfies the

member constraint. A static type type satisfies a member constraint in the form
(staticopt member ident : arg-type1 * ... * arg-typen -> ret-type)

if all of the following are true:

• type is a named type whose type definition contains the following member, which takes n

arguments:

 staticopt member ident : formal-arg-type1 * ... * formal-arg-typen -> ret-type

• The type and the constraint are both marked static or neither is marked static .

• The assertion of type inference constraints on the arguments and return types does not result in

a type inference error.

As mentioned in §5.2.3, a type variable may not be involved in the support set of more than one

member constraint that has the same name, staticness, argument arity, and support set. If a type

237

variable is in the support set of more than one such constraint, the argument and return types are

themselves constrained to be equal.

14.5.4.1 Simulation of Solutions for Member Constraints

Certain types are assumed to implicitly define static members even though the actual CLI metadata

for types does not define these operators. This mechanism is used to implement the extensible

conversion and math functions of the F# library including sin, cos, int, float, (+), and (-). The

following table shows the static members that are implicitly defined for various types.

Type Implicitly defined static members

Integral types:
byte, sbyte, int16, uint16, int32, uint32, int64,
uint64, nativeint, unativeint

op_BitwiseAnd, op_BitwiseOr, op_ExclusiveOr,
op_LeftShift, op_RightShift, op_UnaryPlus,
op_UnaryNegation, op_Increment, op_Decrement,
op_LogicalNot, op_OnesComplement
op_Addition, op_Subtraction, op_Multiply,
op_Division, op_Modulus, op_UnaryPlus
op_Explicit: takes the type as an argument and
returns byte, sbyte, int16, uint16, int32, uint32,
int64, uint64, float32, float, decimal,
nativeint, or unativeint

Signed integral CLI types:
sbyte, int16, int32, int64 and nativeint

op_UnaryNegation
Sign
Abs

Floating-point CLI types:
float32 and float

Sin, Cos, Tan, Sinh, Cosh, Tanh, Atan, Acos, Asin,
Exp, Ceiling, Floor, Round, Log10, Log, Sqrt, Atan2,
Pow

op_Addition, op_Subtraction, op_Multiply,
op_Division, op_Modulus, op_UnaryPlus
op_UnaryNegation
Sign
Abs

op_Explicit: takes the type as an argument and
returns byte, sbyte, int16, uint16, int32, uint32,
int64, uint64, float32, float, decimal,
nativeint, or unativeint

decimal type
Note: The decimal type is included only for the Sign
static member. This is deliberate: in the CLI,
System.Decimal includes the definition of static
members such as op_Addition and the F# compiler
does not need to simulate the existence of these
methods.

Sign

String type string op_Addition

op_Explicit: takes the type as an argument and
return byte, sbyte, int16, uint16, int32, uint32,
int64, uint64, float32, float or decimal.

14.5.5 Over-constrained User Type Annotations

An implementation of F# must give a warning if a type inference variable that results from a user

type annotation is constrained to be a type other than another type inference variable. For example,

the following results in a warning because 'T has been constrained to be precisely string:

let f (x:'T) = (x:string)

238

During the resolution of overloaded methods, resolutions that do not give such a warning are

preferred over resolutions that do give such a warning.

14.6 Checking and Elaborating Function, Value, and Member

Definitions
This section describes how function, value, and member definitions are checked, generalized, and

elaborated. These definitions occur in the following contexts:

• Module declarations

• Class type declarations

• Expressions

• Computation expressions

Recursive definitions can also occur in each of these locations. In addition, member definitions in a

mutually recursive group of type declarations are implicitly recursive.

Each definition is one of the following:

• A function definition :

inlineopt ident1 pat1 ... patn :opt return-typeopt = rhs-expr

• A value definition, which defines one or more values by matching a pattern against an

expression:

mutableopt pat :opt typeopt = rhs-expr

• A member definition:

staticopt member identopt ident pat1 ... patn = expr

For a function, value, or member definition in a class:

1. If the definition is an instance function, value or member, checking uses an environment to

which both of the following have been added:

• The instance variable for the class, if one is present.

• All previous function and value definitions for the type, whether static or instance.

2. If the definition is static (that is, a static function, value or member defeinition), checking uses an

environment to which all previous static function, value, and member definitions for the type

have been added.

14.6.1 Ambiguities in Function and Value Definitions

In one case, an ambiguity exists between the syntax for function and value definitions. In particular,

ident pat = expr can be interpreted as either a function or value definition. For example, consider

the following:

type OneInteger = Id of int

239

let Id x = x

In this case, the ambiguity is whether Id x is a pattern that matches values of type OneInteger or is

the function name and argument list of a function called Id. In F# this ambiguity is always resolved

as a function definition. In this case, to make a value definition, use the following syntax in which the

ambiguous pattern is enclosed in parentheses:

let v = if 3 = 4 then Id "yes" else Id "no"

let (Id answer) = v

14.6.2 Mutable Value Definitions

Value definitions may be marked as mutable. For example:

let mutable v = 0
while v < 10 do
 v <- v + 1
 printfn "v = %d" v

These variables are implicitly dereferenced when used.

14.6.3 Processing Value Definitions

A value definition pat = rhs-expr with optional pattern type type is processed as follows:

1. The pattern pat is checked against a fresh initial type ty (or type if such a type is present). This

check results in zero or more identifiers ident1 ... identm, each of type ty1 ... tym.

2. The expression rhs-expr is checked against initial type ty, resulting in an elaborated form expr.

3. Each identi (of type tyi) is then generalized (§14.6.7) and yields generic parameters <typarsj>.

4. The following rules are checked:

• All identj must be distinct.

• Value definitions may not be inline.

5. If pat is a single value pattern, the resulting elaborated definition is:

ident <typars1> = expr

body-expr

6. Otherwise, the resulting elaborated definitions are the following, where tmp is a fresh identifier

and each expri results from the compilation of the pattern pat (§7) against input tmp.

tmp <typars1… typarsn> = expr

ident1 <typars1> = expr1

…

identn <typarsn> = exprn

14.6.4 Processing Function Definitions

A function definition ident1 pat1 ... patn = rhs-expr is processed as follows:

1. If ident1 is an active pattern identifier then active pattern result tags are added to the

environment (§10.2.4).

240

2. The expression (fun pat1 ... patn : return-type -> rhs-expr) is checked against a fresh initial

type ty1 and reduced to an elaborated form expr1. The return type is omitted if the definition

does not specify it.

3. The ident1 (of type ty1) is then generalized (§14.6.7) and yields generic parameters <typars1>.

4. The following rules are checked:

• Function definitions may not be mutable. Mutable function values should be written as

follows:
let mutable f = (fun args -> ...)

• The patterns of functions may not include optional arguments (§8.13.6).

5. The resulting elaborated definition is:

ident1 <typars1> = expr1

14.6.5 Processing Recursive Groups of Definitions

A group of functions and values may be declared recursive through the use of let rec. Groups of

members in a recursive set of type definitions are also implicitly recursive. In this case, the defined

values are available for use within their own definitions—that is, within all the expressions on the

right-hand side of the definitions.

For example:

let rec twoForward count =

 printfn "at %d, taking two steps forward" count

 if count = 1000 then "got there!"

 else oneBack (count + 2)

and oneBack count =

 printfn "at %d, taking one step back " count

 twoForward (count – 1)

When one or more definitions specifies a value, the recursive expressions are analyzed for safety

(§14.6.6). This analysis may result in warnings—including some reported at compile time—and

runtime checks.

Within recursive groups, each definition in the group is checked (§14.6.7) and then the definitions

are generalized incrementally. In addition, any use of an ungeneralized recursive definition results in

immediate constraints on the recursively defined construct. For example, consider the following

declaration:

let rec countDown count x =

 if count > 0 then

 let a = countDown (count - 1) 1 // constrains "x" to be of type int

 let b = countDown (count – 1) "Hello" // constrains "x" to be of type string

 a + b

 else

 1

In this example, the definition is not valid because the recursive uses of f result in inconsistent

constraints on x.

241

If a definition has a full signature, early generalization applies and recursive calls at different types

are permitted (§14.6.7). For example:

module M =
 let rec f<'T> (x:'T) : 'T =
 let a = f 1
 let b = f "Hello"
 x

In this example, the definition is valid because f is subject to early generalization, and so the

recursive uses of f do not result in inconsistent constraints on x.

14.6.6 Recursive Safety Analysis

A set of recursive definitions may include value definitions. For example:

type Reactor = React of (int -> React) * int

let rec zero = React((fun c -> zero), 0)

let const n =

 let rec r = React((fun c -> r), n)

 r

Recursive value definitions may result in invalid recursive cycles, such as the following:

let rec x = x + 1

The Recursive Safety Analysis process partially checks the safety of these definitions and convert

thems to a form that uses lazy initialization, where runtime checks are inserted to check

initialization.

A right-hand side expression is safe if it is any of the following:

• A function expression, including those whose bodies include references to variables that are

defined recursively.

• An object expression that implements an interface, including interfaces whose member bodies

include references to variables that are being defined recursively.

• A lazy delayed expression.

• A record, tuple, list, or data construction expression whose field initialization expressions are all

safe.

• A value that is not being recursively bound.

• A value that is being recursively bound and appears in one of the following positions:

• As a field initializer for a field of a record type where the field is marked mutable.

• As a field initializer for an immutable field of a record type that is defined in the current

assembly.

If record fields contain recursive references to values being bound, the record fields must be

initialized in the same order as their declared type, as described later in this section.

242

• Any expression that refers only to earlier variables defined by the sequence of recursive

definitions.

Other right-hand side expressions are elaborated by adding a new definition. If the original definition

is

u = expr

then a fresh value (say v) is generated with the definition:

v = lazy expr

and occurrences of the original variable u on the right-hand side are replaced by Lazy.force v. The

following definition is then added at the end of the definition list:

u = v.Force()

Note: This specification implies that recursive value definitions are executed as an

initialization graph of delayed computations. Some recursive references may be checked

at runtime because the computations that are involved in evaluating the definitions

might actually execute the delayed computations. The F# compiler gives a warning for

recursive value definitions that might involve a runtime check. If runtime self-reference

does occur then an exception will be raised.

Recursive value definitions that involve computation are useful when defining objects

such as forms, controls, and services that respond to various inputs. For example, GUI

elements that store and retrieve the state of the GUI elements as part of their

specification typically involve recursive value definitions. A simple example is the

following menu item, which prints out part of its state when invoked:

open System.Windows.Form
let rec menuItem : MenuItem =
 new MenuItem("&Say Hello",
 new EventHandler(fun sender e ->
 printfn "Text = %s" menuItem.Text),
 Shortcut.CtrlH)

This code results in a compiler warning because, in theory, the

new MenuItem(...) constructor might evaluate the callback as part of the construction

process. However, because the System.Windows.Forms library is well designed, in this

example this does not happen in practice, and so the warning can be suppressed or

ignored by using compiler options.

The F# compiler performs a simple approximate static analysis to determine whether immediate

cyclic dependencies are certain to occur during the evaluation of a set of recursive value definitions.

The compiler creates a graph of definite references and reports an error if such a dependency cycle

exists. All references within function expressions, object expressions, or delayed expressions are

assumed to be indefinite, which makes the analysis an under-approximation. As a result, this check

catches naive and direct immediate recursion dependencies, such as the following:

let rec A = B + 1

and B = A + 1

243

Here, a compile-time error is reported. This check is necessarily approximate because dependencies

under function expressions are assumed to be delayed, and in this case the use of a lazy initialization

means that runtime checks and forces are inserted.

Note: In F# 3.1 this check does not apply to value definitions that are generic through

generalization because a generic value definition is not executed immediately, but is

instead represented as a generic method. For example, the following value definitions

are generic because each right-hand-side is generalizable:

let rec a = b
and b = a

In compiled code they are represented as a pair of generic methods, as if the code had

been written as follows:

let rec a<'T>() = b<'T>()
and b<'T>() = a<'T>()

As a result, the definitions are not executed immediately unless the functions are called.

Such definitions indicate a programmer error, because executing such generic,

immediately recursive definitions results in an infinite loop or an exception. In practice

these definitions only occur in pathological examples, because value definitions are

generalizable only when the right-hand-side is very simple, such as a single value. Where

this issue is a concern, type annotations can be added to existing value definitions to

ensure they are not generic. For example:

let rec a : int = b
and b : int = a

In this case, the definitions are not generic. The compiler performs immediate

dependency analysis and reports an error. In addition, record fields in recursive data

expressions must be initialized in the order they are declared. For example:

type Foo = {
 x: int
 y: int
 parent: Foo option
 children: Foo list
}

let rec parent = { x = 0; y = 0; parent = None; children = children }
and children = [{ x = 1; y = 1; parent = Some parent; children = [] }]

printf "%A" parent

Here, if the order of the fields x and y is swapped, a type-checking error occurs.

14.6.7 Generalization

Generalization is the process of inferring a generic type for a definition where possible, thereby

making the construct reusable with multiple different types. Generalization is applied by default at

all function, value, and member definitions, except where listed later in this section. Generalization

also applies to member definitions that implement generic virtual methods in object expressions.

Generalization is applied incrementally to items in a recursive group after each item is checked.

244

Generalization takes a set of ungeneralized but type-checked definitions checked-defns that form

part of a recursive group, plus a set of unchecked definitions unchecked-defns that have not yet been

checked in the recursive group, and an environment env. Generalization involves the following steps:

1. Choose a subset generalizable-defns of checked-defns to generalize.

A definition can be generalized if its inferred type is closed with respect to any inference

variables that are present in the types of the unchecked-defns that are in the recursive group and

that are not yet checked or which, in turn, cannot be generalized. A greatest-fixed-point

computation repeatedly removes definitions from the set of checked-defns until a stable set of

generalizable definitions remains.

2. Generalize all type inference variables that are not otherwise ungeneralizable and for which any

of the following is true:

• The variable is present in the inferred types of one or more of generalizable-defns.

• The variable is a type parameter copied from the enclosing type definition (for members and

“let” definitions in classes).

• The variable is explicitly declared as a generic parameter on an item.

The following type inference variables cannot be generalized:

• A type inference variable ^typar that is part of the inferred or declared type of a definition,

unless the definition is marked inline.

• A type inference variable in an inferred type in the ExprItems or PatItems tables of env, or in

an inferred type of a module in the ModulesAndNamespaces table in env.

• A type inference variable that is part of the inferred or declared type of a definition in which

the elaborated right-hand side of the definition is not a generalizable expression, as

described later in this section.

• A type inference variable that appears in a constraint that itself refers to an ungeneralizable

type variable.

Generalizable type variables are computed by a greatest-fixed-point computation, as follows:

1. Start with all variables that are candidates for generalization.

2. Determine a set of variables U that cannot be generalized because they are free in the

environment or present in ungeneralizable definitions.

3. Remove the variables in U from consideration.

4. Add to U any inference variables that have a constraint that involves a variable in U.

5. Repeat steps 2 through 4.

245

Informally, generalizable expressions represent a subset of expressions that can be freely copied and

instantiated at multiple types without affecting the typical semantics of an F# program. The

following expressions are generalizable:

• A function expression

• An object expression that implements an interface

• A delegate expression

• A “let” definition expression in which both the right-hand side of the definition and the body of

the expression are generalizable

• A “let rec” definition expression in which the right-hand sides of all the definitions and the body

of the expression are generalizable

• A tuple expression, all of whose elements are generalizable

• A record expression, all of whose elements are generalizable, where the record contains no

mutable fields

• A union case expression, all of whose arguments are generalizable

• An exception expression, all of whose arguments are generalizable

• An empty array expression

• A simple constant expression

• An application of a type function that has the GeneralizableValue attribute.

Explicit type parameter definitions on value and member definitions can affect the process of type

inference and generalization. In particular, a declaration that includes explicit generic parameters

will not be generalized beyond those generic parameters. For example, consider this function:

let f<'T> (x : 'T) y = x

During type inference, this will result in a function of the following type, where '_b is a type

inference variable that is yet to be resolved.

f<'T> : 'T -> '_b -> '_b

To permit generalization at these definitions, either remove the explicit generic parameters (if they

can be inferred), or use the required number of parameters, as the following example shows:

let throw<'T,'U> (x:'T) (y:'U) = x

14.6.8 Condensation of Generalized Types

After a function or member definition is generalized, its type is condensed by removing generic type

parameters that apply subtype constraints to argument positions. (The removed flexibility is

implicitly reintroduced at each use of the defined function; see §14.4.3).

Condensation decomposes the type of a value or member to the following form:

ty11 * ... * ty1n -> ... -> tym1 * ... * tymn -> rty

The positions tyij are called the parameter positions for the type.

246

Condensation applies to a type parameter 'a if all of the following are true:

• 'a is not an explicit type parameter.

• 'a occurs at exactly one tyij parameter position.

• 'a has a single coercion constraint 'a :> ty and no other constraints. However, one additional

nullness constraint is permitted if ty satisfies the nullness constraint.

• 'a does not occur in any other tyij, nor in rty.

• 'a does not occur in the constraints of any condensed typar.

Condensation is a greatest-fixed-point computation that initially assumes all generalized type

parameters are condensed, and then progressively removes type parameters until a minimal set

remains that satisfies the above rules.

The compiler removes all condensed type parameters and replaces them with their subtype

constraint ty. For example:

let F x = (x :> System.IComparable).CompareTo(x)

After generalization, the function is inferred to have the following type:

F : 'a -> int when 'a :> System.IComparable

In this case, the actual inferred, generalized type for F is condensed to:

F : System.IComparable -> R

Condensation does not apply to arguments of unconstrained variable type. For example:

let ignore x = ()

with type

ignore: 'a -> unit

In particular, this is not condensed to

ignore: obj -> unit

In rare cases, condensation affects the points at which value types are boxed. In the following

example, the value 3 is now boxed at uses of the function:

F 3

If a function is not generalized, condensation is not applied. For example, consider the following:

let test1 =

 let ff = Seq.map id >> Seq.length

 (ff [1], ff [| 1 |]) // error here

In this example, ff is not generalized, because it is not defined by using a generalizable expression—

computed functions such as Seq.map id >> Seq.length are not generalizable. This means that its

inferred type, after processing the definition, is

247

F : '_a -> int when '_a :> seq<'_b>

where the type variables are not generalized and are unsolved inference variables. The application

of ff to [1] equates 'a with int list, making the following the type of F:

F : int list -> int

The application of ff to an array type then causes an error. This is similar to the error returned by

the following:

let test1 =

 let ff = Seq.map id >> Seq.length

 (ff [1], ff ["one"]) // error here

Again, ff is not generalized, and its use with arguments of type int list and string list is not

permitted.

