
The F# 2.0 Language Specification

Note: This documentation is the specification of the 2.0 release of F# made by Microsoft Research and the

Microsoft Developer Division in April 2010.

Discrepancies may exist between this specification and the 2.0 implementation. Some of these are noted as

comments in this document. If you find further discrepancies please contact us and we will gladly address the

issue in future releases of this specification. The F# team is always very grateful for feedback on this

specification, and on both the design and implementation of F#. You can submit feedback by emailing

fsbugs@microsoft.com.

The latest version of this specification can be found at www.fsharp.net. Many thanks to the F# user community

for their helpful feedback on the document so far.

Certain parts of this specification refer to the C# 4.0, Unicode, and IEEE specifications.

Authors: Don Syme, with assistance from Anar Alimov,Keith Battocchi, Jomo Fisher, Michael Hale, Jack Hu,

Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel

Quirk, Chris Smith, Matteo Taveggia and others.

Notice

© 2005-2012 Microsoft Corporation. Made available under the Apache 2.0 License as part of F# 2.0 source code.

Microsoft, Windows, and Visual F# are either registered trademarks or trademarks of Microsoft Corporation in the

U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Document Updates:

¶ Updated with glossary, index, and style corrections, August 2010

¶ Updated with glossary, index, and style corrections, February 2011

¶ Updated with grammar summary, December 2011

¶ Updated with formatting changes, April 2012

Table of Contents

 INTRODUCTION ... 11

1.1 A FIRST PROGRAM ... 11

1.1.1 Lightweight Syntax .. 11

1.1.2 Making Data Simple .. 12

1.1.3 Making Types Simple ... 12

1.1.4 Functional Programming ... 13

1.1.5 Imperative Programming .. 14

1.1.6 .NET Interoperability and CLI Fidelity ... 14

1.1.7 Parallel and Asynchronous Programming ... 15

1.1.8 Strong Typing for Floating-Point Code ... 15

1.1.9 Object-Oriented Programming and Code Organization... 16

1.2 NOTATIONAL CONVENTIONS IN THIS SPECIFICATION .. 17

mailto:fsbugs@microsoft.com
http://www.fsharp.net/
http://www.apache.org/licenses/LICENSE-2.0.html