14.7 Dispatch Slot Inference
The F# compiler applies Dispatch Slot Inference to object expressions and type definitions before it

processes their members. For both object expressions and type definitions, the following are input

to Dispatch Slot Inference:

• A type ty0 that is being implemented.

• A set of members override x.M(arg1...argN).

• A set of additional interface types ty1 ... tyn.

• A further set of members override x.M(arg1...argN) for each tyi.

Dispatch slot inference associates each member with a unique abstract member or interface

member that the collected types tyi define or inherit.

The types ty0 ... tyn together imply a collection of required types R, each of which has a set of

required dispatch slots SlotsR of the form abstract M : aty1...atyN -> atyrty. Each dispatch slot is

placed under the most-specific tyi relevant to that dispatch slot. If there is no most-specific type for

a dispatch slot, an error occurs.

For example, assume the following definitions:

type IA = interface abstract P : int end

type IB = interface inherit IA end

type ID = interface inherit IB end

With these definitions, the following object expression is legal. Type IB is the most-specific

implemented type that encompasses IA, and therefore the implementation mapping for P must be

listed under IB:

let x = { new ID

 interface IB with

 member x.P = 2 }

But given:

248

type IA = interface abstract P : int end

type IB = interface inherit IA end

type IC = interface inherit IB end

type ID = interface inherit IB inherit IC end

then the following object expression causes an error, because both IB and IC include the interface

IA, and consequently the implementation mapping for P is ambiguous.

let x = { new ID

 interface IB with

 member x.P = 2

 interface IC with

 member x.P = 2 }

The ambiguity can be resolved by explicitly implementing interface IA.

After dispatch slots are assigned to types, the compiler tries to associate each member with a

dispatch slot based on name and number of arguments. This is called dispatch slot inference, and it

proceeds as follows:

• For each member x.M(arg1...argN) in type tyi, attempt to find a single dispatch slot in the form

abstract M : aty1...atyN -> rty

with name M, argument count N, and most-specific implementing type tyi.

• To determine the argument counts, analyze the syntax of patterns and look specifically for

tuple and unit patterns. Thus, the following members have argument count 1, even though

the argument type is unit:

member obj.ToString(() | ()) = ...

member obj.ToString(():unit) = ...

member obj.ToString(_:unit) = ...

• A member may have a return type, which is ignored when determining argument counts:

member obj.ToString() : string = ...

For example, given

let obj1 =

 { new System.Collections.Generic.IComparer<int> with

 member x.Compare(a,b) = compare (a % 7) (b % 7) }

the types of a and b are inferred by looking at the signature of the implemented dispatch slot, and

are hence both inferred to be int.

14.8 Dispatch Slot Checking
Dispatch Slot Checking is applied to object expressions and type definitions to check consistency

properties, such as ensuring that all abstract members are implemented.

After the compiler checks all bodies of all methods, it checks that a one-to-one mapping exists

between dispatch slots and implementing members based on exact signature matching.

249

The interface methods and abstract method slots of a type are collectively known as dispatch slots.

Each object expression and type definition results in an elaborated dispatch map. This map is keyed

by dispatch slots, which are qualified by the declaring type of the slot. This means that a type that

supports two interfaces I and I2, both of which contain the method m, may supply different

implementations for I.m() and I2.m().

The construction of the dispatch map for any particular type is as follows:

• If the type definition or extension has an implementation of an interface, mappings are added

for each member of the interface,

• If the type definition or extension has a default or override member, a mapping is added for the

associated abstract member slot.

14.9 Byref Safety Analysis
 Byref arguments are pointers that can be stack-bound and are used to pass values by reference to

procedures in CLI languages, often to simulate multiple return values. Byref pointers are not often

used in F#; more typically, tuple values are used for multiple return values. However, a byref value

can result from calling or overriding a CLI method that has a signature that involves one or more

byref values.

To ensure the safety of byref arguments, the following checks are made:

• Byref types may not be used as generic arguments.

• Byref values may not be used in any of the following:

• The argument types or body of function expressions (fun … -> …).

• The member implementations of object expressions.

• The signature or body of let-bound functions in classes.

• The signature or body of let-bound functions in expressions.

Note that function expressions occur in:

• The elaborated form of sequence expressions.

• The elaborated form of computation expressions.

• The elaborated form of partial applications of module-bound functions and members.

In addition:

• A generic type cannot be instantiated by a byref type.

• An object field cannot have a byref type.

• A static field or module-bound value cannot have a byref type.

As a result, a byref-typed expression can occur only in these situations:

• As an argument to a call to a module-defined function or class-defined function.

250

• On the right-hand-side of a value definition for a byref-typed local.

These restrictions also apply to uses of the prefix && operator for generating native pointer values.

14.10 Promotion of Escaping Mutable Locals to Objects
Value definitions whose byref address would be subject to the restrictions on byref<_> listed in

§14.9 are treated as implicit declarations of reference cells. For example

let sumSquares n =

 let mutable total = 0

 [1 .. n] |> Seq.iter (fun x -> total <- total + x*x)

 total

is considered equivalent to the following definition:

let sumSquares n =

 let total = ref 0

 [1 .. n] |> Seq.iter

 (fun x -> total.contents <- total.contents + x*x)

 total.contents

because the following would be subject to byref safety analysis:

let sumSquares n =

 let mutable total = 0

 &total

14.11 Arity Inference
During checking, members within types and function definitions within modules are inferred to have

an arity. An arity includes both of the following:

• The number of iterated (curried) arguments n

• A tuple length for these arguments [A1;...;An]. A tuple length of zero indicates that the

corresponding argument is of type unit.

Arities are inferred as follows. A function definition of the following form is given arity [A1;...;An],

where each Ai is derived from the tuple length for the final inferred types of the patterns:

let ident pat1 ... patn = ...

For example, the following is given arity [1; 2]:

let f x (y,z) = x + y + z

Arities are also inferred from function expressions that appear on the immediate right of a value

definition. For example, the following has an arity of [1]:

let f = fun x -> x + 1

Similarly, the following has an arity of [1;1]:

251

let f x = fun y -> x + y

Arity inference is applied partly to help define the elaborated form of a function definition. This is

the form that other CLI languages see. In particular:

• A function value F in a module that has arity [A1;...;An] and the type
ty1,1 * ... * ty1,A1 -> ... -> tyn,1 * ... * tyn,An -> rty

elaborates to a CLI static method definition with signature

rty F(ty1,1, ..., ty1,A1, ..., tyn,1, ..., tyn,An).

• F# instance (respectively static) methods that have arity [A1;...;An] and type
ty1,1 * ... * ty1,A1 -> ... -> tyn,1 * ... * tyn,An -> rty

elaborate to a CLI instance (respectively static) method definition with signature

rty F(ty1,1, ..., ty1,A1), subject to the syntactic restrictions that result from the patterns that

define the member, as described later in this section.

For example, consider a function in a module with the following definition:

let AddThemUp x (y, z) = x + y + z

This function compiles to a CLI static method with the following C# signature:

int AddThemUp(int x, int y, int z);

Arity inference applies differently to function and member definitions. Arity inference on function

definitions is fully type-directed. Arity inference on members is limited if parentheses or other

patterns are used to specify the member arguments. For example:

module Foo =

 // compiles as a static method taking 3 arguments

 let test1 (a1: int, a2: float, a3: string) = ()

 // compiles as a static method taking 3 arguments

 let test2 (aTuple : int * float * string) = ()

 // compiles as a static method taking 3 arguments

 let test3 ((aTuple : int * float * string)) = ()

 // compiles as a static method taking 3 arguments

 let test4 ((a1: int, a2: float, a3: string)) = ()

 // compiles as a static method taking 3 arguments

 let test5 (a1, a2, a3 : int * float * string) = ()

type Bar() =

 // compiles as a static method taking 3 arguments

 static member Test1 (a1: int, a2: float, a3: string) = ()

 // compiles as a static method taking 1 tupled argument

 static member Test2 (aTuple : int * float * string) = ()

 // compiles as a static method taking 1 tupled argument

 static member Test3 ((aTuple : int * float * string)) = ()

 // compiles as a static method taking 1 tupled argument

 static member Test4 ((a1: int, a2: float, a3: string)) = ()

252

 // compiles as a static method taking 1 tupled argument

 static member Test5 (a1, a2, a3 : int * float * string) = ()

14.12 Additional Constraints on CLI Methods
F# treats some CLI methods and types specially, because they are common in F# programming and

cause extremely difficult-to-find bugs. For each use of the following constructs, the F# compiler

imposes additional ad hoc constraints:

x.Equals(yobj) requires type ty : equality for the static type of x

x.GetHashCode() requires type ty : equality for the static type of x

new Dictionary<A,B>() requires A : equality, for any overload that does not take an
IEqualityComparer<T>

No constraints are added for the following operations. Consider writing wrappers around these

functions to improve the type safety of the operations.

System.Array.BinarySearch<T>(array,value) requiring C : comparison, for any overload that

does not take an IComparer<T>

System.Array.IndexOf requiring C : equality

System.Array.LastIndexOf(array,T) requiring C : equality

System.Array.Sort<'T>(array) requiring C : comparison, for any overload that does not take an
IEqualityComparer<T>

new SortedList<A,B>() requiring A : comparison, for any overload that does not take an
IEqualityComparer<T>

new SortedDictionary<A,B>() requiring C : comparison, for any overload that does not take an
IEqualityComparer<_>

15. Lexical Filtering

15.1 Lightweight Syntax
F# supports lightweight syntax, in which whitespace makes indentation significant.

The lightweight syntax option is a conservative extension of the explicit language syntax, in the sense

that it simply lets you leave out certain tokens such as in and ;; because the parser takes

indentation into account. Indentation can make a surprising difference in the readability of code.

Compiling your code with the indentation-aware syntax option is useful even if you continue to use

explicit tokens, because the compiler reports many indentation problems with your code and

ensures a regular, clear formatting style.

In the processing of lightweight syntax, comments are considered pure whitespace. This means that

the compiler ignores the indentation position of comments. Comments act as if they were replaced

by whitespace characters. Tab characters cannot be used in F# files.

15.1.1 Basic Lightweight Syntax Rules by Example

The basic rules that the F# compiler applies when it processes lightweight syntax are shown below,

illustrated by example.

;; delimiter

When the lightweight syntax option is enabled, top level expressions do not require the ;; delimiter
because every construct that starts in the first column is implicitly a new declaration. The ;;
delimiter is still required to terminate interactive entries to fsi.exe, but not when using F# Interactive
from Visual Studio.
Lightweight Syntax
printf "Hello"
printf "World"

Normal Syntax
printf "Hello";;
printf "World";;

in keyword

When the lightweight syntax option is enabled, the in keyword is optional. The token after the "=" in
a 'let' definition begins a new block, and the pre-parser inserts an implicit separating in token
between each definition that begins at the same column as that token.
Lightweight Syntax
let SimpleSample() =
 let x = 10 + 12 - 3
 let y = x * 2 + 1
 let r1,r2 = x/3, x%3
 (x,y,r1,r2)

Normal Syntax
#indent "off"
let SimpleSample() =
 let x = 10 + 12 - 3 in
 let y = x * 2 + 1 in
 let r1,r2 = x/3, x%3 in
 (x,y,r1,r2)

done keyword
When the lightweight syntax option is enabled, the done keyword is optional. Indentation establishes
the scope of structured constructs such as match, for, while and if/then/else.
Lightweight Syntax
let FunctionSample() =
 let tick x = printfn "tick %d" x
 let tock x = printfn "tock %d" x
 let choose f g h x =
 if f x then g x else h x
 for i = 0 to 10 do
 choose (fun n -> n%2 = 0) tick tock i

Normal Syntax
#indent "off"
let FunctionSample() =
 let tick x = printfn "tick %d" x in
 let tock x = printfn "tock %d" x in
 let choose f g h x =
 if f x then g x else h x in
 for i = 0 to 10 do

254

 printfn "done!" choose (fun n -> n%2 = 0) tick tock i
 done;
 printfn "done!"

if/then/else Scope

When the lightweight syntax option is enabled, the scope of if/then/else is implicit from
indentation. Without the lightweight syntax option, begin/end or parentheses are often required to
delimit such constructs.
Lightweight Syntax
let ArraySample() =
 let numLetters = 26
 let results = Array.create numLetters 0
 let data = "The quick brown fox"
 for i = 0 to data.Length - 1 do
 let c = data.Chars(i)
 let c = Char.ToUpper(c)
 if c >= 'A' && c <= 'Z' then
 let i = Char.code c - Char.code 'A'
 results.[i] <- results.[i] + 1
 printfn "done!"

Normal Syntax
#indent "off"
let ArraySample() =
 let numLetters = 26 in
 let results = Array.create numLetters 0 in
 let data = "The quick brown fox" in
 for i = 0 to data.Length - 1 do
 let c = data.Chars(i) in
 let c = Char.ToUpper(c) in
 if c >= 'A' && c <= 'Z' then begin
 let i = Char.code c - Char.code 'A' in
 results.[i] <- results.[i] + 1
 end
 done;
 printfn "done!"

15.1.2 Inserted Tokens

Lexical filtering inserts the following hidden tokens :

token $in // Note: also called ODECLEND
token $done // Note: also called ODECLEND
token $begin // Note: also called OBLOCKBEGIN
token $end // Note: also called OEND, OBLOCKEND and ORIGHT_BLOCK_END
token $sep // Note: also called OBLOCKSEP
token $app // Note: also called HIGH_PRECEDENCE_APP
token $tyapp // Note: also called HIGH_PRECEDENCE_TYAPP

Note: The following tokens are also used in the Microsoft F# implementation. They are

translations of the corresponding input tokens and help provide better error messages

for lightweight syntax code:

tokens $let $use $let! $use! $do $do! $then $else $with $function $fun

15.1.3 Grammar Rules Including Inserted Tokens

Additional grammar rules take into account the token transformations performed by lexical filtering:

expr +:=
 | let function-defn $in expr
 | let value-defn $in expr
 | let rec function-or-value-defns $in expr
 | while expr do expr $done
 | if expr then $begin expr $end
 | for pat in expr do expr $done
 | for expr to expr do expr $done
 | try expr $end with expr $done
 | try expr $end finally expr $done

 | expr $app expr // equivalent to "expr(expr)"
 | expr $sep expr // equivalent to "expr; expr"
 | expr $tyapp < types > // equivalent to "expr<types>"
 | $begin expr $end // equivalent to “expr”

elif-branch +:=
 | elif expr then $begin expr $end

255

else-branch +:=
 | else $begin expr $end

class-or-struct-type-body +:=
 | $begin class-or-struct-type-body $end
 // equivalent to class-or-struct-type-body

module-elems +:=
 | $begin module-elem ... module-elem $end

module-abbrev +:=
 | module ident = $begin long-ident $end

module-defn +:=
 | module ident = $begin module-defn-body $end

module-signature-elements +:=
 | $begin module-signature-element ... module-signature-element $end

module-signature +:=
 | module ident = $begin module-signature-body $end

15.1.4 Offside Lines

Lightweight syntax is sometimes called the “offside rule”. In F# code, offside lines occur at column

positions. For example, an = token associated with let introduces an offside line at the column of

the first non-whitespace token after the = token.

Other structured constructs also introduce offside lines at the following places:

• The column of the first token after then in an if/then/else construct.

• The column of the first token after try, else, ->, with (in a match/with or try/with), or with (in a

type extension).

• The column of the first token of a (, { or begin token.

• The start of a let, if or module token.

Here are some examples of how the offside rule applies to F# code. In the first example, let and

type declarations are not properly aligned, which causes F# to generate a warning.

// "let" and "type" declarations in

// modules must be precisely aligned.

let x = 1

 let y = 2 <-- unmatched 'let'

let z = 3 <-- warning FS0058: possible

 incorrect indentation: this token is offside of

 context at position (2:1)

In the second example, the | markers in the match patterns do not align properly:

// The "|" markers in patterns must align.

// The first "|" should always be inserted.

let f () =

 match 1+1 with

 | 2 -> printf "ok"

 | _ -> failwith "no!" <-- syntax error

256

15.1.5 The Pre-Parse Stack

F# implements the lightweight syntax option by preparsing the token stream that results from a

lexical analysis of the input text according to the lexical rules in §15.1.3. Pre-parsing for lightweight

syntax uses a stack of contexts.

• When a column position becomes an offside line, a context is pushed.

• The closing bracketing tokens), }, and end terminate offside contexts up to and including the

context that the corresponding opening token introduced.

15.1.6 Full List of Offside Contexts

This section describes the full list of offside contexts that is kept on the pre-parse stack.

The SeqBlock context is the primary context of the analysis.It indicates a sequence of items that

must be column-aligned. Where necessary for parsing, the compiler automatically inserts a delimiter

that replaces the regular in and ; tokens between the syntax elements. The SeqBlock context is

pushed at the following times:

• Immediately after the start of a file, excluding lexical directives such as #if.

• Immediately after an = token is encountered in a Let or Member context.

• Immediately after a Paren, Then, Else, WithAugment, Try, Finally, Do context is pushed.

• Immediately after an infix token is encountered.

• Immediately after a -> token is encountered in a MatchClauses context.

• Immediately after an interface, class, or struct token is encountered in a type declaration.

• Immediately after an = token is encountered in a record expression when the subsequent token

either (a) occurs on the next line or (b) is one of try, match, if, let, for, while or use.

• Immediately after a <- token is encoutered when the subsequent token either (a) does not occur

on the same line or (b) is one of try, match, if, let, for, while or use.

Here “immediately after” refers to the fact that the column position associated with the SeqBlock is

the first token following the significant token.

In the last two rules, a new line is significant. For example, the following do not start a SeqBlock on

the right-hand side of the “<-“ token, so it does not parse correctly:

let mutable x = 1

// The subsequent token occurs on the same line.

X <- printfn "hello"

 2 + 2

To start a SeqBlock on the right, either parentheses or a new line should be used:

// The subsequent token does not occur on the same line, so a SeqBlock is pushed.

X <-

 printfn "hello"

 2 + 2

257

The following contexts are associated with nested constructs that are introduced by the specified

keywords:

Context Pushed when the token stream contains…

Let The let keyword

If The if or elif keyword

Try The try keyword

Lazy The lazy keyword

Fun The fun keyword

Function The function keyword

WithLet The with keyword as part of a record expression or an object expression whose

members use the syntax{ new Foo with M() = 1 and N() = 2 }

WithAugment The with keyword as part of an extension, interface, or object expression whose

members use the syntax { new Foo member x.M() = 1 member x. N() = 2 }

Match the match keyword

For the for keyword

While The while keyword

Then The then keyword

Else The else keyword

Do The do keyword

Type The type keyword

Namespace The namespace keyword

Module The module keyword

Member ▪ The member, abstract, default, or override keyword, if the Member context is
not already active, because multiple tokens may be present.

—or—

▪ (is the next token after the new keyword. This distinguishes the member
declaration new(x) = ... from the expression new x()

Paren(token) (, begin, struct, sig, {, [, [|, or quote-op-left

MatchClauses The with keyword in a Try or Match context immediately after a function keyword.

Vanilla An otherwise unprocessed keyword in a SeqBlock context.

15.1.7 Balancing Rules

When the compiler processes certain tokens, it pops contexts off the offside stack until the stack

reaches a particular condition. When it pops a context, the compiler may insert extra tokens to

indicate the end of the construct. This procedure is called balancing the stack.

The following table lists the contexts that the compiler pops and the balancing condition for each:

Token Contexts Popped and Balancing Conditions:

258

Token Contexts Popped and Balancing Conditions:
End Enclosing context is one of the following:

▪ WithAugment

▪ Paren(interface)

▪ Paren(class)

▪ Paren(sig)

▪ Paren(struct)

▪ Paren(begin)

;; Pop all contexts from stack
else If
elif If
done Do
in For or Let
eith Match, Member, Interface, Try, Type
finally Try
) Paren(()
} Paren({)
] Paren([)
|] Paren([|)
quote-op-right Paren(quote-op-left)

15.1.8 Offside Tokens, Token Insertions, and Closing Contexts

The offside limit for the current offside stack is the rightmost offside line for the offside contexts on

the context stack. The following figure shows the offside limits:

let FunctionSample() =
 let tick x = printfn "tick %d" x
 let tock x = printfn "tock %d" x
 let choose f g h x =
 if f x then g x else h x
 for i = 0 to 10 do
 choose (fun n -> n%2 = 0) tick tock i

 printfn "done!"

Offside limit for inner let and for contexts

Offside limit for outer let context

When a token occurs on or before the offside limit for the current offside stack, and a permitted

undentation does not apply, enclosing contexts are closed until the token is no longer offside. This

may result in the insertion of extra delimiting tokens.

Contexts are closed as follows:

• When a Fun context is closed, the $end token is inserted.

• When a SeqBlock, MatchClauses, Let, or Do context is closed, the $end token is inserted, with the

exception of the first SeqBlock pushed for the start of the file.

• When a While or For context is closed, and the offside token that forced the close is not done,

the $done token is inserted.

• When a Member context is closed, the $end token is inserted.

259

• When a WithAugment context is closed, the $end token is inserted.

If a token is offside and a context cannot be closed, then an “undentation” warning or error is issued

to indicate that the construct is badly formatted.

Tokens are also inserted in the following situations:

• When a SeqBlock context is pushed, the $begin token is inserted, with the exception of the first

SeqBlock pushed for the start of the file.

• When a token other than and appears directly on the offside line of Let context, and the next

surrounding context is a SeqBlock, the $in token is inserted.

• When a token occurs directly on the offside line of a SeqBlock on the second or subsequent lines

of the block, the $sep token is inserted. This token plays the same role as ; in the grammar rules.

For example, consider this source text:

let x = 1

x

The raw token stream contains let, x, =, 1, x and the end-of-file marker eof. An initial SeqBlock is

pushed immediately after the start of the file, at the first token in the file, with an offside line on

column 0. The let token pushes a Let context. The = token in a Let context pushes a SeqBlock

context and inserts a $begin token. The 1 pushes a Vanilla context. The final token, x, is offside

from the Vanilla context, which pops that context. It is also offside from the SeqBlock context,

which pops the context and inserts $end. It is also offside from the Let context, which inserts

another $end token. It is directly aligned with the SeqBlock context, so a $seq token is inserted.

15.1.9 Exceptions to the Offside Rules

The compiler makes some exceptions to the offside rules when it analyzes a token to determine

whether it is offside from the current context. The following table summarizes the exceptions and

shows examples of each.

Context Exception Example

SeqBlock An infix token may be offside by the
size of the token plus one.

let x =
 expr + expr
 + expr + expr
 let x =
 expr
 |> f expr
 |> f expr

SeqBlock An infix token may align precisely
with the offside line of the SeqBlock.

let someFunction(someCollection) =
 someCollection
 |> List.map (fun x -> x + 1)

260

Context Exception Example

SeqBlock The infix |> token that begins the last
line is not considered as a new
element in the sequence block on the
right-hand side of the definition. The
same also applies to end, and, with,
then, and right-parenthesis
operators.
In the example, the first) token does
not indicate a new element in a
sequence of items, even though it
aligns precisely with the sequence
block that starts at the beginning of
the argument list.

new MenuItem("&Open...",
 new EventHandler(fun _ _ ->
 ...
))

Let The and token may align precisely
with the let keyword.

let rec x = 1
and y = 2
x + y

Type The }, end, and, and | tokens may
align precisely with the type
keyword.

type X =
| A
| B
with
 member x.Seven = 21 / 3
end
and Y = {
 x : int
}
and Z() = class
 member x.Eight = 4 + 4
end

For The done token may align precisely
with the for keyword.

for i = 1 to 3 do
 expr
done

SeqBlock;
Match

On the right-hand side of an arrow for
a match expression, a token may align
precisely with the match keyword.
This exception allows the last
expression to align with the match, so
that a long series of matches does not
increase indentation.

match x with
| Some(_) -> 1
| None ->
match y with
| Some(_) -> 2
| None ->
3

Interface The end token may align precisely
with the interface keyword.

interface IDisposable with
 member x.Dispose() = printfn disposing!"
end

If The then, elif, and else tokens may
align precisely with the if keyword.

if big
then callSomeFunction()
elif small
then callSomeOtherFunction()
else doSomeCleanup()

Try The finally and with tokens may
align precisely with the try keyword.

Example 1:
try
 callSomeFunction()
finally
 doSomeCleanup()

Example 2:
try
 callSomeFunction()
with Failure(s) ->
 doSomeCleanup()

Do The done token may align precisely
with the do keyword.

for i = 1 to 3
 do
 expr
 done

261

15.1.10 Permitted Undentations

As a general rule, incremental indentation requires that nested expressions occur at increasing

column positions in indentation-aware code. Warnings or syntax errors are issued when this is not

the case. However, undentation is permitted for the following constructs:

• Bodies of function expressions

• Branches of if/then/else expressions

• Bodies of modules and module types

15.1.10.1 Undentation of Bodies of Function Expressions

The bodies of functions may be undented from the fun or function symbol. As a result, the compiler

ignores the symbol when determining whether the body of the function satisfies the incremental

indentation rule. For example, the printf expression in the following example is undented from the

fun symbol that delimits the function definition:

let HashSample(tab: Collections.HashTable<_,_>) =

 tab.Iterate (fun c v ->

 printfn "Entry (%O,%O)" c v)

However, the block must not undent past other offside lines. Thefollowing is not permitted because

the second line breaks the offside line established by the = in the first line:

let x = (function (s, n) ->

 (fun z ->

 s+n+z))

Constructs enclosed in brackets may be undented.

15.1.10.2 Undentation of Branches of If/Then/Else Expressions

The body of a (...) or begin ... end block in an if/then/else expression may be undented when the

body of the block follows the then or else keyword but may not undent further than the if

keyword. In this example, the parenthesized block follows then, so the body can be undented to the

offside line established by if:

let IfSample(day: System.DayOfWeek) =

 if day = System.DayOfWeek.Monday then (

 printf "I don't like Mondays"

)

15.1.10.3 Undentation of Bodies of Modules and Module Types

The bodies of modules and module types that are delimited by begin and end may be undented. For

example, in the following example the two let statements that comprise the module body are

undented from the =.

module MyNestedModule = begin

 let one = 1

 let two = 2

end

Similarly, the bodies of classes, interfaces, and structs delimited by { ... }, class ... end, struct ... end,

or interface ... end may be undented to the offside line established by the type keyword. For

example:

262

type MyNestedModule = interface

 abstract P : int

end

15.2 High Precedence Application
The entry f x in the precedence table in §4.4.2 refers to a function application in which the function

and argument are separated by spaces. The entry "f(x)" indicates that in expressions and patterns,

identifiers that are followed immediately by a left parenthesis without intervening whitespace form

a “high precedence” application. Such expressions are parsed with higher precedence than prefix

and dot-notation operators. Conceptually this means that

Example 1: B(e)

is analyzed lexically as

Example 1: B $app (e)

where $app is an internal symbol inserted by lexical analysis. We do not show this symbol in the

remainder of this specification and simply show the original source text.

This means that the following two statements

Example 1: B(e).C

Example 2: B (e).C

are parsed as

Example 1: (B(e)).C

Example 2: B ((e).C)

respectively.

Furthermore, arbitrary chains of method applications, property lookups, indexer lookups (.[]), field

lookups, and function applications can be used in sequence if the arguments of method applications

are parenthesized and immediately follow the method name, with no intervening spaces. For

example:

e.Meth1(arg1,arg2).Prop1.[3].Prop2.Meth2()

Although the grammar and these precedence rules technically allow the use of high-precedence

application expressions as direct arguments, an additional check prevents such use. Instead, such

expressions must be surrounded by parentheses. For example,

f e.Meth1(arg1,arg2) e.Meth2(arg1,arg2)

must be written

f (e.Meth1(arg1,arg2)) (e.Meth2(arg1,arg2))

However, indexer, field, and property dot-notation lookups may be used as arguments without

adding parentheses. For example:

263

f e.Prop1 e.Prop2.[3]

15.3 Lexical Analysis of Type Applications
The entry f<types> x in the precedence table (§4.4.2) refers to any identifier that is followed

immediately by a < symbol and a sequence of all of the following:

• _, ,, *, ', [,], whitespace, or identifier tokens.

• A parentheses (or < token followed by any tokens until a matching parentheses) or > is

encountered.

• A final > token.

During this analysis, any token that is composed only of the > character (such as >, >>, or >>>) is

treated as a series of individual > tokens. Likewise, any token composed only of > characters

followed by a period (such as >., >>., or >>>.) is treated as a series of individual > tokens followed by

a period.

If such a sequence of tokens follows an identifier, lexical analysis marks the construct as a high

precedence type application and subsequent grammar rules ensure that the enclosed text is parsed

as a type. Conceptually this means that

Example 1: B<int>.C<int>(e).C

is returned as the following stream of tokens:

Example 1: B $app <int> .C $app <int>(e).C

where $app is an internal symbol inserted by lexical analysis. We do not show this symbol elsewhere

in this specification and simply show the original source text.

The lexical analysis of type applications does not apply to the character sequence “<>”. A character

sequence such as “< >” with intervening whitespace should be used to indicate an empty list of

generic arguments.

type Foo() =

 member this.Value = 1

let b = new Foo< >() // valid

let c = new Foo<>() // invalid

16. Provided Types
Type providers are extensions provided to an F# compiler or interpreter which provide information

about types available in the environment for the F# code being analysed.

The compilation context is augmented with a set of type provider instances. A type provider insance

is interrogated for information through type provider invocations (TPI). Type provider invocations

are all executed at compile-time. The type provider instance is not required at runtime.

Wherever an operation on a provided namespace, provided type definition or provided

member is mentioned in this section, it is assumed to be a compile-time type provider

invocation.

The exact protocol used to implement type provider invocations and communicate

between an F# compiler/interpreter and type provider instances is implementation

dependent.

As of this release of F#,

- a type provider is a .NET 4.x binary component referenced as an imported asssembly

reference. The assembly should have a TypeProviderAssemblyAttribute, with at

least one component marked with TypeProviderAttribute.

- a type provider instance is an object created for a component marked with

TypeProviderAttribute.

- provided type definitions are System.Type objects returned by a type provider

instance.

- provided methods are System.Reflection.MethodInfo objects returned by a type

provider instance.

- provided constructors are System.Reflection.ConstructorInfo objects returned by

a type provider instance.

- provided properties are System.Reflection.PropertyInfo objects returned by a type

provider instance.

- provided events are System.Reflection.EventInfo objects returned by a type

provider instance.

- provided literal fields are System.Reflection.FieldInfo objects returned by a type

provider instance.

- provided parameters are System.Reflection.ParameterInfo objects returned by a

type provider instance.

- provided static parameters are System.Reflection.ParameterInfo objects returned

by a type provider instance.

- provided attributes are attribute value objects returned by a type provider instance.

266

16.1 Static Parameters
The syntax of types in F# is expanded to include static parameters, including named static

parameters:

type-arg =
 …
 static-parameter

static-parameter =
 static-parameter-value
 id = static-parameter-value

static-parameter-value =
 const expr
 simple-constant-expression

References to provided types may include static parameters, e.g.

 type SomeService = ODataService<"http://some.url.org/service">

Static parameters which are constant expressions, but not simple literal constants, may be specified

using the const keyword, e.g.

 type SomeService = CsvFile<const (__SOURCE_DIRECTORY__ + "/a.csv")>

Parentheses are needed around any simple contanst expressions after “const” that are not simple

literal constants, e.g.

type K = N.T< const (+1) >

During checking of a type A<type-args>, where A is a provided type, the TPM GetStaticParameters is

invoked to determine the static parameters for the type A if any. If the static parameters exist and

are of the correct kinds, the TPM ApplyStaticArguments is invoked to apply the static arguments to

the provided type.

During checking of a method M<type-args>, where M is a provided method definition, the TPM

GetStaticParametersForMethod is invoked to determine the static parameters if any. If the static

parameters exist and are of the correct kinds, the TPM ApplyStaticArgumentsForMethod is invoked to

apply the static arguments to the provided method.

In both cases a static parameter value must be given for each non-optional static parameter.

16.1.1 Mangling of Static Parameter Values

Static parameter values are encoded into the names used for types and methods within F#

metadata. The encoding scheme used is

 encoding(A<arg1,…,argN>) =

 typeOrMethodName,ParamName1=encoding(arg1),…, ParamNameN=encoding(argN)

 encoding(v) = "s"

267

where s is the result applying the F# ‘string’ operator to v (using invariant numeric

formatting), and in the result " is replaced by \" and \ by \\

16.2 Provided Namespace
Each type provider instance in the assembly context reports a collection of provided namespaces

though the GetNamespaces type provider method. Each provided namespace can in turn report

further namespaces through the GetNestedNamespaces type provider method.

16.3 Provided Type Definitions
Each provided namespace reports provided type definitions though the GetTypes and

ResolveTypeName type provider methods. The type provider is obliged to ensure that these two

methods return consistent results.

Name resolution for unqualified identifiers may return provided type definitions if no other

resolution is available.

16.3.1 Generated v. Erased Types

Each provided type definition may be generated or erased. In this case, the types and method calls

are removed entirely during compilation and replaced with other representations. When an erased

type is used, the compiler will replace it with the first concrete type in its inheritance chain as

returned by the TPM type.BaseType. The erasure of an erased interface type is “object”.

➢ If it has a type definition under a path D.E.F, and the .Assembly of that type is in a different

assembly A to the provider’s assembly, then that type definition is a “generated” type

definition. Otherwise it is an erased type definition.

➢ Erased type definitions must return TypeAttributes with the IsErased flag set, value

0x40000000 and given by the F# literal TypeProviderTypeAttributes.IsErased.

➢ When a provided type definition is generated, its reported assembly A is treated as an

injected assembly which is statically linked into the resulting assembly.

➢ Concrete type definitions (both provided and F#-authored) and object expressions may not

inherit from erased types

➢ Concrete type definitions (both provided and F#-authored) and object expressions may not

implement erased interfaces

➢ If an erased type definition reports an interface, its erasure must implement the erasure of

that interface. The interfaces reported by an erased type definition must be unique up to

erasure.

➢ Erased types may not be used as the target type of a runtime type test of runtime coercion.

268

➢ When determining uniqueness for F#-declared methods, uniqueness is determined after

erasure of both provided types and units of measure.

➢ The elaborated form of F# expressions is after erasure of provided types.

➢ Two generated type definitions are equivalent if and only if they have the same F# path and

name in the same assembly, once they are rooted according to their corresponding

generative type definition.

➢ Two erased type definitions are only equivalent if they are provided by the same provider,

using the same type name, with the same static arguments.

16.3.2 Type References

The elements of provided type definitions may reference other provided type definitions, and types

from imported assemblies referenced in the compilation context. They may not reference type

defined in the F# code currently being compiled.

16.3.3 Static Parameters

A provided type definition may report a set of static parameters. For such a definition, all other

provided contents are ignored.

A provided method definition may also report a set of static parameters. For such a definition, all

other provided contents are ignored.

Static parameters may be optional and/or named, indicated by the Attributes property of the static

parameter. For a given set of static parameters, no two static parameters may have the same name

and named static arguments must come after all other arguments.

16.3.4 Kind

➢ Provided type definitions may be classes.

This includes both erased and concrete types. This corresponds to the type.IsClass property

returning true for the provided type definition.

➢ Provided type definitions may be interfaces.

This includes both erased and concrete types. This corresponds to the type.IsInterface

property returning true. Only one of IsInterface, IsClass, IsStruct, IsEnum, IsDelegate,

IsArray may return true.

➢ Provided type definitions may be static classes.

This includes both erased and concrete types.

➢ Provided type definitions may be sealed.

➢ Provided type definitions may not be arrays. This means the type.IsArray property must

always return false. Provided types used in return types and argument positions may be

array “symbol” types, see below.

269

➢ By default provided type definitions which are reference types are considered to support

null literals.

A provided type definition may have the AllowNullLiteralAttribute with value false in

which case the type is considered to have null as an abnormal value.

16.3.5 Inheritance

➢ Provided type definitions may report base types.

➢ Provided type definition may report interfaces.

16.3.6 Members

➢ Provided type definitions may report methods.

This corresponds to non-null results from the type.GetMethod and type.GetMethods of the

provided type definition. The results returned by these methods must be consistent.

o Provided methods may be static, instance and abstract

o Provided methods may not be class constructors (.cctor). By .NET rules these would

have to be private anyway.

o Provided methods may be operators such as op_Addition.

➢ Provided type definitions may report properties.

This corresponds to non-null results from the type.GetProperty and type.GetProperties of the

provided type definition. The results returned by these methods must be consistent.

o Provided properties may be static or instance

o Provided properties may be indexers. This corresponds to reporting methods with

name Item, or as identified by DefaultMemberAttribute non-null results from the

type.GetEvent and type.GetEvents of the provided type definition. The results

returned by these methods must be consistent. This include 1D, 2D, 3D and 4D

indexer access notation in F# (corresponding to different numbers of parameters to

the indexer property).

➢ Provided type definitions may report constructors.