2

 PROGRAM STRUCTURE .. 19

 LEXICAL ANALYSIS ... 21

3.1 WHITESPACE .. 21

3.2 COMMENTS ... 21

3.3 CONDITIONAL COMPILATION .. 21

3.4 IDENTIFIERS AND KEYWORDS .. 22

3.5 STRINGS AND CHARACTERS .. 23

3.6 SYMBOLIC KEYWORDS .. 24

3.7 SYMBOLIC OPERATORS ... 25

3.8 NUMERIC LITERALS .. 25

3.8.1 Post-filtering of Adjacent Prefix Tokens ... 26

3.8.2 Post-ŦƛƭǘŜǊƛƴƎ ƻŦ LƴǘŜƎŜǊǎ CƻƭƭƻǿŜŘ ōȅ !ŘƧŀŎŜƴǘ άΦΦέ ... 26

3.8.3 Reserved Numeric Literal Forms .. 26

3.9 LINE DIRECTIVES .. 27

3.10 HIDDEN TOKENS .. 27

3.11 IDENTIFIER REPLACEMENTS ... 27

 BASIC GRAMMAR ELEMENTS... 29

4.1 OPERATOR NAMES .. 29

4.2 LONG IDENTIFIERS ... 31

4.3 CONSTANTS ... 31

4.4 OPERATORS AND PRECEDENCE.. 32

4.4.1 Categorization of Symbolic Operators ... 32

4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs .. 33

 TYPES AND TYPE CONSTRAINTS ... 35

5.1 CHECKING SYNTACTIC TYPES .. 36

5.1.1 Named Types ... 37

5.1.2 Variable Types ... 37

5.1.3 Tuple Types .. 38

5.1.4 Array Types .. 38

5.1.5 Constrained Types ... 38

5.2 TYPE CONSTRAINTS .. 39

5.2.1 Subtype Constraints ... 39

5.2.2 Nullness Constraints .. 39

5.2.3 Member Constraints .. 40

5.2.4 Default Constructor Constraints .. 40

5.2.5 Value Type Constraints .. 40

5.2.6 Reference Type Constraints ... 41

5.2.7 Enumeration Constraints ... 41

5.2.8 Delegate Constraints ... 41

5.2.9 Unmanaged Constraints .. 42

5.2.10 Equality and Comparison Constraints .. 42

5.3 TYPE PARAMETER DEFINITIONS ... 42

5.4 LOGICAL PROPERTIES OF TYPES ... 43

5.4.1 Characteristics of Type Definitions .. 43

5.4.2 Expanding Abbreviations and Inference Equations ... 44

5.4.3 Type Variables and Definition Sites ... 45

5.4.4 Base Type of a Type ... 45

3

5.4.5 Interfaces Types of a Type ... 46

5.4.6 Type Equivalence ... 46

5.4.7 Subtyping and Coercion ... 46

5.4.8 Nullness ... 47

5.4.9 Default Initialization .. 48

5.4.10 Dynamic Conversion Between Types ... 48

 EXPRESSIONS .. 51

6.1 SOME CHECKING AND INFERENCE TERMINOLOGY .. 53

6.2 ELABORATION AND ELABORATED EXPRESSIONS ... 54

6.3 DATA EXPRESSIONS .. 55

6.3.1 Simple Constant Expressions ... 56

6.3.2 Tuple Expressions .. 56

6.3.3 List Expressions .. 57

6.3.4 Array Expressions .. 58

6.3.5 Record Expressions .. 58

6.3.6 Copy-and-update Record Expressions .. 59

6.3.7 Function Expressions ... 60

6.3.8 Object Expressions ... 60

6.3.9 Delayed Expressions .. 62

6.3.10 Computation Expressions .. 62

6.3.11 Sequence Expressions .. 66

6.3.12 Range Expressions ... 66

6.3.13 Lists via Sequence Expressions ... 67

6.3.14 Arrays Sequence Expressions ... 67

6.3.15 Null Expressions ... 68

6.3.16 'printf' Formats .. 68

6.4 APPLICATION EXPRESSIONS .. 69

6.4.1 Basic Application Expressions .. 69

6.4.2 Object Construction Expressions .. 70

6.4.3 Operator Expressions ... 71

6.4.4 Dynamic Operator Expressions .. 72

6.4.5 The AddressOf Operators .. 73

6.4.6 Lookup Expressions .. 73

6.4.7 Slice Expressions .. 74

6.4.8 Member Constraint Invocation Expressions .. 74

6.4.9 Assignment Expressions ... 75

6.5 CONTROL FLOW EXPRESSIONS .. 76

6.5.1 Parenthesized and Block Expressions .. 76

6.5.2 Sequential Execution Expressions .. 77

6.5.3 Conditional Expressions ... 77

6.5.4 Shortcut Operator Expressions .. 77

6.5.5 Pattern-Matching Expressions and Functions ... 78

6.5.6 Sequence Iteration Expressions ... 78

6.5.7 Simple for-Loop Expressions .. 79

6.5.8 While Expressions .. 79

6.5.9 Try-with Expressions .. 80

6.5.10 Reraise Expressions.. 80

6.5.11 Try-finally Expressions ... 80

4

6.5.12 Assertion Expressions .. 81

6.6 DEFINITION EXPRESSIONS .. 81

6.6.1 Value Definition Expressions .. 82

6.6.2 Function Definition Expressions ... 82

6.6.3 Recursive Definition Expressions .. 83

6.6.4 Deterministic Disposal Expressions .. 83

6.7 TYPE-RELATED EXPRESSIONS .. 84

6.7.1 Type-Annotated Expressions ... 84

6.7.2 Static Coercion Expressions ... 84

6.7.3 Dynamic Type-Test Expressions ... 84

6.7.4 Dynamic Coercion Expressions... 84

6.8 QUOTED EXPRESSIONS .. 85

6.8.1 Strongly Typed Quoted Expressions ... 86

6.8.2 Weakly Typed Quoted Expressions .. 86

6.8.3 Expression Splices .. 86

6.9 EVALUATION OF ELABORATED FORMS .. 87

6.9.1 Values and Execution Context ... 87

6.9.2 Parallel Execution and Memory Model .. 88

6.9.3 Zero Values .. 89

6.9.4 Taking the Address of an Elaborated Expression ... 89

6.9.5 Evaluating Value References ... 90

6.9.6 Evaluating Function Applications .. 90

6.9.7 Evaluating Method Applications .. 90

6.9.8 Evaluating Union Cases ... 91

6.9.9 Evaluating Field Lookups ... 91

6.9.10 Evaluating Array Expressions ... 91

6.9.11 Evaluating Record Expressions .. 91

6.9.12 Evaluating Function Expressions .. 91

6.9.13 Evaluating Object Expressions ... 91

6.9.14 Evaluating Definition Expressions .. 92

6.9.15 Evaluating Integer For Loops ... 92

6.9.16 Evaluating While Loops ... 92

6.9.17 Evaluating Static Coercion Expressions.. 92

6.9.18 Evaluating Dynamic Type-Test Expressions ... 92

6.9.19 Evaluating Dynamic Coercion Expressions ... 93

6.9.20 Evaluating Sequential Execution Expressions .. 93

6.9.21 Evaluating Try-with Expressions .. 93

6.9.22 Evaluating Try-finally Expressions ... 94

6.9.23 Evaluating AddressOf Expressions ... 94

6.9.24 Values with Underspecified Object Identity and Type Identity .. 94

 PATTERNS ... 97

7.1 SIMPLE CONSTANT PATTERNS... 98

7.2 NAMED PATTERNS ... 98

7.2.1 Union Case Patterns .. 99

7.2.2 Literal Patterns .. 99

7.2.3 Active Patterns .. 100

7.3 ά!Sέ PATTERNS .. 101

7.4 WILDCARD PATTERNS ... 102

5

7.5 DISJUNCTIVE PATTERNS .. 102

7.6 CONJUNCTIVE PATTERNS ... 102

7.7 LIST PATTERNS .. 102

7.8 TYPE-ANNOTATED PATTERNS ... 103

7.9 DYNAMIC TYPE-TEST PATTERNS .. 103

7.10 RECORD PATTERNS ... 104

7.11 ARRAY PATTERNS ... 104

7.12 NULL PATTERNS ... 105

7.13 GUARDED PATTERN RULES ... 105

 TYPE DEFINITIONS ... 107

8.1 TYPE DEFINITION GROUP CHECKING AND ELABORATION ... 110

8.2 TYPE KIND INFERENCE .. 112

8.3 TYPE ABBREVIATIONS ... 113

8.4 RECORD TYPE DEFINITIONS .. 114

8.4.1 Members in Record Types .. 114

8.4.2 Name Resolution and Record Field Labels ... 114

8.4.3 Structural Hashing, Equality, and Comparison for Record Types ... 115

8.4.4 With/End in Record Type Definitions ... 115

8.5 UNION TYPE DEFINITIONS ... 115

8.5.1 Members in Union Types ... 116

8.5.2 Structural Hashing, Equality, and Comparison for Union Types .. 116

8.5.3 With/End in Union Type Definitions... 116

8.5.4 Compiled Form of Union Types for Use from Other CLI Languages ... 116

8.6 CLASS TYPE DEFINITIONS ... 117

8.6.1 Primary Constructors in Classes ... 117

8.6.2 Members in Classes ... 120

8.6.3 Additional Object Constructors in Classes.. 120

8.6.4 Additional Fields in Classes .. 122

8.7 INTERFACE TYPE DEFINITIONS ... 123

8.8 STRUCT TYPE DEFINITIONS ... 123

8.9 ENUM TYPE DEFINITIONS .. 125

8.10 DELEGATE TYPE DEFINITIONS .. 126

8.11 EXCEPTION DEFINITIONS .. 126

8.12 TYPE EXTENSIONS ... 127