This corresponds to non-null results from the type.GetConstructor and type.GetConstructors of

the provided type definition. The results returned by these methods must be consistent.

➢ Provided type definitions may report events.

This corresponds to non-null results from the type.GetEvent and type.GetEvents of the

provided type definition. The results returned by these methods must be consistent.

➢ Provided type definitions may report nested types.

270

This corresponds to non-null results from the type.GetNestedType and type.GetNestedTypes of

the provided type definition. The results returned by these methods must be consistent.

o The nested types of an erased type may be generated types in a generated

assembly. The type.DeclaringType property of the nested type need not report the

erased type.

➢ Provided type definitions may report literal (constant) fields.

This corresponds to non-null results from the type.GetField and type.GetFields of the

provided type definition, and is related to the fact that provided types may be

enumerations. The results returned by these methods must be consistent.

➢ Provided type definitions may not report non-literal (i.e. non-const) fields

This is a deliberate feature limitation, because in .NET, non-literal fields should not appear in

public API surface area.

16.3.7 Attributes

➢ Provided type definitions, properties, constructors, events and methods may report

attributes.

This includes ObsoleteAttribute and ParamArrayAttribute attributes

16.3.8 Accessibility

➢ All erased provided type definitions must be public

However, concrete provided types are each in an assembly A that gets statically linked into

the resulting F# component. These assemblies may contain private types and methods.

These types are not directly “provided” types, since they are not returned to the compiler by

the API, but they are part of the closure of the types that are being embedded.

16.3.9 Elaborated Code

Elaborated uses of provided methods are erased to elaborated expressions returned by the TPM

GetInvokerExpression . In the current release of F#, replacement elaborated expressions are

specified via F# quotation values composed of quotations constructed with respect to the

referenced assemblies in the compilation context according to the following quotation library calls:

➢ Expr.NewArray

➢ Expr.NewObject

➢ Expr.WhileLoop

➢ Expr.NewDelegate

➢ Expr.ForIntegerRangeLoop

➢ Expr.Sequential

➢ Expr.TryWith

➢ Expr.TryFinally

271

➢ Expr.Lambda

➢ Expr.Call

➢ Expr.Constant

➢ Expr.DefaultValue

➢ Expr.NewTuple

➢ Expr.TupleGet

➢ Expr.TypeAs

➢ Expr.TypeTest

➢ Expr.Let

➢ Expr.VarSet

➢ Expr.IfThenElse

➢ Expr.Var

The type of the quotation expression returned by GetInvokerExpression must be an erased type. The

type provider is obliged to ensure that this type is equivalent to the erased type of the expression it

is replacing.

16.3.10 Further Restrictions

➢ If a provided type definition reports a member with ExtensionAttribute, it is not treated as

an extension member

➢ Provided type and method definitions may not be generic

This corresponds to

- GetGenericArguments returning length 0

- For type definitions, IsGenericType and IsGenericTypeDefinition returning false

- For method definitions, IsGenericMethod and IsGenericMethodDefinition returning false

272

17. Special Attributes and Types
This chapter describes attributes and types that have special significance to the F# compiler.

17.1 Custom Attributes Recognized by F#
The following custom attributes have special meanings recognized by the F# compiler. Except where

indicated, the attributes may be used in F# code, in referenced assemblies authored in F#, or in

assemblies that are authored in other CLI languages.

Attribute Description
System.ObsoleteAttribute
[<Obsolete(...)>]

Indicates that the construct is obsolete and
gives a warning or error depending on the
settings in the attribute.
This attribute may be used in both F# and
imported assemblies.

System.ParamArrayAttribute
[<ParamArray(...)>]

When applied to an argument of a method,
indicates that the method can accept a
variable number of arguments.
This attribute may be used in both F# and
imported assemblies.

System.ThreadStaticAttribute
[<ThreadStatic(...)>]

Marks a mutable static value in a class as
thread static.
This attribute may be used in both F# and
imported assemblies.

System.ContextStaticAttribute
[<ContextStatic(...)>]

Marks a mutable static value in a class as
context static.
This attribute may be used in both F# and
imported assemblies.

System.AttributeUsageAttribute
[<AttributeUsage(...)>]

Specifies the attribute usage targets for an
attribute.
This attribute may be used in both F# and
imported assemblies.

System.Diagnostics.ConditionalAttribute
[<Conditional(...)>]

Emits code to call the method only if the
corresponding conditional compilation symbol
is defined.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyInformationalVersionAttrib
ute
[<AssemblyInformationalVersion(...)>]

Attaches additional version metadata to the
compiled form of the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyFileVersionAttribute
[<AssemblyFileVersion(...)>]

Attaches file version metadata to the compiled
form of the assembly.
This attribute may be used in both F# and
imported assemblies.

273

Attribute Description
System.Reflection.AssemblyDescriptionAttribute
[<AssemblyDescription(...)>]

Attaches descriptive metadata to the compiled
form of the assembly, such as the “Comments”
attribute in the Win32 version resource for the
assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyTitleAttribute
[<AssemblyTitle(...)>]

Attaches title metadata to the compiled form
of the assembly, such as the “ProductName”
attribute in the Win32 version resource for the
assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyCopyrightAttribute
[<AssemblyCopyright(...)>]

Attaches copyright metadata to the compiled
form of the assembly, such as the
“LegalCopyright” attribute in the Win32
version resource for the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyTrademarkAttribute
[<AssemblyTrademark(...)>]

Attaches trademark metadata to the compiled
form of the assembly, such as the
“LegalTrademarks” attribute in the Win32
version resource for the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyCompanyAttribute
[<AssemblyCompany(...)>]

Attaches company name metadata to the
compiled form of the assembly, such as the
“CompanyName” attribute in the Win32
version resource for the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyProductAttribute
[<AssemblyProduct(...)>]

Attaches product name metadata to the
compiled form of the assembly, such as the
“ProductName” attribute in the Win32 version
resource for the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.AssemblyKeyFileAttribute
[<AssemblyKeyFile(...)>]

Indicates to the F# compiler how to sign an
assembly.
This attribute may be used in both F# and
imported assemblies.

System.Reflection.DefaultMemberAttribute
[<DefaultMember(...)>]

When applied to a type, specifies the name of
the indexer property for that type.
This attribute may be used in both F# and
imported assemblies.

System.Runtime.CompilerServices.InternalsVisibleToAt
tribute
[<InternalsVisibleTo(...)>]

Directs the F# compiler to permit access to the
internals of the assembly.
This attribute may be used in both F# and
imported assemblies.

System.Runtime.CompilerServices.TypeForwardedToAttri
bute
[<TypeForwardedTo(...)>]

Indicates a type redirection.
This attribute may be used only in imported
non-F# assemblies. It is not permitted in F#
code.

274

Attribute Description
System.Runtime.CompilerServices.ExtensionAttribute
[<Extension(...)>]

Indicates the compiled form of a C# extension
member.
This attribute may be used only in imported
non-F# assemblies. It is not permitted in F#
code.

System.Runtime.InteropServices.DllImportAttribute
[<DllImport(...)>]

When applied to a function definition in a
module, causes the F# compiler to ignore the
implementation of the definition, and instead
compile it as a CLI P/Invoke stub declaration.
This attribute may be used in both F# and
imported assemblies.

System.Runtime.InteropServices.MarshalAsAttribute
[<MarshalAs(...)>]

When applied to a parameter or return type,
specifies the marshalling attribute for a CLI
P/Invoke stub declaration.
This attribute may be used in both F# and
imported assemblies. However, F# does not
support the specification of "custom"
marshallers.

System.Runtime.InteropServices.InAttribute
[<In>]

When applied to a parameter, specifies the CLI
In attribute.
This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding
attribute in the CLI compiled form.

System.Runtime.InteropServices.OutAttribute
[<Out>]

When applied to a parameter, specifies the CLI
Out attribute.
This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding attribute
in the CLI compiled form.

System.Runtime.InteropServices.OptionalAttribute
[<Optional(...)>]

When applied to a parameter, specifies the CLI
Optional attribute.
This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding attribute
in the CLI compiled form.

System.Runtime.InteropServices.FieldOffsetAttribute
[<FieldOffset(...)>]

When applied to a field, specifies the field
offset of the underlying CLI field.
This attribute may be used in both F# and
imported assemblies.

System.NonSerializedAttribute
[<NonSerialized>]

When applied to a field, sets the "not
serialized" bit for the underlying CLI field.
This attribute may be used in both F# and
imported assemblies.

System.Runtime.InteropServices.StructLayoutAttribute
[<StructLayout(...)>]

Specifies the layout of a CLI type.
This attribute may be used in both F# and
imported assemblies.

FSharp.Core.AutoSerializableAttribute
[<AutoSerializable(false)>]

When added to a type with value false,
disables default serialization, so that F# does
not make the type serializable.
This attribute should be used only in F#
assemblies.

275

Attribute Description
FSharp.Core.CLIMutableAttribute
[<CLIMutable>]

When specified, a record type is compiled to a
CLI representation with a default constructor
with property getters and setters.
This attribute should be used only in F#
assemblies.

FSharp.Core.AutoOpenAttribute
[<AutoOpen>]

When applied to an assembly and given a
string argument, causes the namespace or
module to be opened automatically when the
assembly is referenced.
When applied to a module without a string
argument, causes the module to be opened
automatically when the enclosing namespace
or module is opened.
This attribute should be used only in F#
assemblies.

FSharp.Core.
CompilationRepresentationAttribute
[<CompilationRepresentation(...)>]

Adjusts the runtime representation of a type .
This attribute should be used only in F#
assemblies.

FSharp.Core.CompiledNameAttribute
[<CompiledName(...)>]

Changes the compiled name of an F# language
construct.
This attribute should be used only in F#
assemblies.

FSharp.Core.CustomComparisonAttribute
[<CustomComparison>]

When applied to an F# structural type,
indicates that the type has a user-specified
comparison implementation.
This attribute should be used only in F#
assemblies.

FSharp.Core.CustomEqualityAttribute
[<CustomEquality>]

When applied to an F# structural type,
indicates that the type has a user-defined
equality implementation.
This attribute should be used only in F#
assemblies.

FSharp.Core.DefaultAugmentationAttribute
[<DefaultAugmentation(...)>]

When applied to an F# discriminated union
type with value false, turns off the generation
of standard helper member tester, constructor
and accessor members for the generated CLI
class for that type.
This attribute should be used only in F#
assemblies.

FSharp.Core.DefaultValueAttribute
[<DefaultValue(...)>]

When added to a field declaration, specifies
that the field is not initialized. During type
checking, a constraint is asserted that the field
type supports null. If the argument to the
attribute is false, the constraint is not
asserted.
This attribute should be used only in F#
assemblies.

FSharp.Core.GeneralizableValueAttribute
[<GeneralizableValue>]

When applied to an F# value, indicates that
uses of the attribute can result in generic code
through the process of type inference. For
example, Set.empty. The value must typically
be a type function whose implementation has
no observable side effects.
This attribute should be used only in F#
assemblies.

276

Attribute Description
FSharp.Core.LiteralAttribute
[<Literal>]

When applied to a value, compiles the value as
a CLI literal.
This attribute should be used only in F#
assemblies.

FSharp.Core.NoDynamicInvocationAttribute
[<NoDynamicInvocation>]

When applied to an inline function or member
definition, replaces the generated code with a
stub that throws an exception at runtime. This
attribute is used to replace the default
generated implementation of unverifiable
inline members with a verifiable stub.
This attribute should be used only in F#
assemblies.

FSharp.Core.CompilerMessageAttribute
[<CompilerMessage(...)>]

When applied to an F# construct, indicates
that the F# compiler should report a message
when the construct is used.
This attribute should be used only in F#
assemblies.

FSharp.Core.StructAttribute
[<Struct>]

Indicates that a type is a struct type.
This attribute should be used only in F#
assemblies.

FSharp.Core.ClassAttribute
[<Class>]

Indicates that a type is a class type.
This attribute should be used only in F#
assemblies.

FSharp.Core.InterfaceAttribute
[<Interface>]

Indicates that a type is an interface type.
This attribute should be used only in F#
assemblies.

FSharp.Core.MeasureAttribute
[<Measure>]

Indicates that a type or generic parameter is a
unit of measure definition or annotation.
This attribute should be used only in F#
assemblies.

FSharp.Core.ReferenceEqualityAttribute
[<ReferenceEquality>]

When applied to an F# record or union type,
indicates that the type should use reference
equality for its default equality
implementation.
This attribute should be used only in F#
assemblies.

FSharp.Core.ReflectedDefinitionAttribute
[<ReflectedDefinition>]

Makes the quotation form of a definition
available at runtime through the
FSharp.Quotations.

Expr.GetReflectedDefinition method.
This attribute should be used only in F#
assemblies.

FSharp.Core.
RequireQualifiedAccessAttribute
[<RequireQualifiedAccess>]

When applied to an F# module, warns if an
attempt is made to open the module name.
When applied to an F# union or record type,
indicates that the field labels or union cases
must be referenced by using a qualified path
that includes the type name.
This attribute should be used only in F#
assemblies.

277

Attribute Description
FSharp.Core.
RequiresExplicitTypeArgumentsAttribute
[<RequiresExplicitTypeArguments>]

When applied to an F# function or method,
indicates that the function or method must be
invoked with explicit type arguments, such as
typeof<int>.
This attribute should be used only in F#
assemblies.

FSharp.Core.StructuralComparisonAttribute
[<StructuralComparison>]

When added to a record, union, exception, or
structure type, confirms the automatic
generation of implementations for
IComparable for the type.
This attribute should only be used in F#
assemblies.

FSharp.Core.StructuralEqualityAttribute
[<StructuralEquality>]

When added to a record, union, or struct type,
confirms the automatic generation of
overrides for Equals and GetHashCode for the
type.
This attribute should be used only in F#
assemblies.

FSharp.Core.VolatileFieldAttribute
[<VolatileField>]

When applied to an F# field or mutable value
definition, controls whether the CLI volatile
prefix is emitted before accesses to the field.
This attribute should be used only in F#
assemblies.

FSharp.Core.TypeProviderXmlDocAttribute Specifies documentation for provided type
definitions and provided members

FSharp.Core.TypeProviderDefinitionLocationAttribute Specifies location information for provided
type definitions and provided members

17.2 Custom Attributes Emitted by F#
The F# compiler can emit the following custom attributes:

Attribute Description
System.Diagnostics.DebuggableAttribute Improves debuggability of F# code.
System.Diagnostics.DebuggerHiddenAttribute Improves debuggability of F# code.
System.Diagnostics.DebuggerDisplayAttribute Improves debuggability of F# code.
System.Diagnostics.DebuggerBrowsableAttribute Improves debuggability of F# code.
System.Runtime.CompilerServices.
CompilationRelaxationsAttribute

Enables extra JIT optimizations.

System.Runtime.CompilerServices.
CompilerGeneratedAttribute

Indicates that a method, type, or
property is generated by the F#
compiler, and does not correspond
directly to user source code.

System.Reflection.DefaultMemberAttribute Specifies the name of the indexer
property for a class.

FSharp.Core.CompilationMappingAttribute Indicates how a CLI construct
corresponds to an F# source language
construct.

FSharp.Core.FSharpInterfaceDataVersionAttribute Defines the schema number for the
embedded binary resource for F#-
specific interface and optimization data.

278

Attribute Description
FSharp.Core.OptionalArgumentAttribute Indicates optional arguments to F#

members.

17.3 Custom Attributes Not Recognized by F#
The following custom attributes are defined in some CLI implementations and may appear to be

relevant to F#. However, they either do not affect the behavior of the F# compiler, or result in an

error when used in in F# code.

Attribute Description
System.Runtime.CompilerServices.DecimalConstantAttribute The F# compiler ignores this attribute.

However, if used in F# code, it can
cause some other CLI languages to
interpret a decimal constant as a
compile-time literal.

System.Runtime.CompilerServices.RequiredAttributeAttribute Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

System.Runtime.InteropServices.
DefaultParameterValueAttribute

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

System.Runtime.InteropServices.
UnmanagedFunctionPointerAttribute

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

System.Runtime.CompilerServices.FixedBufferAttribute Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

System.Runtime.CompilerServices.UnsafeValueTypeAttribute Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

System.Runtime.CompilerServices.SpecialNameAttribute Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

17.4 Exceptions Thrown by F# Language Primitives
Certain F# language and primitive library operations throw the following exceptions.

Attribute Description
System.ArithmeticException An arithmetic operation failed. This is the base class for exceptions

such as System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchException An attempt to store an element in an array failed because the
runtime type of the stored element is incompatible with the
runtime type of the array.

System.DivideByZeroException An attempt to divide an integral value by zero occurred.
System.IndexOutOfRangeException An attempt to index an array failed because the index is less than

zero or outside the bounds of the array.
System.InvalidCastException An explicit conversion from a base type or interface to a derived

type failed at run time.

279

Attribute Description
System.NullReferenceException A null reference was used in a way that caused the referenced

object to be required.
System.OutOfMemoryException An attempt to use new to allocate memory failed.
System.OverflowException An arithmetic operation in a checked context overflowed.
System.StackOverflowException The execution stack was exhausted because of too many pending

method calls, which typically indicates deep or unbounded
recursion.

System.TypeInitializationException F# initialization code for a type threw an exception that was not
caught.

18. The F# Library FSharp.Core.dll
All compilations reference the following two base libraries:

• The CLI base library mscorlib.dll.

• The F# base library FSharp.Core.dll

The following namespaces are automatically opened for all F# code:

open FSharp

open FSharp.Core

open FSharp.Core.LanguagePrimitives

open FSharp.Core.Operators

open FSharp.Text

open FSharp.Collections

open FSharp.Core.ExtraTopLevelOperators

A compilation may open additional namespaces may be opened if the referenced F# DLLs contain

AutoOpenAttribute declarations.

See also the online documentation at http://msdn.com/library/ee353567.aspx.

18.1 Basic Types (FSharp.Core)
This section provides details about the basic types that are defined in FSharp.Core.

18.1.1 Basic Type Abbreviations
Type Name Description
obj System.Object
exn System.Exception
nativeint System.IntPtr
unativeint System.UIntPtr
string System.String
float32, single System.Single
float, double System.Double
sbyte, int8 System.SByte
byte, uint8 System.Byte
int16 System.Int16
uint16 System.UInt16
int32, int System.Int32
uint32 System.UInt32
int64 System.Int64
uint64 System.UInt64
char System.Char
bool System.Boolean
decimal System.Decimal

18.1.2 Basic Types that Accept Unit of Measure Annotations
Type Name Description
sbyte<_> Underlying representation System.SByte, but accepts a unit of measure.
int16<_> Underlying representation System.Int16, but accepts a unit of measure.

http://msdn.microsoft.com/library/ee353567.aspx

282

Type Name Description
int32<_> Underlying representation System.Int32, but accepts a unit of measure.
int64<_> Underlying representation System.Int64, but accepts a unit of measure.
float32<_> Underlying representation System.Single, but accepts a unit of measure.
float<_> Underlying representation System.Double, but accepts a unit of measure.
decimal<_> Underlying representation System.Decimal, but accepts a unit of measure.