8.12.1 Imported CLI C# Extensions Members ... 128

8.13 MEMBERS .. 129

8.13.1 Property Members ... 130

8.13.2 Method Members .. 131

8.13.3 Curried Method Members ... 131

8.13.4 Named Arguments to Method Members ... 131

8.13.5 Optional Arguments to Method Members .. 132

8.13.6 Type-directed Conversions at Member Invocations ... 134

8.13.7 Overloading of Methods .. 135

8.13.8 Naming Restrictions for Members ... 136

8.13.9 Members Represented as Events ... 136

8.13.10 Members Represented as Static Members ... 137

8.14 ABSTRACT MEMBERS AND INTERFACE IMPLEMENTATIONS ... 137

8.14.1 Abstract Members ... 138

6

8.14.2 Members that Implement Abstract Members ... 138

8.14.3 Interface Implementations .. 140

8.15 EQUALITY, HASHING, AND COMPARISON ... 142

8.15.1 Equality Attributes ... 143

8.15.2 Comparison Attributes ... 143

8.15.3 Behavior of the Generated Object.Equals Implementation ... 144

8.15.4 Behavior of the Generated CompareTo Implementations ... 145

8.15.5 Behavior of the Generated GetHashCode Implementations .. 145

8.15.6 Behavior of Hash, =, and Compare .. 145

 UNITS OF MEASURE .. 149

9.1 MEASURES... 150

9.2 CONSTANTS ANNOTATED BY MEASURES ... 151

9.3 RELATIONS ON MEASURES ... 151

9.3.1 Constraint Solving .. 152

9.3.2 Generalization of Measure Variables .. 152

9.4 MEASURE DEFINITIONS ... 152

9.5 MEASURE PARAMETER DEFINITIONS .. 153

9.6 MEASURE PARAMETER ERASURE ... 153

9.7 TYPE DEFINITIONS WITH MEASURES IN THE F# CORE LIBRARY .. 153

 NAMESPACES AND MODULES ... 155

10.1 NAMESPACE DECLARATION GROUPS ... 155

10.2 MODULE DEFINITIONS ... 157

10.2.1 Function and Value Definitions in Modules ... 158

10.2.2 Literal Definitions in Modules .. 159

10.2.3 Type Function Definitions in Modules .. 159

10.2.4 Active Pattern Definitions in Modules ... 160

10.2.5 άŘƻέ ǎǘŀǘŜƳŜƴǘǎ ƛƴ aƻŘǳƭŜǎ .. 160

10.3 IMPORT DECLARATIONS ... 161

10.4 MODULE ABBREVIATIONS .. 161

10.5 ACCESSIBILITY ANNOTATIONS .. 161

 NAMESPACE AND MODULE SIGNATURES .. 165

11.1 SIGNATURE ELEMENTS ... 166

11.1.1 Value Signatures .. 166

11.1.2 Type Definition and Member Signatures ... 166

11.2 SIGNATURE CONFORMANCE.. 167

11.2.1 Signature Conformance for Functions and Values ... 167

11.2.2 Signature Conformance for Members ... 169

 PROGRAM STRUCTURE AND EXECUTION ... 171

12.1 IMPLEMENTATION FILES ... 172

12.2 SIGNATURE FILES ... 173

12.3 SCRIPT FILES ... 173

12.4 COMPILER DIRECTIVES ... 174

12.5 PROGRAM EXECUTION... 175

12.5.1 Execution of Static Initializers .. 175

12.5.2 Explicit Entry Point ... 177

 CUSTOM ATTRIBUTES AND REFLECTION .. 179

7

13.1 CUSTOM ATTRIBUTES .. 179

13.1.1 Custom Attributes and Signatures ... 180

13.2 REFLECTED FORMS OF DECLARATION ELEMENTS .. 181

 INFERENCE PROCEDURES .. 183

14.1 NAME RESOLUTION .. 183

14.1.1 Name Environments .. 183

14.1.2 Name Resolution in Module and Namespace Paths .. 183

14.1.3 Opening Modules and Namespace Declaration Groups .. 184

14.1.4 Name Resolution in Expressions .. 185

14.1.5 Name Resolution for Members .. 187

14.1.6 Name Resolution in Patterns ... 188

14.1.7 Name Resolution for Types .. 188

14.1.8 Name Resolution for Type Variables .. 189

14.1.9 Field Label Resolution .. 189

14.2 RESOLVING APPLICATION EXPRESSIONS ... 190

14.2.1 Unqualified Lookup .. 190

14.2.2 Item-Qualified Lookup ... 191

14.2.3 Expression-Qualified Lookup.. 192

14.3 FUNCTION APPLICATION RESOLUTION ... 194

14.4 METHOD APPLICATION RESOLUTION .. 194

14.4.1 Conditional Compilation of Member Calls ... 199

14.4.2 Implicit Insertion of Flexibility for Uses of Functions and Members .. 199

14.5 CONSTRAINT SOLVING ... 200

14.5.1 Solving Equational Constraints .. 200

14.5.2 Solving Subtype Constraints .. 201

14.5.3 Solving Nullness, Struct, and Other Simple Constraints ... 201

14.5.4 Solving Member Constraints .. 202

14.5.5 Over-constrained User Type Annotations .. 203

14.6 CHECKING AND ELABORATING FUNCTION, VALUE, AND MEMBER DEFINITIONS ... 203

14.6.1 Ambiguities in Function and Value Definitions .. 204

14.6.2 Mutable Value Definitions ... 204

14.6.3 Processing Value Definitions .. 204

14.6.4 Processing Function Definitions ... 205

14.6.5 Processing Recursive Groups of Definitions ... 205

14.6.6 Recursive Safety Analysis ... 206

14.6.7 Generalization ... 208

14.6.8 Condensation of Generalized Types ... 210

14.7 DISPATCH SLOT INFERENCE ... 211

14.8 DISPATCH SLOT CHECKING ... 212

14.9 BYREF SAFETY ANALYSIS .. 213

14.10 ARITY INFERENCE ... 214

14.11 ADDITIONAL CONSTRAINTS ON CLI METHODS .. 215

 LEXICAL FILTERING .. 217

15.1 LIGHTWEIGHT SYNTAX ... 217

15.1.1 Basic Lightweight Syntax Rules by Example .. 217

15.1.2 Inserted Tokens.. 218

15.1.3 Grammar Rules Including Inserted Tokens .. 218

15.1.4 Offside Lines .. 219

8

15.1.5 The Pre-Parse Stack ... 220

15.1.6 Full List of Offside Contexts.. 220

15.1.7 Balancing Rules ... 221

15.1.8 Offside Tokens, Token Insertions, and Closing Contexts .. 222

15.1.9 Exceptions to the Offside Rules .. 223

15.1.10 Permitted Undentations ... 224

15.2 HIGH PRECEDENCE APPLICATION ... 225

15.3 LEXICAL ANALYSIS OF TYPE APPLICATIONS .. 226

 SPECIAL ATTRIBUTES AND TYPES ... 227

16.1 CUSTOM ATTRIBUTES RECOGNIZED BY F# .. 227

16.2 CUSTOM ATTRIBUTES EMITTED BY F# ... 234

16.3 CUSTOM ATTRIBUTES NOT RECOGNIZED BY F# ... 234

16.4 EXCEPTIONS THROWN BY F# LANGUAGE PRIMITIVES .. 235

 THE F# LIBRARY FSHARP.CORE.DLL .. 237

17.1 BASIC TYPES (MICROSOFT.FSHARP.CORE) ... 237

17.1.1 Basic Type Abbreviations ... 237

17.1.2 Basic Types that Accept Unit of Measure Annotations .. 238

17.1.3 The nativeptr<_> Type ... 238

17.2 BASIC OPERATORS AND FUNCTIONS (MICROSOFT.FSHARP.CORE.OPERATORS) .. 238

17.2.1 Basic Arithmetic Operators .. 238

17.2.2 Generic Equality and Comparison Operators ... 239

17.2.3 Bitwise Operators .. 239

17.2.4 Math Operators ... 240

17.2.5 Function Pipelining and Composition Operators ... 241

17.2.6 Object Transformation Operators ... 241

17.2.7 Pair Operators ... 241

17.2.8 Exception Operators .. 241

17.2.9 Input/Output Handles .. 242

17.2.10 Overloaded Conversion Functions .. 242

17.3 CHECKED ARITHMETIC OPERATORS .. 243

17.4 LIST AND OPTION TYPES .. 244

17.4.1 The List Type .. 244

17.4.2 The Option Type... 244

17.5 LAZY COMPUTATIONS (LAZY) .. 244

17.6 ASYNCHRONOUS COMPUTATIONS (ASYNC) .. 244

17.7 AGENTS (MAILBOXPROCESSOR) .. 244

17.8 EVENT TYPES ... 245

17.9 IMMUTABLE COLLECTION TYPES (MAP, SET) .. 245

17.10 TEXT FORMATTING (PRINTF) ... 245

17.11 REFLECTION .. 245

17.12 QUOTATIONS .. 245

17.13 NATIVE POINTER OPERATIONS .. 245

17.13.1 Stack Allocation .. 246

 FEATURES FOR ML COMPATIBILITY ... 247

18.1 CONDITIONAL COMPILATION FOR ML COMPATIBILITY .. 247

18.2 EXTRA SYNTACTIC FORMS FOR ML COMPATIBILITY .. 247

18.3 EXTRA OPERATORS ... 248

9

18.4 FILE EXTENSIONS AND LEXICAL MATTERS ... 248

APPENDIX A: F# GRAMMAR SUMMARY .. 249

REFERENCES .. 269

GLOSSARY ... 270

INDEX .. 281