18.1.3 The nativeptr<_> Type

When the nativeptr<type> is used in method argument or return position, it is represented in

compiled CIL code as either:

• A CLI pointer type type*, if type does not contain any generic type parameters.

• T CLI type System.IntPtr otherwise.

Note: CLI pointer types are rarely used. In CLI metadata, pointer types sometimes

appear in CLI metadata unsafe object constructors for the CLI type System.String.

You can convert between System.UIntPtr and nativeptr<'T> by using the inlined

unverifiable functions in FSharp.NativeInterop.NativePtr.

nativeptr<_> compiles in different ways because CLI restricts where pointer types can

appear.

18.2 Basic Operators and Functions (FSharp.Core.Operators)

18.2.1 Basic Arithmetic Operators

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

(+) x + y Overloaded addition.
(-) x - y Overloaded subtraction.
(*) x * y Overloaded multiplication.
(/) x / y Overloaded division.

For negative numbers, the behavior of this operator
follows the definition of the corresponding operator in
the C# specification.

(%) x % y Overloaded remainder.
For integer types, the result of x % y is the value
produced by x – (x / y) * y. If y is zero,
System.DivideByZeroException is thrown. The
remainder operator never causes an overflow. This
follows the definition of the remainder operator in the C#
specification.
For floating-point types, the behavior of this operator
also follows the definition of the remainder operator in
the C# specification.

(~-) -x Overloaded unary negation.
not not x Boolean negation.

283

18.2.2 Generic Equality and Comparison Operators

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

(<) x < y Generic less-than
(<=) x <= y Generic less-than-or-equal
(>) x > y Generic greater-than
(>=) x >= y Generic greater-than-or-equal
(=) x = y Generic equality
(<>) x <> y Generic disequality
max max x y Generic maximum
min min x y Generic minimum

18.2.3 Bitwise Operators

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

(<<<) x <<< y Overloaded bitwise left-shift
(>>>) x >>> y Overloaded bitwise arithmetic right-shift
(^^^) x ^^^ y Overloaded bitwise exclusive or (XOR)
(&&&) x &&& y Overloaded bitwise and
(|||) x ||| y Overloaded bitwise or
(~~~) ~~~x Overloaded bitwise negation

18.2.4 Math Operators

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

abs abs x Overloaded absolute value
acos acos x Overloaded inverse cosine
asin asin x Overloaded inverse sine
atan atan x Overloaded inverse tangent
atan2 atan2 x y Overloaded inverse tangent of x/y
ceil ceil x Overloaded floating-point ceiling
cos cos x Overloaded cosine
cosh cosh x Overloaded hyperbolic cosine
exp exp x Overloaded exponent
floor floor x Overloaded floating-point floor
log log x Overloaded natural logarithm
log10 log10 x Overloaded base-10 logarithm
(**) x ** y Overloaded exponential
pown pown x y Overloaded integer exponential
round round x Overloaded rounding
sign sign x Overloaded sign function
sin sin x Overloaded sine function
sinh sinh x Overloaded hyperbolic sine function
sqrt sqrt x Overloaded square root function
tan tan x Overloaded tangent function
tanh tanh x Overloaded hyperbolic tangent function

284

18.2.5 Function Pipelining and Composition Operators

The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form Description

(|>) x |> f Pipelines the value x to the function f (forward
pipelining)

(>>) f >> g Composes two functions, so that they are applied in order
from left to right

(<|) f <| x Pipelines the value x to the function f (backward
pipelining)

(<<) g << f Composes two functions, so that they are applied in order
from right to left (backward function composition)

ignore ignore x Computes and discards a value

18.2.6 Object Transformation Operators

The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form Description

box box x Converts to object representation.
hash hash x Generates a hash value.
sizeof sizeof<type> Computes the size of a value of the given type.
typeof typeof<type> Computes the System.Type representation of the given

type.
typedefof typedefof<type> Computes the System.Type representation of type and

calls GetGenericTypeDefinition if it is a generic type.
unbox unbox x Converts from object representation.
ref ref x Allocates a mutable reference cell.
(!) !x Reads a mutable reference cell.

18.2.7 Pair Operators

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

fst fst p Returns the first element of a pair.
snd snd p Returns the second element of a pair

18.2.8 Exception Operators

The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form Description

failwith failwith x Raises a FailureException exception.
invalidArg invalidArg x Raises an ArgumentException exception.
raise raise x Raises an exception.
reraise reraise() Rethrows the current exception.

18.2.9 Input/Output Handles

The following operators are defined in FSharp.Core.Operators:

285

Operator or Function
Name

Expression Form Description

stdin Stdin Computes System.Console.In.
stdout Stdout Computes System.Console.Out.
stderr Stderr Computes System.Console.Error.

18.2.10 Overloaded Conversion Functions

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form Description

byte byte x Overloaded conversion to a byte
sbyte sbyte x Overloaded conversion to a signed byte
int16 int16 x Overloaded conversion to a 16-bit integer
uint16 uint16 x Overloaded conversion to an unsigned 16-bit integer
int32, int int32 x

int x
Overloaded conversion to a 32-bit integer

uint32 uint32 x Overloaded conversion to an unsigned 32-bit integer
int64 int64 x Overloaded conversion to a 64-bit integer
uint64 uint64 x Overloaded conversion to an unsigned 64-bit integer
nativeint nativeint x Overloaded conversion to an native integer
unativeint unativeint x Overloaded conversion to an unsigned native integer
float, double float x

double x
Overloaded conversion to a 64-bit IEEE floating-point
number

float32, single float32 x
single x

Overloaded conversion to a 32-bit IEEE floating-point
number

decimal decimal x Overloaded conversion to a System.Decimal number
char char x Overloaded conversion to a System.Char value
enum enum x Overloaded conversion to a typed enumeration value

18.3 Checked Arithmetic Operators
The module FSharp.Core.Operators.Checked defines runtime-overflow-checked versions of the

following operators:

Operator or Function
Name

Expression Form Description

(+) x + y Checked overloaded addition
(-) x – y Checked overloaded subtraction
(*) x * y Checked overloaded multiplication
(~-) -x Checked overloaded unary negation
byte byte x Checked overloaded conversion to a byte
sbyte sbyte x Checked overloaded conversion to a signed byte
int16 int16 x Checked overloaded conversion to a 16-bit integer
uint16 uint16 x Checked overloaded conversion to an unsigned 16-bit

integer
int32, int int32 x

int x
Checked overloaded conversion to a 32-bit integer

uint32 uint32 x Checked overloaded conversion to an unsigned 32-bit
integer

int64 int64 x Checked overloaded conversion to a 64-bit integer
uint64 uint64 x Checked overloaded conversion to an unsigned 64-bit

integer

286

Operator or Function
Name

Expression Form Description

nativeint nativeint x Checked overloaded conversion to an native integer
unativeint unativeint x Checked overloaded conversion to an unsigned native

integer
char char x Checked overloaded conversion to a System.Char value

18.4 List and Option Types

18.4.1 The List Type

The following shows the elements of the F# type FSharp.Collections.list referred to in this

specification:

type 'T list =
 | ([])
 | (::) of 'T * 'T list
 static member Empty : 'T list
 member Length : int
 member IsEmpty : bool
 member Head : 'T
 member Tail : 'T list
 member Item :int -> 'T with get
 static member Cons : 'T * 'T list -> 'T list

 interface System.Collections.Generic.IEnumerable<'T>
 interface System.Collections.IEnumerable

18.4.2 The Option Type

The following shows the elements of the F# type FSharp.Core.option referred to in this specification:

[<DefaultAugmentation(false)>]
[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>]
type 'T option =
 | None
 | Some of 'T
 static member None : 'T option
 static member Some : 'T -> 'T option
 [<CompilationRepresentation(CompilationRepresentationFlags.Instance)>]
 member Value : 'T
 member IsSome : bool
 member IsNone : bool

18.5 Lazy Computations (Lazy)
See http://msdn.microsoft.com/library/ee353813.aspx

18.6 Asynchronous Computations (Async)
See http://msdn.microsoft.com/library/ee370232.aspx

http://msdn.microsoft.com/library/ee353813.aspx
http://msdn.microsoft.com/en-us/library/ee370232.aspx

287

18.7 Query Expressions
See http://msdn.microsoft.com/library/hh698410

18.8 Agents (MailboxProcessor)
See http://msdn.microsoft.com/library/ee370357.aspx

18.9 Event Types
See http://msdn.microsoft.com/library/ee370608.aspx

18.10 Immutable Collection Types (Map, Set)
See http://msdn.microsoft.com/library/ee353413.aspx

18.11 Text Formatting (Printf)
See http://msdn.microsoft.com/library/ee370560.aspx

18.12 Reflection
See http://msdn.microsoft.com/library/ee353491.aspx

18.13 Quotations
See http://msdn.microsoft.com/library/ee370558.aspx

18.14 Native Pointer Operations
The FSharp.Core.NativeIntrop namespace contains functionality for interoperating with native

code.

Use of these functions is unsafe, and incorrect use may generate invalid IL code.

Operator or Function Name Description
NativePtr.ofNativeInt Returns a typed native pointer for a machine address.
NativePtr.toNativeInt Returns a machine address for a typed native pointer.
NativePtr.add Computes an indexed offset from the input pointer.
NativePtr.read Reads the memory that the input pointer references.
NativePtr.write Writes to the memory that the input pointer references.
NativePtr.get Reads the memory at an indexed offset from the input pointer.

http://msdn.microsoft.com/library/hh698410
http://msdn.microsoft.com/en-us/library/ee370357.aspx
http://msdn.microsoft.com/en-us/library/ee370608.aspx
http://msdn.microsoft.com/en-us/library/ee353413.aspx
http://msdn.microsoft.com/en-us/library/ee370560.aspx
http://msdn.microsoft.com/en-us/library/ee353491.aspx
http://msdn.microsoft.com/en-us/library/ee370558.aspx

288

Operator or Function Name Description
NativePtr.set Writes the memory at an indexed offset from the input pointer.
NativePtr.stackalloc Allocates a region of memory on the stack.

18.14.1 Stack Allocation

The NativePtr.stackalloc function works as follows. Given

stackalloc<ty> n

the unmanaged type ty specifies the type of the items that will be stored in the newly allocated

location, and n indicates the number of these items. Taken together, these establish the required

allocation size.

The stackalloc function allocates n * sizeof<ty> bytes from the call stack and returns a pointer of

type nativeptr<ty> to the newly allocated block. The content of the newly allocated memory is

undefined. If n is a negative value, the behavior of the function is undefined. If n is zero, no allocation

is made, and the returned pointer is implementation-defined. If insufficient memory is available to

allocate a block of the requested size, the System.StackOverflowException is thrown.

Use of this function is unsafe, and incorrect use might generate invalid IL code. For example, the

function should not be used in with or finally blocks in try/with or try/finally expressions. These

conditions are not checked by the F# compiler, because this primitive is rarely used from F# code.

There is no way to explicitly free memory that is allocated using stackalloc. All stack-allocated

memory blocks that are created during the execution of a function or member are automatically

discarded when that function or member returns. This behavior is similar to that of the alloca

function, an extension commonly found in C and C++ implementations.

19. Features for ML Compatibility
F# has its roots in the Caml family of programming languages and its core constructs are similar to

some other ML-family languages. As a result, F# supports some constructs for compatibility with

other implementations of ML-family languages.

19.1 Conditional Compilation for ML Compatibility
F# supports the following constructs for conditional compilation:

token start-fsharp-token = "(*IF-FSHARP" | "(*F#"
token end-fsharp-token = "ENDIF-FSHARP*)" | "F#*)"
token start-ml-token = "(*IF-OCAML*)"
token end-ml-token = "(*ENDIF-OCAML*)"

F# ignores the start-fsharp-token and end-fsharp-token tokens. This means that sections marked

(*IF-FSHARP ... ENDIF-FSHARP*)

—or—

(*F# ... F#*)

are included during tokenization when compiling with the F# compiler. The intervening text is

tokenized and returned in the token stream as normal.

In addition, the start-ml-token token is discarded and the following text is tokenized as string, _

(any character), and end-ml-token until an end-ml-token is reached. Comments are not treated as

special during this process and are simply processed as “other text”. This means that text

surrounded by the following is excluded when compiling with the F# compiler:

 (*IF-CAML*) ... (*ENDIF-CAML*)
 or (*IF-OCAML*) ... (*ENDIF-OCAML*)

The intervening text is tokenized as “strings and other text” and the tokens are discarded until the

corresponding end token is reached. Comments are not treated as special during this process and

are simply processed as “other text.”

The converse holds when programs are compiled using a typical ML compiler.

19.2 Extra Syntactic Forms for ML Compatibility
The following identifiers are also keywords primarily because they are keywords in OCaml. Although

F# reserves several OCaml keywords for future use, the /mlcompatibility option enables the use of

these keywords as identifiers.

token ocaml-ident-keyword =
 asr land lor lsl lsr lxor mod

290

Note: In F# the following alternatives are available. The precedence of these operators

differs from the precedence that OCaml uses.

 asr >>> (on signed type)
 land &&&
 lor |||
 lsl <<<
 lsr >>> (on unsigned type)
 lxor ^^^
 mod %
 sig begin (that is, begin/end may be used instead of sig/end)

F# includes the following additional syntactic forms for ML compatibility:

expr :=
 | ...
 | expr.(expr) // array lookup
 | expr.(expr) <- expr // array assignment

type :=
 | ...
 | (type,...,type) long-ident // generic type instantiation

module-implementation :=
 | ...
 | module ident = struct ... end

module-signature :=
 | ...
 | module ident : sig ... end

An ML compatibility warning occurs when these constructs are used.

Note that the for-expression form for var = expr1 downto expr2 do expr3 is also permitted for ML

compatibility.

The following expression forms

expr :=

 | …

 | expr.(expr) // array lookup

 | expr.(expr) <- expr // array assignment

Are equivalent to the following uses of library-defined operators:

e1.(e2) → (.()) e1 e2

e1.(e2) <- e3 → (.()<-) e1 e2 e3

19.3 Extra Operators
F# defines the following two additional shortcut operators:

e1 or e2 → (or) e1 e2

e1 & e2 → (&) e1 e2

291

19.4 File Extensions and Lexical Matters
F# supports the use of the.ml and .mli extensions on the command line. The “indentation

awareness off” syntax option is implicitly enabled when using either of these filename extensions.

Lightweight syntax can be explicitly disabled in .fs, .fsi, .fsx, and .fsscript files by specifying

#indent "off" as the first declaration in a file:

#indent "off"

When lightweight syntax is disabled, whitespace can include tab characters:

regexp whitespace = [' ' '\t']+

292

Appendix A: F# Grammar Summary

This appendix summarizes the grammar of the F# language. The following table describes the

notation conventions used in the grammar.

Notation Conventions in Grammar Rules

Notation Description Example
element-nameopt The opt subscript indicates that element-name

is optional.

let recopt

... An ellipsis indicates that the preceding non-
terminal construct and the separator token
can repeat any number of times.

expr ',' ... ',' expr

keyword Boldface type identifies a language keyword
that must appear verbatim.

module long-ident module-
elems

element-name Italics identify an element that is defined in
the grammar.

script-fragment :

 module-elems

[char1 – char2] All ASCII characters in the range from char1
to char2, inclusive.

[a – z]

[^ char1 – char2] All ASCI characters except those in the
specified range.

[^ A – Z]

‘symbol’ or “symbol” The literal symbol is used in the grammar. '(', "if"

(spec) Parentheses enclose required individual
grammar elements.

(+|-)

$token Lexical analysis inserts $token as a hidden
symbol.

$app

A.1 Lexical Grammar

A.1.1 Whitespace
whitespace : ' '+

newline :

 '\n'

 '\r' '\n'

whitespace-or-newline :

 whitespace

 newline

A.1.2 Comments
block-comment-start : "(*"

293

block-comment-end : "*)"

end-of-line-comment : "//" [^'\n' '\r']*

A.1.3 Conditional Compilation
if-directive : "#if" whitespace ident-text

else-directive : "#else"

endif-directive : "#endif"

A.1.4 Identifiers and Keywords

A.1.4.1 Identifiers

digit-char : [0-9]

letter-char :

 '\Lu'

 '\Ll'

 '\Lt'

 '\Lm'

 '\Lo'

 '\Nl'

connecting-char : '\Pc'

combining-char :

 '\Mn'

 '\Mc'

formatting-char : '\Cf'

ident-start-char :

 letter-char

 _

ident-char :

 letter-char

 digit-char

 connecting-char

 combining-char

 formatting-char

 '

 _

ident-text : ident-start-char ident-char*

ident :

 ident-text

 `` ([^'`' '\n' '\r' '\t'] | '`' [^ '`' '\n' '\r' '\t'])+ ``

A.1.4.2 Long Identifiers

long-ident : ident '.' ... '.' ident

long-ident-or-op :

 long-ident '.' ident-or-op

 ident-or-op

A.1.4.3 Keywords

ident-keyword : one of

294

 abstract and as assert base begin class default delegate do done

 downcast downto elif else end exception extern false finally for

 fun function global if in inherit inline interface internal lazy let

 match member module mutable namespace new null of open or

 override private public rec return sig static struct then to

 true try type upcast use val void when while with yield

reserved-ident-keyword : one of

 atomic break checked component const constraint constructor

 continue eager fixed fori functor include

 measure method mixin object parallel params process protected pure

 recursive sealed tailcall trait virtual volatile

reserved-ident-formats :

 ident-text ('!' | '#')

A.1.4.4 Symbolic Keywords

symbolic-keyword : one of

 let! use! do! yield! return!

 | -> <- . : () [] [< >] [| |] { }

 ' # :?> :? :> .. :: := ;; ; =

 _ ? ?? (*) <@ @> <@@ @@>

reserved-symbolic-sequence :

 ~ `

A.1.5 Strings and Characters
escape-char : '\' ["\'ntbr]

non-escape-chars : '\' [^"\'ntbr]

simple-char-char : any char except

 '\n' '\t' '\r' '\b' ' \ "

unicodegraph-short : '\' 'u' hexdigit hexdigit hexdigit hexdigit

unicodegraph-long : '\' 'U' hexdigit hexdigit hexdigit hexdigit

 hexdigit hexdigit hexdigit hexdigit

char-char :

 simple-char-char

 escape-char

 trigraph

 unicodegraph-short

string-char :

 simple-string-char

 escape-char

 non-escape-chars

 trigraph

 unicodegraph-short

 unicodegraph-long

 newline

string-elem :

 string-char

 '\' newline whitespace* string-elem

char : ' char-char '

295

string : " string-char* "

verbatim-string-char :

 simple-string-char

 non-escape-chars

 newline

 \

 ""

verbatim-string : @" verbatim-string-char* "

bytechar : ' simple-or-escape-char 'B

bytearray : " string-char* "B

verbatim-bytearray : @" verbatim-string-char* "B

simple-or-escape-char :

 escape-char

 simple-char

simple-char : any char except

 newline, return, tab, backspace,',\,"

triple-quoted-string : """ simple-or-escape-char* """

A.1.6 Numeric Literals
digit : [0-9]

hexdigit :

 digit

 [A-F]

 [a-f]

octaldigit : [0-7]

bitdigit : [0-1]

int : digit+

xint :

 0 (x|X) hexdigit+

 0 (o|O) octaldigit+

 0 (b|B) bitdigit+

sbyte : (int|xint) 'y'

byte : (int|xint) 'uy'

int16 : (int|xint) 's'

uint16 : (int|xint) 'us'

int32 : (int|xint) 'l'

uint32 :

 (int|xint) 'ul'

 (int|xint) 'u'

296

nativeint : (int|xint) 'n'

unativeint : (int|xint) 'un'

int64 : (int|xint) 'L'

uint64 :

 (int|xint) 'UL'

 (int|xint) 'uL'

ieee32 :

 float [Ff]

 xint 'lf'

ieee64 :

 float

 xint 'LF'

bignum : int ('Q' | 'R' | 'Z' | 'I' | 'N' | 'G')

decimal : (float|int) [Mm]

float :

 digit+ . digit*

 digit+ (. digit*)? (e|E) (+|-)? digit+

reserved-literal-formats :

 (xint | ieee32 | ieee64) ident-char+

A.1.7 Line Directives
line-directive :

 # int

 # int string

 # int verbatim-string

 #line int

 #line int string

 #line int verbatim-string

A.1.8 Identifier Replacements
__SOURCE_DIRECTORY__

__SOURCE_FILE__

__LINE__

A.1.9 Operators

A.1.9.1 Operator Names

ident-or-op :

 ident

 (op-name)

 (*)

op-name :

 symbolic-op

 range-op-name

 active-pattern-op-name

297

range-op-name :

 ..

active-pattern-op-name :

 | ident | ... | ident |

 | ident | ... | ident | _ |

A.1.9.2 Symbolic Operators

first-op-char : one of

 !%&*+-./<=>@^|~

op-char :

 first-op-char

 ?

quote-op-left :

 <@ <@@

quote-op-right :

 @> @@>

symbolic-op:

 ?

 ?<-

 first-op-char op-char*

 quote-op-left

 quote-op-right

A.1.9.3 Infix and Prefix Operators

The OP marker represents all symbolic-op tokens that begin with the indicated prefix, except for

tokens that appear elsewhere in the table.

infix-or-prefix-op : one of

 +, -, +., -., %, &, &&

prefix-op :

 infix-or-prefix-op

 ~ ~~ ~~~ (and any repetitions of ~)

 !OP (all tokens that begin with ! except !=)

infix-op :

 infix-or-prefix-op

 -OP +OP || <OP >OP = |OP &OP ^OP *OP /OP %OP !=

 (or any of these preceded by one or more ‘.’)

 :=

 ::

 $

 or

 ?

A.1.9.4 Constants

const :

 sbyte

 int16

 int32

 int64

 byte

298

 uint16

 uint32

 int

 uint64

 ieee32

 ieee64

 bignum

 char

 string

 verbatim-string

 triple-quoted-string

 bytestring

 verbatim-bytearray

 bytechar

 false

 true

 ()

A.2 Syntactic Grammar
In general, this syntax summary describes full syntax. By default, however, .fs, .fsi, .fsx, and

.fsscript files support lightweight syntax, in which indentation replaces begin/end and done

tokens. This appendix uses beginopt, endopt, and doneopt to indicate that these tokens are omitted in

lightweight syntax. Complete rules for lightweight syntax appear in §15.1.

To disable lightweight syntax:

#indent "off"

When lightweight syntax is disabled, whitespace can include tab characters:

whitespace : [' ' '\t']+

A.2.1 Program Format

implementation-file :

 namespace-decl-group ... namespace-decl-group

 named-module

 anonynmous-module

script-file : implementation-file

signature-file:

 namespace-decl-group-signature ... namespace-decl-group-signature

 anonynmous-module-signature

 named-module-signature

named-module : module long-ident module-elems

anonymous-module : module-elems

named-module-signature : module long-ident module-signature-elements

anonymous-module-signature : module-signature-elements

script-fragment : module-elems

299

A.2.1.1 Namespaces and Modules

namespace-decl-group :

 namespace long-ident module-elems

 namespace global module-elems

module-defn : attributesopt module accessopt ident = beginopt module-defn-body endop

module-defn-body : begin module-elemsopt end

module-elem :

 module-function-or-value-defn

 type-defns

 exception-defn

 module-defn

 module-abbrev

 import-decl

 compiler-directive-decl

module-function-or-value-defn :

 attributesopt let function-defn

 attributesopt let value-defn

 attributesopt let recopt function-or-value-defns

 attributesopt do expr

import-decl : open long-ident

module-abbrev : module ident = long-ident

compiler-directive-decl : # ident string ... string

module-elems : module-elem ... module-elem

access :

 private

 internal

 public

A.2.1.2 Namespace and Module Signatures

namespace-decl-group-signature : namespace long-ident module-signature-elements

module-signature : module ident = beginopt module-signature-body endopt

module-signature-element :

 val mutableopt curried-sig

 val value-defn

 type type-signatures

 exception exception-signature

 module-signature

 module-abbrev

 import-decl

module-signature-elements :

 beginopt module-signature-element ... module-signature-element endopt

module-signature-body : begin module-signature-elements end

type-signature :

 abbrev-type-signature

 record-type-signature

 union-type-signature

300

 anon-type-signature

 class-type-signature

 struct-type-signature

 interface-type-signature

 enum-type-signature

 delegate-type-signature

 type-extension-signature

type-signatures : type-signature ... and ... type-signature

type-signature-element :

 attributesopt accessopt new : uncurried-sig

 attributesopt member accessopt member-sig

 attributesopt abstract accessopt member-sig

 attributesopt override member-sig

 attributesopt default member-sig

 attributesopt static member accessopt member-sig

 interface type

abbrev-type-signature : type-name '=' type

union-type-signature : type-name '=' union-type-cases type-extension-elements-signatureopt

record-type-signature :

 type-name '=' '{' record-fields '}' type-extension-elements-signatureopt

anon-type-signature : type-name '=' begin type-elements-signature end

class-type-signature : type-name '=' class type-elements-signature end

struct-type-signature : type-name '=' struct type-elements-signature end

interface-type-signature : type-name '=' interface type-elements-signature end

enum-type-signature : type-name '=' enum-type-cases

delegate-type-signature : type-name '=' delegate-sig

type-extension-signature : type-name type-extension-elements-signature

type-extension-elements-signature : with type-elements-signature end

A.2.2 Types and Type Constraints

type :

 (type)

 type -> type

 type * ... * type

 typar

 long-ident

 long-ident<type-args>

 long-ident< >

 type long-ident

 type[, ... ,]

 type typar-defns

 typar :> type

 #type

type-args := type-arg, ..., type-arg

301

type-arg :=

 type

 measure

 static-parameter

atomic-type :

 type : one of

 #type typar (type) long-ident long-ident<types>)

typar :

 _

 'ident

 ^ident

constraint :

 typar :> type

 typar : null

 static-typars : (member-sig)

 typar : (new : unit -> 'T)

 typar : struct

 typar : not struct

 typar : enum<type>

 typar : unmanaged

 typar : delegate<type, type>

typar-defn : attributesopt typar

typar-defns : < typar-defn, ..., typar-defn typar-constraintsopt >

typar-constraints : when constraint and ... and constraint

static-typars :

 ^ident

 (^ident or ... or ^ident)

A.2.2.1 Equality and Comparison Constraints

typar : equality

typar : comparison

A.2.2.2 Type Providers

static-parameter =

 static-parameter-value

 id = static-parameter-value

static-parameter-value =

 const

 const expr

A.2.3 Expressions
expr :

 const

 (expr)

302

 begin expr end

 long-ident-or-op

 expr '.' long-ident-or-op

 expr expr

 expr(expr)

 expr<types>

 expr infix-op expr

 prefix-op expr

 expr.[expr]

 expr.[slice-ranges]

 expr <- expr

 expr , ... , expr

 new type expr

 { new base-call object-members interface-impls }

 { field-initializers }

 { expr with field-initializers }

 [expr ; ... ; expr]

 [| expr ; ... ; expr |]

 expr { comp-or-range-expr }

 [comp-or-range-expr]

 [| comp-or-range-expr |]

 lazy expr

 null

 expr : type

 expr :> type

 expr :? type

 expr :?> type

 upcast expr

 downcast expr

In the following four expression forms, the in token is optional if expr appears on a subsequent line

and is aligned with the let token.

 let function-defn in expr

 let value-defn in expr

 let rec function-or-value-defns in expr

 use ident = expr in expr

 fun argument-pats -> expr

 function rules

 match expr with rules

 try expr with rules

 try expr finally expr

 if expr then expr elif-branchesopt else-branchopt

 while expr do expr doneopt

 for ident = expr to expr do expr doneopt

 for pat in expr-or-range-expr do expr doneopt

 assert expr

 <@ expr @>

 <@@ expr @@>

 %expr

 %%expr

 (static-typars : (member-sig) expr)

 expr $app expr // equivalent to "expr(expr)"

 expr $sep expr // equivalent to "expr; expr"

 expr $tyapp < types > // equivalent to "expr<types>"

 expr< >

exprs : expr ',' ... ',' expr

303

expr-or-range-expr :

 expr

 range-expr

elif-branches : elif-branch ... elif-branch

elif-branch : elif expr then expr

else-branch : else expr

function-or-value-defn :

 function-defn

 value-defn

function-defn :

 inlineopt accessopt ident-or-op typar-defnsopt argument-pats return-typeopt = expr

value-defn :

 mutableopt accessopt pat typar-defnsopt return-typeopt = expr

return-type :

 : type

function-or-value-defns :

 function-or-value-defn and ... and function-or-value-defn

argument-pats: atomic-pat ... atomic-pat

field-initializer : long-ident = expr

field- initializer s : field-

initializer ; ... ; field-initializer

object-construction :

 type expr

 type

base-call :

 object-construction

 object-construction as ident

interface-impls : interface-impl ... interface-impl

interface-impl : interface type object-membersopt

object-members : with member-defns end

member-defns : member-defn ... member-defn

A.2.3.1 Computation and Range Expressions

comp-or-range-expr :

 comp-expr

 short-comp-expr

 range-expr

304

comp-expr :

 let! pat = expr in comp-expr

 let pat = expr in comp-expr

 do! expr in comp-expr

 do expr in comp-expr

 use! pat = expr in comp-expr

 use pat = expr in comp-expr

 yield! expr

 yield expr

 return! expr

 return expr

 if expr then comp-expr

 if expr then comp-expr else comp-expr

 match expr with comp-rules

 try comp-expr with comp-rules

 try comp-expr finally expr

 while expr do expr doneopt

 for ident = expr to expr do comp-expr doneopt

 for pat in expr-or-range-expr do comp-expr doneopt

 comp-expr; comp-expr

 expr

comp-rule : pat pattern-guardopt -> comp-expr

comp-rules : '|'opt comp-rule '|' ... '|' comp-rule

short-comp-expr : for pat in expr-or-range-expr -> expr

range-expr :

 expr .. expr

 expr .. expr .. expr

slice-ranges : slice-range , … , slice-range

slice-range :

 expr

 expr..

 ..expr

 expr..expr

 '*'

A.2.3.2 Computation Expressions

expr { for ... }

expr { let ... }

expr { let! ... }

expr { use ... }

expr { while ... }

expr { yield ... }

expr { yield! ... }

expr { try ... }

expr { return ... }

expr { return! ... }

A.2.3.3 Sequence Expressions

seq { comp-expr }

seq { short-comp-expr }

305

A.2.3.4 Range Expressions

seq { e1 .. e2 }

seq { e1 .. e2 .. e3 }

A.2.3.5 Copy and Update Record Expression

{ expr with field-label1 = expr1 ; … ; field-labeln = exprn }

A.2.3.6 Dynamic Operator Expressions

expr ? ident → (?) expr "ident"

expr1 ? (expr2) → (?) expr1 expr2

expr1 ? ident <- expr2 → (?<-) expr1 "ident" expr2

expr1 ? (expr2) <- expr3 → (?<-) expr1 expr2 expr3

"ident" is a string literal that contains the text of ident.

A.2.3.7 AddressOf Operators

&expr

&&expr

A.2.3.8 Lookup Expressions

e1.[eargs] → e1.get_Item(eargs)

e1.[eargs] <- e3 → e1.set_Item(eargs, e3)

A.2.3.9 Slice Expressions

e1.[sliceArg1, ,,, sliceArgN] → e1.GetSlice(args1,…,argsN)
e1.[sliceArg1, ,,, sliceArgN] <- expr → e1.SetSlice(args1,…,argsN, expr)

where each sliceArgN is a slice-range and translated to argsN (giving one or two args) as follows:

* → None, None

e1.. → Some e1, None

..e2 → None, Some e2

e1..e2 → Some e1, Some e2

idx → idx

A.2.3.10 Shortcut Operator Expressions

expr1 && expr2 → if expr1 then expr2 else false

expr1 || expr2 → if expr1 then true else expr2

A.2.3.11 Deterministic Disposal Expressions

use ident = expr1 in expr2

A.2.4 Patterns

rule : pat pattern-guardopt -> expr

pattern-guard : when expr

pat :

306

 const

 long-ident pat-paramopt patopt

 _

 pat as ident

 pat '|' pat

 pat '&' pat

 pat :: pat

 pat : type

 pat,...,pat

 (pat)

 list-pat

 array-pat

 record-pat

 :? atomic-type

 :? atomic-type as ident

 null

 attributes pat

list-pat :

 []

 [pat ; ... ; pat]

array-pat :

 [| |]

 [| pat ; ... ; pat |]

record-pat : { field-pat ; ... ; field-pat }

atomic-pat :

 pat one of

 const long-ident list-pat record-pat array-pat (pat)

 :? atomic-type

 null _ _

field-pat : long-ident = pat

pat-param :

 const

 long-ident

 [pat-param ; ... ; pat-param]

 (pat-param, ..., pat-param)

 long-ident pat-param

 pat-param : type

 <@ expr @>

 <@@ expr @@>

 null

pats : pat , ... , pat

field-pats : field-pat ; ... ; field-pat

rules : '|'opt rule '|' ... '|' rule

A.2.5 Type Definitions

type-defn :

 abbrev-type-defn

 record-type-defn

307

 union-type-defn

 anon-type-defn

 class-type-defn

 struct-type-defn

 interface-type-defn

 enum-type-defn

 delegate-type-defn

 type-extension

type-name : attributesopt accessopt ident typar-defnsopt

abbrev-type-defn : type-name = type

union-type-defn : type-name '=' union-type-cases type-extension-elementsopt

union-type-cases : '|'opt union-type-case '|' ... '|' union-type-case

union-type-case : attributesopt union-type-case-data

union-type-case-data :

 ident -- nullary union case

 ident of union-type-field * ... * union-type-field -- n-ary union case

 ident : uncurried-sig -- n-ary union case

union-type-field :

 type -- unnamed union type field

 ident : type -- named union type field

anon-type-defn :

 type-name primary-constr-argsopt object-valopt '=' begin class-type-body end

record-type-defn : type-name = '{' record-fields '}' type-extension-elementsopt

record-fields : record-field ; ... ; record-field ;opt

record-field : attributesopt mutableopt accessopt ident : type

class-type-defn :

 type-name primary-constr-argsopt object-valopt '=' class class-type-body end

as-defn : as ident

class-type-body :

 beginopt class-inherits-declopt class-function-or-value-defnsopt type-defn-elementsopt endopt

class-inherits-decl : inherit type expropt

class-function-or-value-defn :

 attributesopt staticopt let recopt function-or-value-defns

 attributesopt staticopt do expr

struct-type-defn :

 type-name primary-constr-argsopt as-defnopt '=' struct struct-type-body end

struct-type-body : type-defn-elements

interface-type-defn : type-name '=' interface interface-type-body end

interface-type-body : type-defn-elements

308

exception-defn :

 attributesopt exception union-type-case-data

 attributesopt exception ident = long-ident

enum-type-defn : type-name '=' enum-type-cases

enum-type-cases : '|'opt enum-type-case '|' ... '|' enum-type-case

enum-type-case : ident '=' const

delegate-type-defn : type-name '=' delegate-sig

delegate-sig : delegate of uncurried-sig

type-extension : type-name type-extension-elements

type-extension-elements : with type-defn-elements end

type-defn-element :

 member-defn

 interface-impl

 interface-signature

type-defn-elements : type-defn-element ... type-defn-element

primary-constr-args : attributesopt accessopt (simple-pat, ... , simplepat)

simple-pat :
 | ident
 | simple-pat : type

additional-constr-defn :

 attributesopt accessopt new pat as-defn = additional-constr-expr

additional-constr-expr :

 stmt ';' additional-constr-expr

 additional-constr-expr then expr

 if expr then additional-constr-expr else additional-constr-expr

 let val-decls in additional-constr-expr

 additional-constr-init-expr

additional-constr-init-expr :