 Introduction
F# is a scalable, succinct, type-safe, type-inferred, efficiently executing functional/imperative/object-oriented

programming language. It aims to be the premier typed functional programming language for the .NET framework

and other implementations of the Ecma 335 Common Language Infrastructure (CLI) specification. F# was partly

inspired by the OCaml language and shares some common core constructs with it.

1.1 A First Program
Over the next few sections, we will look at some small F# programs, describing some important aspects of F#

along the way. As an introduction to F#, consider the following program:

let numbers = [1 . . 10]

let square x = x * x

let squares = List.map square numbers

printfn "N^2 = %A" squares

To explore this program, you can:

¶ Compile it as a project in a development environment such as Visual Studio.

¶ Manually invoke the F# command line compiler fsc.exe.

¶ Use F# Interactive, the dynamic compiler that is part of the F# distribution.

1.1.1 Lightweight Syntax

The F# language uses simplified, indentation-aware syntactic constructs known as lightweight syntax. The lines

of the sample program in the previous section form a sequence of declarations and are aligned on the same

column. For example, the two lines in the following code are two separate declarations:

let squares = List.map square numbers

printfn "N^2 = %A" squares

Lightweight syntax applies to all the major constructs of the F# syntax. In the next example, the code is

incorrectly aligned. The declaration starts in the first line and continues to the second and subsequent lines, so

those lines must be indented to the same column under the first line:

let computeDeri vative f x =

 let p1 = f (x - 0.05)

 let p2 = f (x + 0.05)

 (p2 - p1) / 0.1

The following shows the correct alignment:

let computeDeri vative f x =

 let p1 = f (x - 0.05)

 let p2 = f (x + 0 .05)

 (p2 - p1) / 0.1

The use of lightweight syntax is the default for all F# code in files with the extension .fs , .fsx , .fsi , or

.fsscript .

12

1.1.2 Making Data Simple

The first line in our sample simply declares a list of numbers from one through ten.

let numbers = [1 .. 10]

An F# list is an immutable linked list, which is a type of data used extensively in functional programming. Some

operators that are related to lists include :: to add an item to the front of a list and @ to concatenate two lists. If

we try these operators in F# Interactive, we see the following results:

> let vowels = ['e'; 'i'; 'o'; 'u'];;

val vowels: char list = ['e'; 'i'; 'o'; 'u']

> ['a'] @ vowels;;

val it: char list = ['a'; 'e'; 'i'; 'o'; 'u']

> vowels @ ['y'];;

val it: char list = ['e'; 'i'; 'o'; 'u'; 'y']

Note that double semicolons delimit lines in F# Interactive, and that F# Interactive prefaces the result with val to

indicate that the result is an immutable value, rather than a variable.

F# supports several other highly effective techniques to simplify the process of modeling and manipulating data

such as tuples, options, records, unions, and sequence expressions. A tuple is an ordered collection of values

that is treated as an atomic unit. In many languages, if you want to pass around a group of related values as a

single entity, you need to create a named type, such as a class or record, to store these values. A tuple allows

you to keep things organized by grouping related values together, without introducing a new type.

To define a tuple, you separate the individual components with commas.

> let tuple = (1, false, "text");;

val tuple : int * bool * string = (1, false, "text")

> let getNumberInfo (x : int) = (x, x.ToString(), x * x);;

val getNumberInfo : int - > int * string * int

> getNumberInfo 42;;

val it : int * string * int = (42, "42", 1764)

A key concept in F# is immutability. Tuples and lists are some of the many types in F# that are immutable, and

indeed most things in F# are immutable by default. Immutability means that once a value is created and given a

name, the value associated with the name cannot be changed. Immutability has several benefits. Most notably, it

prevents many classes of bugs, and immutable data is inherently thread-safe, which makes the process of

parallelizing code simpler.

1.1.3 Making Types Simple

The next line of the sample program defines a function called square , which squares its input.

let square x = x * x

Most statically-typed languages require that you specify type information for a function declaration. However, F#

typically infers this type information for you. This process is referred to as type inference.

From the function signature, F# knows that square takes a single parameter named x and that the function

returns x * x . The last thing evaluated in an F# function body is the return value; hence there is no ñreturnò

keyword here. Many primitive types support the multiplication (*) operator (such as byte , uint64 , and double) ;

however, for arithmetic operations, F# infers the type int (a signed 32-bit integer) by default.

13

Although F# can typically infer types on your behalf, occasionally you must provide explicit type annotations in F#

code. For example, the following code uses a type annotation for one of the parameters to tell the compiler the

type of the input.

> let concat (x : string) y = x + y;;

val concat : string - > string - > string

Because x is stated to be of type string , and the only version of the + operator that accepts a left-hand

argument of type string also takes a string as the right-hand argument, the F# compiler infers that the

parameter y must also be a string. Thus, the result of x + y is the concatenation of the strings. Without the type

annotation, the F# compiler would not have known which version of the + operator was intended and would have

assumed int data by default.

The process of type inference also applies automatic generalization to declarations. This automatically makes

code generic when possible, which means the code can be used on many types of data. For example, the

following code defines a function that returns a new tuple in which the two values are swapped:

> let swap (x, y) = (y, x);;

val swap : 'a * 'b - > 'b * 'a

> swap (1, 2);;

val it : int * int = (2, 1)

> swap ("you", true);;

val it : bool * string = (true,"you")

Here the function swap is generic, and 'a and 'b represent type variables, which are placeholders for types in

generic code. Type inference and automatic generalization greatly simplify the process of writing reusable code

fragments.

1.1.4 Functional Programming

Continuing with the sample, we have a list of integers named numbers, and the square function, and we want to

create a new list in which each item is the result of a call to our function. This is called mapping our function over

each item in the list. The F# library function List.map does just that:

l et squares = List.map square numbers

Consider another example:

> List.map (fun x - > x % 2 = 0) [1 .. 5];;

val it : bool list

= [false; true; false; true; false]

The code (fun x - > x % 2 = 0) defines an anonymous function, called a function expression, that takes a

single parameter x and returns the result x % 2 = 0 , which is a Boolean value that indicates whether x is even.

The - > symbol separates the argument list (x) from the function body (x % 2 = 0).

Both of these examples pass a function as a parameter to another functionðthe first parameter to List.map is

itself another function. Using functions as function values is a hallmark of functional programming.

Another tool for data transformation and analysis is pattern matching. This powerful switch construct allows you

to branch control flow and to bind new values. For example, we can match an F# list against a sequence of list

elements.

let checkList alist =

 match alist with

 | [] - > 0

 | [a] - > 1

 | [a; b] - > 2

14

 | [a; b; c] - > 3

 | _ - > failwith "List is too big!"

In this example, alist is compared with each potentially matching pattern of elements. When alist matches a

pattern, the result expression is evaluated and is returned as the value of the match expression. Here,

the - > operator separates a pattern from the result that a match returns.

Pattern matching can also be used as a control constructðfor example, by using a pattern that performs a

dynamic type test:

let get Type (x : obj) =

 match x with

 | :? string - > "x is a string"

 | :? int - > "x is an int"

 | :? System.Exception - > "x is an exception"

The :? operator returns true if the value matches the specified type, so if x is a string, getType returns

ñx is a string ò.