 '{' class-inherits-decl field-initializers '}'

 new type expr

member-defn :

 attributesopt staticopt member accessopt method-or-prop-defn

 attributesopt abstract memberopt accessopt member-sig

 attributesopt override accessopt method-or-prop-defn

 attributesopt default accessopt method-or-prop-defn

 attributesopt staticopt val mutableopt accessopt ident : type

 additional-constr-defn

method-or-prop-defn :

 identopt function-defn

 identopt value-defn

 identopt ident with function-or-value-defns

 member ident = exp

309

 member ident = exp with get

 member ident = exp with set

 member ident = exp with get,set

 member ident = exp with set,get

member-sig :

 ident typar-defnsopt : curried-sig

 ident typar-defnsopt : curried-sig with get

 ident typar-defnsopt : curried-sig with set

 ident typar-defnsopt : curried-sig with get,set

 ident typar-defnsopt : curried-sig with set,get

curried-sig : args-spec -> ... -> args-spec -> type

uncurried-sig : args-spec -> type

args-spec : arg-spec * ... * arg-spec

arg-spec : attributesopt arg-name-specopt type

arg-name-spec : ?opt ident :

interface-spec : interface type

A.2.5.1 Property Members

staticopt member ident.opt ident = expr

staticopt member ident.opt ident with get pat = expr

staticopt member ident.opt ident with set patopt pat= expr

staticopt member ident.opt ident with get pat = expr and set patopt pat = expr

staticopt member ident.opt ident with set patopt pat = expr and get pat = expr

A.2.5.2 Method Members

staticopt member ident.opt ident pat1 ... patn = expr

A.2.5.3 Abstract Members

abstract accessopt member-sig

member-sig :

 ident typar-defnsopt : curried-sig

 ident typar-defnsopt : curried-sig with get

 ident typar-defnsopt : curried-sig with set

 ident typar-defnsopt : curried-sig with get, set

 ident typar-defnsopt : curried-sig with set, get

curried-sig : args-spec1 -> ... -> args-specn -> type

A.2.5.4 Implementation Members

override ident.ident pat1 ... patn = expr

default ident.ident pat1 ... patn = expr

A.2.6 Units Of Measure

measure-literal-atom :

 long-ident

 (measure-literal-simp)

310

measure-literal-power :

 measure-literal-atom

 measure-literal-atom ^ int32

measure-literal-seq :

 measure-literal-power

 measure-literal-power measure-literal-seq

measure-literal-simp :

 measure-literal-seq

 measure-literal-simp * measure-literal-simp

 measure-literal-simp / measure-literal-simp

 / measure-literal-simp

 1

measure-literal :

 _

 measure-literal-simp

const :

 ...

 sbyte < measure-literal >

 int16 < measure-literal >

 int32 < measure-literal >

 int64 < measure-literal >

 ieee32 < measure-literal >

 ieee64 < measure-literal >

 decimal < measure-literal >

measure-atom :

 typar

 long-ident

 (measure-simp)

measure-power :

 measure-atom

 measure-atom ^ int32

measure-seq :

 measure-power

 measure-power measure-seq

measure-simp :

 measure-seq

 measure-simp * measure-simp

 measure-simp / measure-simp

 / measure-simp

 1

measure :

 _

 measure-simp

A.2.7 Custom Attributes and Reflection

attribute : attribute-target:opt object-construction

attribute-set : [< attribute ; ... ; attribute >]

311

attributes : attribute-set ... attribute-set

attribute-target :

 assembly

 module

 return

 field

 property

 param

 type

 constructor

 event

A.2.8 Compiler Directives

Compiler directives in non-nested modules or namespace declaration groups:

id string ... string

A.3 ML Compatibility Features

A.3.1 Conditional Compilation
start-fsharp-token :

 "(*IF-FSHARP"

 "(*F#"

end-fsharp-token :

 "ENDIF-FSHARP*)"

 "F#*)"

start-ml-token : "(*IF-OCAML*)"

end-ml-token : "(*ENDIF-OCAML*)"

A.3.2 Extra Syntactic Forms

ocaml-ident-keyword : one of

 asr land lor lsl lsr lxor mod

expr :

 ...

 expr.(expr) // array lookup

 expr.(expr) <- expr // array assignment

type :

 ...

 (type,...,type) long-ident // generic type instantiation

module-implementation :

 ...

 module ident = struct ... end

module-signature :

 ...

 module ident : sig ... end

312

A.3.3 Extra Operators
e1 or e2 → (or) e1 e2
e1 & e2 → (&) e1 e2

313

References
Ecma International. Standard ECMA-335, Common Language Infrastructure (CLI)

http://www.ecma-international.org/publications/standards/Ecma-335.htm

The French National Institute for Research in Computer Science and Control (INRIA). The Caml

Language.

http://caml.inria.fr/

Microsoft Corporation. The C# Language Specification

http://msdn.microsoft.com/library/ms228593.aspx

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://caml.inria.fr/
http://msdn.microsoft.com/library/ms228593.aspx

314

Glossary
This section contains terminology that is specific to F#. It provides a reference for terms that are

used elsewhere in this document.

A
abstract member

A member in a type that represents a promise that an object will provide an implementation for

a dispatch slot.

accessibility
The program text that has access to a particular declaration element or member. You can specify

accessibilities on declaration elements in namespace declaration groups and modules, and on

members in types. F# supports public, private, and internal accessibility.

and pattern
A pattern that consists of two patterns joined by an ampersand (&). An and pattern matches the

input against both patterns and binds any variables that appear in either pattern.

anonymous implementation file
A file that lacks either a leading module or namespace declaration. Only the scripts and the last file

within an implementation group for an executable image can be anonymous. An anonymous

implementation file can contain module definitions that are implicitly placed in a module, the

name of which is implicit from the name of the source file that contains the module.

anonymous variable type with a subtype constraint
A type in the form #type. This is equivalent to 'a when 'a :> type where 'a is a fresh type

inference variable.

anonymous signature file
A signature file that does not have either a leading module or namespace declaration. The name of

the implied module signature is derived from the file name of the signature file.

anonymous variable type
A type in the form _.

application expression
An expression that involves variable names, dot-notation lookups, function applications, method

applications, type applications, and item lookups

assignment expression
An expression in the form expr1 <- expr2.

arity
The number of arguments to a method or function.

array expression
An expression in the form [|expr1;...; exprn |].

array pattern
The pattern [|pat ; ... ; pat|] , which matches arrays of a specified length.

315

array sequence expression
An expression that describes a series of elements in an array, in one of the following forms:

[| comp-expr |]

[| short-comp-expr |]

[| range-expr |]

as pattern
A pattern in the form pat as ident. The as pattern binds the name ident to the input value and

matches the input against the pattern.

automatic generalization
A technique that, during type inference, automatically makes code generic when possible, which

means that the code can be used on many types of data.

B
base type declarations

A declaration that represents an additional, encapsulated type that is supported by any values

that are formed by using the type definition.

block comments
Comments that are delimited by (* and *), can span more than one line, and can be nested.

block expression
An expression in the form begin expr end.

C
class type definition

The definition of a type that encapsulates values that are themselves constructed by using one

or more object constructors. A class type typically describes an object that can have properties,

methods, and events.

coercion
The changing of data from one type to another.

comparison constraint
A constraint of the form typar : comparison.

compiled name
The name that appears in the compiled form of an F# program for a symbolic operator or certain

symbolic keywords.

conditional expression
An expression in the following form

if expr1a then expr1b

elif expr3a then expr2b
…

elif exprna then exprnb
else exprlast

The elif and else branches are optional.

316

cons pattern
The pattern pat :: pat, which is used to decompose a list into two parts: the head, which

consists of the first element, and the tail, which contains the remaining elements.

constraint
See type constraint.

constraint solving
The process of reducing constraints to a normalized form so that variables can be solved by

deducing equations.

copy-and-update record expression
An expression in the following form:

{ expr with field-label1 = expr1 ; … ; field-labeln = exprn }

current inference constraints
The set of type constraints that are in effect at a particular point in the program as a result of

type checking and elaboration.

curried method members
Arguments to a method that are written in an interated form.

custom attribute
A class that encapsulates information, often metadata that describes or supplements an F#

declaration. Custom attributes derive from System.Attribute in the .NET framework and can be

used in any language that targets the common language runtime.

D
default constructor constraint

A constraint of the form typar : (new : unit -> 'T).

default initialization
The practice of setting the values of particular types to zero at the beginning of execution. Unlike

many programming languages, F# performs default initialization in only limited circumstances.

definitely equivalent types
Static types that match exactly in definition, form, and number; or variable types that refer to

the same declaration or are the same type inference variable.

delayed expression
An expression in the form lazy expr, which is evaluated on demand in response to a .Value

operation on the lazy value.

delegate constraint.
A constraint of the form typar : delegate<tupled-arg-type, return-type>.

dispatch slot
A key representing part of the contract of an interface or class type. Each object that implements

the type provides a dictionary mapping dispatch slots to member implementations.

dynamic type test pattern
The patterns :? type and :? type as ident, which match any value whose runtime type is the

given type or a subtype of the given type.

317

E
elaborated expression

An expression that the F# compiler generates in a simpler, reduced language. An elaborated

expression contains a fully resolved and annotated form of the source expression and carries

more explicit information than the source expression.

enumerable extraction
The process of getting sequential values of a static type by using CLI library functions that

retrieve individual, enumerable values.

enumeration constraint
A constraint in the form typar : enum<underlying-type>, which limits the type to an

enumeration of the specified underlying type.

equality constraint.
A constraint in the form typar : equality, which limits the type to one that supports equality

operations.

event
A configurable object that has a set of callbacks that can be triggered, often by some external

action such as a mouse click or timer tick. The F# library supports the

FSharp.Control.IEvent<_,_> type and the FSharp.Control.Event module to support the use of

events.

F
F# Interactive

An F# dynamic compiler that runs in a command window and executes script fragments as well

as complete programs.

feasible coercion
Indicates that one type either coerces to another, or could become coercible through the

addition of further constraints to the current inference constraints.

feasibly equivalent types
Types that are not definitely equivalent but could become so by the addition of further

constraints to the current inference constraints.

floating type variable environment
The set of types that are currently defined, for use during type inference.

fresh type
A static type that is formed from a fresh type inference variable.

fresh type inference variable
A variable that is created during type inference and has a unique identity.

function expression
An expression of the form fun pat1 ... patn -> expr.

function value
The value that results at runtime from the evaluation of function expressions.

318

G
generic type definition

A type definition that has one or more generic type parameters. For example:

System.Collections.Generic.Dictionary<'Key,'Value>.

guarded pattern matching rule
A rule of the form pat when expr that occurs as part of a pattern matching expression such as

match expr0 with rule1 -> expr1 | … | rulen -> exprn. The guard expression expr is executed

only if the value of expr0 successfully matches the pattern pat.

I
identifier

A sequence of characters that is enclosed in `` `` double-backtick marks, excluding newlines,

tabs, and double-backtick pairs themselves.

immutable value
A named value that cannot be changed.

imperative programming
One of several primary programming paradigms; others include declarative, functional,

procedural, among others. An imperative program consists of a sequence of actions for the

computer to perform, and the statements change the state of the program.

implementation member
An abstract member that implements a dispatch slot or CLI property.

import declaration
A declaration that makes the elements of another namespace’s declarations and modules

accessible by the use of unqualified names. Import definitions can appear in namespace

declaration groups and module definitions.

inference type variable
A type variable that does not have a declaration site.

initialization constant expression
An expression whose elaborated form is determined to cause no observable initialization effect.

instance member
A member that is declared without static.

interface type definition
A declaration that represents an encapsulated type that specifies groups of related members

that other classes implement.

K
keyword

A word that has a defined meaning in F# and is used as part of the language itself.

319

L
lambda expression

See function expression.

lightweight syntax
A simplified, indentation-aware syntax in which lines of code that form a sequence of

declarations are aligned on the same column, and the in and ;; separators can be omitted.

Lightweight syntax is the default for all F# code in files with extension .fs, .fsx, .fsi and

.fsscript.

list
An F# data structure that consists of a sequence of items. Each item contains a pointer to the

next item in the sequence.

list expression
An expression of the form [expr1;...; exprn].

list pattern
A data recognizer pattern that describes a list. Examples are pat :: pat, which matches the

'cons' case of F# list values; [], which matches the empty list; and [pat ; ... ; pat], which

represents a series of :: and empty list patterns.

list sequence expression
An expression that evaluates to a sequence that is essentially a list. List sequence expressions

can have the following forms:

[comp-expr]
[short-comp-expr]
[range-expr]

literal constant expression
An expression that consists of a simple constant expression or a simple compile-time

computation.

M
member

A function that is associated with a type definition or with a value of a particular type. Member

definitions can be used in type definitions. F# supports property members and method

members.

member constraint
A constraint that specifies the signature that is required for a particular member function.

Member constraints have the form (typar or ... or typar) : (member-sig).

member signature
The “footprint” of a property or method that is visible outside the defining module.

method member
An operation that is associated with a type or an object.

module
A named collection of declarations such as values, types, and function values.

320

module abbreviation
A statement that defines a local name for a long identifier in a module. For example:

module Ops = FSharp.Core.Operators

module signature
A description of the contents of a module that the F# compiler generates during type inference.

The module signature describes the externally visible elements of the module.

N
name resolution environment

The collection of names that have been defined at the current point, which F# can use in furthy

type inference and checking. The name resolution environment includes namespace declaration

groups from imported namespaces in addition to names that have been defined in the current

code.

named type
A type that has a name, in the form long-ident<ty1,…,tyn>, where long-ident resolves to a a

type definition that has formal generic parameters and formal constraints.

namespace
A way of organizing the modules and types in an F# program, so that they form logical groups

that are associated with a name. Identifiers must be unique within a namespace.

namespace declaration group
The basic declaration unit within an F# implementation file. It contains a series of module and

type definitions that contribute to the indicated namespace. An implementation can contain

multiple namespace declaration groups.

namespace declaration group signature
The “footprint” of a namespace declaration group, which describes the externally visible

elements of the group.

null expression
An expression of the form null.

nullness constraint
A constraint in the form typar: null, which indicates that the type must support the Null literal.

null pattern
The pattern null, which matches the values that the CLI value null represents.

numeric literal
A sequence of Unicode characters or an unsigned byte array that represents a numeric value.

O
object construction expression

An expression in the form new ty(e1 ... en), which constructs a new instance of a type, usually

by calling a constructor method on the type.

321

object constructor
A member of a class that can create a value of the type and partially initialize an object. The

primary constructor contains function and value definitions that appear at the start of the class

definition, and its parameters appear in parentheses immediately after the type name. Any

additional object constructors are specified with the new keyword, and they must call the

primary constructor.

object expression
An expression that creates a new instance of a dynamically created, anonymous object type that

is based on an existing base type, interface, or set of interfaces.

offside lines
Lines that occur at column positions in lightweight syntax. Offside lines are introduced by other

structured constructs, such asthe = token associated with let, and the first token after then in

an if/then/else construct.

offside rule
Another term for lightweight or indentation-aware syntax.

P
parenthesized expression

An expression in the form (expr).

pattern matching
A switch construct that supports branched control flow and the definition of new values.

pipeline operator
The |> operator, which directs the value of one function to be input to the next function in a

pipeline.

property member
A function in a type that gets or sets data about the type.

Q
quoted expression

An expression that is delimited in such a way that it is not compiled as part of your program, but

instead is compiled into an object that represents an F# expression.

R
range expression

An expression that generates a sequence over a given range of values.

record construction expression
An expression that builds a record, in the form { field-initializer1 ; … ; field-initializern

}.

322

record pattern
The pattern { long-ident1 = pat1; ... ; long-identn = patn}.

recursive definition
A definition in which the bound functions and values can be used within their own definitions.

reference type constraint
A constraint of the form typar : not struct.

reference type
A class, interface delegate, function, tuple, record, or union type. A type is a reference type if its

outermost named type definition is a reference type, after expanding type definitions.

referenced assemblies
The existing assemblies to which an F# program makes static references.

rigid type variable
A type variable that refers to one or more explicit type parameter definitions.

runtime type
An object of type System.Type that is the runtime representation of some or all of the

information carried in type definitions and static types. The runtime type associated with an

objects is accessed by using the obj.GetType() method, which is available on all F# values.

S
script

A fragment of an F# program that can be run in F# Interactive.

sealed type definition
A type definition that is concrete and cannot be extended. Record, union, function, tuple, struct,

delegate, enum, and array types are all sealed types, as are class types marked with the

SealedAttribute attribute.

sequence expression
An expression that evaluates to a sequence of values, in one of the following forms

seq { comp-expr }
seq { short-comp-expr }

sequential execution expression
An expression that represents the sequential execution of one statement followed by another.

The expression has the form expr1; expr2.

signature file
A file that contains information about the public signatures and accessibility of a set of F#

program elements.

simple constant expressions
A numeric, string, Boolean, or unit constant.

single-line comments
A comment that begins with // and extends to the end of a line.

slice expression
An expression that describes a subset of an array.

323

static type
The type that is inferred for an expression as the result of type checking, constraint solving, and

inference.

static member
A member that is prefixed by static and is associated with the type, rather than with any

particular object.

statically resolved type variable
A type parameter in the form ^ident. Such a parameter is replaced with an actual type at

compile time instead of runtime.

string
A type that represents immutable text as a sequence of Unicode characters.

string literal
A Unicode string or an unsigned byte array that is treated as a string.

strong name
A cryptographic signature for an assembly that provides a unique name, guarantees the

publisher over subsequent versions, and ensures the integrity of the contents.

subtype constraint
A constraint of the form typar :> type, which limits the type of typar to the specified type, or

to a type that is derived from that type. If type is an interface, typar must implement the

interface.

symbolic keyword
A symbolic or partially symbolic character sequence that is treated as a keyword.

structural type
A record, union, struct, or exception type definition.

symbolic operator
A user-defined or library-defined function that has one or more symbols as a name.

syntactic sugar
Syntax that makes code easier to read or express; often a shortcut way of expressing a more

complicated relationship for which one or more other syntactic options exist.

syntactic type
The form of a type specification that appears in program source code, such as the text

“option<_>”. Syntactic types are converted to static types during the process of type checking

and inference.

T
tuple

An ordered collection of values that is treated as an atomic unit. A tuple allows you to keep data

organized by grouping related values together, without introducing a new type.

tuple expression
An expression in the form expr1, ..., exprn, which describes a tuple value.

324

tuple type
A type in the form ty1 * ... * tyn, which defines a tuple. The elaborated form of a tuple type is

shorthand for a use of the family of F# library types System.Tuple<_,...,_>.

type abbreviation
An alias or alternative name for a type.

type annotation
An addition to an expression that specifies the type of the expression. A type annotation has the

form expr : type.

type constraint
A restriction on a generic type parameter or type variable that limits the types that may be used

to instantiate that parameter. Example type constraint include subtype constraints, null

constraints, value type constraints, comparison constraints and equality constraints.

type definition kind
A class, interface, delegate, struct, record, union, enum, measure, or abstract type.

The kind of type refers to the kind of its outermost named type definition, after expanding

abbreviations.

type extension
A definition that associates additional dot-notation members with an existing type.

type function
A value that has explicit generic parameters but arity []—that is, it has no explicit function

parameters.

type inference
A feature of F# that determines the type of a language construct when the type is not specified

in the source code.

type inference environment
The set of definitions and constraints that F# uses to infer the type of a value, variable, function,

or parameter, or similar language construct.

type parameter definition
In a generic function, method, or type, a placeholder for a specific type that is specified when

the generic function, method, or type is instantiated.

type provider
A component that provides new types and methods that are based on the schemas of external

information sources.

type variable
A variable that represents a type, rather than data.

U
undentation

The opposite of indentation.

underlying type
The type of the constant values of an enumeration. The underlying type of an enum must be

sbyte, int16, int32, int64, byte, uint16, uint32, uint64, or char.

325

union pattern
The pattern pat | pat attempts to match the input value against the first pattern, and if that

fails matches instead the second pattern. Both patterns must bind the same set of variables with

the same types.

union type
A type that can hold a value that satisfies one of a number of named cases.

unit of measure
A construct similar to a type that represents a measure, such as kilogram or meters per second.

Like types, measures can appear as parameters to other types and values, can contain variables,

and are checked for consistency by the type-checker. Unlike types, however, measures are

erased at runtime, have special equivalence rules, and are supported by special syntax.

unmanaged type
The primitive types (sbyte, byte, char, nativeint, unativeint, float32, float, int16, uint16,

int32, uint32, int64, uint64, and decimal), enumeration types, and nativeptr<_>, or a non-

generic structure whose fields are all unmanaged types.

unmanaged constraint
An addition to a type parameter that limits the type to an unmanaged type.

V
value signature

The “footprint” of a value in a module, which indicates that the value exists and is externally

visible.

value type
A type that is allocated on the stack or inline in an object or array. Value types include primitive

integers, floating-point numbers, and any value of a struct type.

value type constraint
A constraint of the form typar : struct, which limits the type of typar to a .NET value type.

variable type
A type of the form 'ident, which represents the name of another type.

W
wildcard pattern

The underscore character _, which matches any input.

326

Index
flexible type symbol, 150
#indent, 317
#load directive, 224
#nowarn directive, 224
% operator, 116
%% operator, 116
& byref address-of operator, 98
& conjunctive patterns, 136
&& native pointer address-of operator, 98
&& operator, 105
.fs extension, 23, 224
.fsi extension, 23
.fsscript extension, 23, 224
.fsx extension, 23, 224
.ml extension, 317
.mli extension, 317
:: cons pattern, 136
; token, 104
_ wildcard pattern, 135
__LINE__, 33
__SOURCE_DIRECTORY__, 33
__SOURCE_FILE__, 33
|| operator, 105
= function, 193
abstract members, 183
abstract types, 53
AbstractClass attribute, 183
accessibilities

annotations for, 211
default annotation for modules, 208
location of modifiers, 212

active pattern functions, 133
active pattern results, 96
address-of expressions, 98
AddressOf expressions, 120, 125
agents, 311
AllowIntoPattern, 81
AllowNullLiteral attribute, 57
anonymous variable type, 46
application expressions, 94, 244
arguments

CLI optional, 178
named, 175
optional, 176
required unnamed, 176

arity, 274
conformance in value signatures, 218

array expressions, 71, 122
array sequence expression, 92
array type, 46
assemblies

contents of, 221
referenced, 221

assert, 109
assertion expression, 109
assignment expression, 102
asynchronous computations, 311
attributes

AbstractClass, 183
AllowNullLiteral, 57
AttributeUsage, 231
AutoOpen, 221
AutoOpenAttribute, 305
CLIEvent, 181, 186
CLIMutable, 152
comparison, 190
CompilationRepresentation, 182, 206
conditional compilation, 255
ContextStatic, 110, 208
custom, 53, 231, 296
custom operation, 80
DefaultValue, 161
emitted by F# compiler, 301
EntryPoint, 229
equality, 189
GeneralizableValue, 209
grammar of, 231
in type definitions, 145
InternalsVisibleTo, 212
Literal, 208
mapping to CLI metadata, 232
Measure, 146, 196, 200
MeasureAnnotatedAbbreviation, 201
NoEquality, 51
OptionalArgument, 178
ReflectedDefinition, 115
RequireQualifiedAccess, 237
RequiresExplicitTypeArguments, 209
RequiresQualifiedAccess, 166
SealedAttribute, 54
ThreadStatic, 110, 208
unrecognized by F#, 302
VolatileField, 118

AttributeUsage attribute, 231

327

automatic generalization, 13
AutoOpen attribute, 221
AutoOpenAttribute, 305
AutoSerializable attribute, 151, 153, 155
base type, 55
basic types

abbreviations for, 305
block expressions, 104
bprintf function, 93
byref arguments, 273
byref pointers, 67
byref-address-of expression, 98
case names, 152
characters, 28
class types, 155

additional fields in, 161
members in, 159

class/end tokens, 155
classes, 53
CLI methods, 276
CLI pointer types, 306
CLIEvent attribute, 181, 186
CLIMutable, 152
comments, 25, 277
compare function, 193
CompareTo, 192
comparison attributes, 190
comparison constraint, 51
ComparisonConditionalOn constraint

dependency, 190
compatibility features, 315
compilation order, 222
CompilationRepresentation attribute, 182,

206
COMPILED compilation symbol, 23, 224
compiler directives, 225
computation expression, 76
condensation, 269
Conditional attribute, 255
conditional compilation, 26, 255

ML compatibility and, 315
conditional expressions, 104
constant expressions, 68
constants with measure annotations, 197
constrained types, 47
constraints, 47

comparison, 51
current inference, 45
default constructor, 49
delegate, 50
dependency of, 190

enumeration, 50
equality, 51
equational, 257
explicit declaration of, 52
flexible type, 113
inflexible type, 113
member, 259
member, 48
nullness, 48, 58, 93, 258
reference type, 50
simple, 258
solving, 257
struct, 49, 258
subtype, 47, 257
unmanaged, 51

ContextStatic attribute, 110, 208
control flow expressions, 104
copy-and-update record expression, 72
curried form, 175
custom attributes

effect on signature checking, 233
in type definitions, 145

CustomComparison attribute, 190
CustomEquality attribute, 189
CustomOperationAttribute, 80
declarations

base type, 54
interface, 54

default initialization, 58
DefaultValue attribute, 161
definition expressions, 109
definitions

recursive, 261
delayed expression, 76
delegate constraint, 50
delegate implementation expression, 96
delegate type, 166
delegates, 53
deterministic disposal expression, 112
directives

#load, 224
#nowarn, 224
compiler, 225
lexical, 225
line, 33
preprocessing, 26

dispatch slot checking, 75, 273
dispatch slot inference, 75, 271
dispatch slots, 273
do statements, 157

in modules, 210

328

static, 158
done token, 108
dynamic coercion expressions, 114, 124
dynamic type-test expressions, 113, 123
elif branch, 105
else branch, 105
entry points, 229
EntryPoint attribute, 229
enum types, 165
enumerable extraction, 106
enums, 53
equality attributes, 189
equality constraint, 51
EqualityConditionalOn constraint

dependency, 190
evaluation

of active pattern results, 96
of AddressOf expressions, 125
of array expressions, 122
of definition expressions, 123
of dynamic coercion expressions, 124
of dynamic type-test expressions, 123
of field lookups, 121
of for loops, 123
of function applications, 121
of function expressions, 122
of method applications, 121
of object expressions, 122
of record expressions, 122
of sequential execution expressions, 124
of try-finally expressions, 125
of try-with expressions, 125
of union cases, 121
of value references, 120
of while loops, 123

event types, 311
events, 180
exception definitions, 166
exceptions, 302
execution of F# code, 226
expression splices, 116
expressions

address-of, 98
application, 94
array. See array expression
array sequence, 92
assertion, 109
assignment, 102
block, 104
builder, 76
checking of, 65

computation, 65, 76
conditional, 104
constant, 68
delayed, 76
delegate implementation, 96
deterministic disposal, 112
dynamic coercion, 114
dynamic type-test, 113
elaborated, 66
evaluation of, 117
for loop, 107
function, 73
function and value definitions, 109
list, 70
list sequence, 92
lookup, 99
member constraint invocation, 101
name resolution in, 237
null, 93
object. See object expressions
object construction, 96
operator, 97, 98
parenthesized, 104
pattern-matching, 105
precedence in, 41
quoted, 67, 114
range, 65, 91
record construction, 71
recursive, 112
reraise, 108
sequence, 90
sequence iteration, 106
sequential conditional, 105
sequential execution, 104
shortcut and, 105
shortcut or, 105
slice, 100
static coercion, 113
syntactical elements of, 61
try-finally, 108
try-with, 108
tuple, 69
type-annotated, 113
while-loop, 107

extension members, 168
defined by C#, 169

field lookups, 121
fields

additional, in classes, 161
name resolution for labels, 243

filename extensions, 23

329

ML compatibility and, 317
files

implementation, 222
signature. See signature files

flexibility, 255
flexible types, 150
floating type variable environment, 45
for loop, 107
for loops, 123
format strings, 93
fprintf function, 93
fresh type, 45
function applications, 121
function definition expressions, 109
function definitions, 157, 261, 263

ambiguous, 261
in modules, 207
static, 158

function expressions, 73, 122
function values, 14
functions

active pattern, 133
undentation of, 285

GeneralizableValue attribute, 209
generalization, 55, 267
generic types, 267
GetHashCode, 192
GetSlice, 100
guarded rules, 139
hash function, 193
hashing, 188
hidden tokens, 278
identifiers, 26

local names for, 211
long, 39
OCaml keywords as, 315
replacement of, 33

if statement, 104
if/then/else expression

undentation of body, 285
immutability, 13
immutable collection types, 311
implementation files

anonymous, 223
contents of, 222

implementation members, 183
import declarations, 210
in token, 109
indentation, 277

incremental, 285
indexer properties, 173

inference
arity, 274
dispatch slot, 271

inference variables, 55
infix operators, 41
Information-rich Programming, 19
inherit declaration, 156, 162
initialization, 58

of objects, 155
static, 226

instance members, 171
compilation as static method, 182

integer literals, 69
INTERACTIVE compilation symbol, 23, 224
interface type definitions, 162
interface types, 56, 186
interface/end tokens, 162
interfaces, 53
internal accessibility, 211
internal type abbreviations, 150
InternalsVisibleTo attribute, 212
intrinsic extensions, 168
IsLikeGroupJoin, 81
IsLikeJoin, 81
JoinConditionWord, 81
keywords

OCaml, 315
symbolic, 30

kind
anonymous, 148

kind of type definition, 53
lazy computations, 311
libraries

CLI base, 305
F# base, 305

lightweight syntax, 11, 277
balancing rules for, 282
disabling, 317
parsing, 280
rules for, 277

line directives, 33
list expression, 70
list sequence expression, 92
list type, 310
Literal attribute, 208
literals

integer, 69
numeric, 31
string, 28

lookup
expression-qualified, 247

330

item-qualified, 245
unqualified, 244

lookup expressions, 99
mailbox processor, 311
MaintainsVariableSpace, 80
MaintainsVariableSpaceUsingBind, 81
measure annotated base types, 201
Measure attribute, 17, 196, 200
measure parameters, 146

defining, 200
erasing of, 200

MeasureAnnotatedAbbreviation attribute,
201

measures, 53
basic types and annotations for, 306
building blocks of, 197
constraints on, 199
defined, 195
defining, 199
generalization of, 199
relations on, 198
type definitions with, 201

member constraint invocation expressions,
101

member definitions, 261
member signatures, 217
members, 170

extension, 168
intrinsic, 168
name resolution for, 241
naming restrictions for, 180
processing of definitions, 261
signature conformance for, 220

method applications, 121
method calls

conditional compilation of, 255
method members, 170, 174

curried, 175
named arguments to, 175
optional arguments to, 176

methods
overloading of, 180
overriding, 75

Microsoft.FSharp.Collections.list, 310
Microsoft.FSharp.Core, 305
Microsoft.FSharp.Core.NativeIntrop, 312
Microsoft.FSharp.Core.Operators, 306
Microsoft.FSharp.Core.option, 311
mlcompatibility option, 315
module declaration, 222
modules

abbreviations for, 211
active pattern definitions in, 210
defining, 206
do statements in, 210
function definitions in, 207
name resolution in, 236
signature of, 206
undentation of, 286
value definitions in, 207

mscorlib.dll, 305
mutable, 150, 157
mutable value definitions, 262
mutable values, 103
name environment, 235

adding items to, 236
name resolution, 45, 46, 235
namespace declaration, 223
namespace declaration groups, 204
namespaces, 204

grammar of, 203
name resolution in, 236
opened for F# code, 305

native pointer operations, 312
nativeptr type, 306
nativeptr-address-of expression, 98
NoComparison attribute, 190
NoEquality attribute, 189
null, 57
null expression, 93
NullReferenceException, 121
numeric literals, 31
object construction expression, 96
object constructors, 155

additional, 159
primary, 155

object expressions, 74, 122
Object.Equals, 191
objects

initialization of, 155
physical identity of, 126
references to, 126

offside contexts, 280
offside limit, 283
offside lines, 279
offside rule, 279

exceptions to, 283
operations

underspecified results of, 126
operator expressions, 97
operators

address-of, 98

331

basic arithmetic, 306
bitwise, 307
checked arithmetic, 310
default definition of, 97
exception, 309
function pipelining and composition, 308
generic equality and comparison, 307
infix, 41
input and output handles, 309
math, 307
ML compatibility and, 317
names of, 35
object transformation, 308
overloaded conversion functions, 309
pair, 309
precedence of, 41
prefix, 41
splicing, 116
symbolic, 30, 40

option type, 311
OptionalArgument attribute, 178
overflow checking, 310
parallel execution, 118
ParamArray conversion, 251
parenthesized expressions, 104
pattern matching, 14
pattern-matching expression, 105
pattern-matching function, 106
patterns, 129

active, 133
array, 138
as, 135
conjunctive, 136
cons, 136
dynamic type-test, 137
guarded rules for, 139
literal, 132
name resolution for, 241
named, 131
null, 139
record, 138
simple constant, 130
type-annotated, 136
union case, 131
variable, 131
wildcard, 135

pointer, byref, 67
precedence

differences from OCaml, 316
of function applications, 286
of type applications, 287

prefix operators, 41
preprocessing directives, 26
printf, 312
printf function, 93
private accessibility, 211
private type abbreviations, 150
ProjectionParameterAttribute, 81
properties

custom operation, 80
property members, 170, 172, 183
public accessibility, 208, 211
quotations, 312
quoted expression, 114
quoted expressions, 67
range expressions, 91
rec, 157
record construction expression, 71
record expressions

evaluation of, 122
record expressionss

copy-and-update, 72
record types

automatically implemented interfaces in,
151

members in, 151
scope of field labels, 151

record types, 150
records, 53
recursive definitions, 261, 263
recursive function definition, 112
recursive safety analysis, 264
recursive value definition, 112
reference types

zero value of, 119
ReferenceEquality attribute, 189
reflected forms, 233
ReflectedDefinition attribute, 115
reflection, 312
RequireQualifiedAccess attribute, 236
RequiresExplicitTypeArguments attribute, 209
RequiresQualifiedAccess attribute, 166
reraise expressions, 108
resolution

function application, 248
method application, 249

script files, 224
Sealed attribute, 151
SealedAttribute attribute, 54
sequence expression, 90
sequence iteration expression, 106
sequential conditional expressions, 105

332

sequential execution expressions, 104, 124
shortcut and expression, 105
shortcut or expression, 105
signature elements, 217
signature files, 215

anonymous, 224
compilation order of, 222
contents of, 223

signatures
conformance of, 218
declarations of, 216
member, 217
module, 206
of namespace declaration groups, 205
type definition, 217
value, 217

slice expressions, 100
source code files, 23
sprintf function, 93
stack allocation, 312
static coercion expressions, 113
static initializer

execution of, 226
static initializers, 158
static members, 170
static types, 44
strings, 28

format, 93
newlines in, 29
triple-quoted, 29

strongly typed quoted expressions, 115
struct types

default constructor in, 164
struct/end tokens, 163
structs, 53
structural equality, 188
structural types, 189
StructuralComparison attribute, 190
StructuralEquality attribute, 189
symbolic operators, 30, 40
syntactic types, 44
System.Object, 75
System.Reflection objects, 233
System.Tuple, 69
System.Type objects, 233
text formatting, 312
ThreadStatic attribute, 110, 208
tokens

hidden, 33, 278
try-finally expressions, 108

evaluation of, 125

try-with expressions, 108, 125
tuple type, 46
type

fresh, 45
meanings of, 43
named, 45
statically resolved variable, 46

type abbreviations, 53, 149
type annotations

over-constrained, 260
type applications

lexical analysis of, 287
type definition group, 145
type definition signatures, 217
type definitions, 43, 53

abstract members in, 183
checking of, 146
delegate, 166
enum, 165
exception, 166
generic, 53
grammar of, 141
interface, 162
interfaces in, 186
kinds of, 144
location of, 144
reference, 54
sealed, 54
struct, 163

type extensions, 167
type functions, 207

signature conformance for, 220
type inference, 13, 45
type inference environment, 45
type kind inference, 148
type parameter definitions, 52
type providers, 19
type variable

definition site, 55
type variables, 43

name resolution for, 243
rigid, 55

type-annotated expressions, 113
type-annotated patterns, 136
typedefof operator, 233
type-directed conversions, 178
typeof operator, 233
types

anonymous variable. See anonymous
variable type

array. See array type

333

base, 55
class, 53, 155
coercion of, 56
comparison of, 188
condensation of generalized function types,

269
constrained, 47
conversion of, 178
delegate, 96, 166
dynamic conversion of, 58
enum, 165
equivalence of, 56
exn (exception), 166
flexible, 150
implicit static members of, 259
initial, 66
interface types of. See interface types
logical properties of, 53
name resolution for, 242
nativeptr, 306
partial static, 55
record, 150
reference, 54
renaming, 149
runtime, 43
static, 43
structural, 189
syntactic, 43
tuple. See tuple type
union, 152
unit, 107
unmanaged, 51
value, 54
variable, 45
zero value of, 119

undentation, 283, 285

union cases, 121
union types, 152

automatically implemented interfaces for,
153

compiled, 154
members in, 153

unions, 53
unit type, 57, 107
units of measure. See measures
unmanaged constraint, 51
val specification, 161
value definition expressions, 109
value definitions, 157, 261

in modules, 207
static, 158

value references, 120
value signatures, 217
value types

zero value of, 119
values

arity conformance for, 218
processing of definitions, 262
runtime, 117
signature conformance for, 218

verbatim strings, 29
virtual methods, 184
VolatileField attribute, 118
weakly typed quoted expression, 116
while loops, 123
while-loop expression, 107
whitespace, 25

significance in lightweight syntax, 277
with/end tokens, 151, 153
XML documentation tokens, 25
zero value, 119