Function values can also be combined with the pipeline operator, |> . For example, given these functions:

let square x = x * x

let toStr (x : int) = x.ToString()

let reverse (x : string) = new System. String(Array.rev (x.ToCharArray()))

We can use the functions as values in a pipeline:

> let result = 32 |> square |> toStr |> reverse ;;

val it : string = "4201"

Pipelining demonstrates one way in which F# supports compositionality, a key concept in functional

programming. The pipeline operator simplifies the process of writing compositional code where the result of one

function is passed into the next.

1.1.5 Imperative Programming

The next line of the sample program prints text in the console window.

printfn "N^2 = %A" squares

The F# library function printf is a simple and type-safe way to print text in the console window. Consider this

example, which prints an integer, a floating-point number, and a string:

> printfn "%d * %f = %s" 5 0 .75 ((5.0 * 0.75).ToString());;

5 * 0.750000 = 3.75

val it : unit = ()

The format specifiers %d, %f, and %s are placeholders for integers, floats, and strings. The %A format can be used

to print arbitrary data types (including lists).

The printfn function is an example of imperative programming, which means calling functions for their side

effects. Other commonly used imperative programming techniques include arrays and dictionaries (also called

hash tables). F# programs typically use a mixture of functional and imperative techniques.

1.1.6 .NET Interoperability and CLI Fidelity

The last line in the sample program calls the common language infrastructure (CLI) function

System.Console.ReadKey to pause the program before the console window closes.

System.Console.ReadKey(true)

Because F# is built on top of CLI implementations, you can call any CLI library from F#. Furthermore, other CLI

languages can easily use any F# components.

15

1.1.7 Parallel and Asynchronous Programming

F# is both a parallel and a reactive language. During execution, F# programs can have multiple parallel active

evaluations and multiple pending reactions, such as callbacks and agents that wait to react to events and

messages.

One way to write parallel and reactive F# programs is to use F# async expressions. For example, the code below

is similar to the original program in §1.1 except that it computes the Fibonacci function (using a technique that will

take some time) and schedules the computation of the numbers in parallel:

let rec fib x = if x <= 2 then 1 else fib (x - 1) + fib(x - 2)

let fibs =

 Async.Parallel [for i in 0..40 - > async { return fib(i) }]

 |> Async.RunSynchronously

printfn "N^2 = %A" fibs

System.Console.ReadKey(true)

The preceding code sample shows multiple, parallel, CPU-bound computations.

F# is also a reactive language. The following example requests multiple web pages in parallel, reacts to the

responses for each request, and finally returns the collected results.

open System

open System.IO

open System.Net

let http url =

 async { let req = WebRequest.Create(Uri url)

 use! resp = req.AsyncGetResponse()

 use stream = resp.GetResponseStream()

 use reader = new StreamReader(stream)

 let contents = reader.ReadToEnd()

 return contents }

let sites = ["http://www.bing.com"; "http://www.google.co m";

 "http://www.yahoo.com"; "http://www.search.com"]

let htmlOfSites =

 Async.Parallel [for site in sites - > http site]

 |> Async.RunSynchronously

By using asynchronous workflows together with other CLI libraries, F# programs can implement parallel tasks,

parallel I/O operations, and message-receiving agents.

1.1.8 Strong Typing for Floating -Point Code

F# applies type checking and type inference to floating-point-intensive domains through units of measure

inference and checking. This feature allows you to type-check programs that manipulate floating-point numbers

that represent physical and abstract quantities in a stronger way than other typed languages, without losing any

performance in your compiled code. You can think of this feature as providing a type system for floating-point

code.

Consider the following example:

[<Measure>] type kg

[<Measure>] type m

[<Measure>] type s

16

let gravityOnEarth = 9.81<m/s^2>

let heightOfTowerOfPisa = 55.86<m>

let speedOfImpact = sqrt(2.0 * gravityOnEarth * heightOfTowerOfPisa)

The Measure attribute tells F# that kg, s, and m are not really types in the usual sense of the word, but are used

to build units of measure. Here speedOfImpact is inferred to have type float<m/s> .

1.1.9 Object-Oriented Programming and Code Organization

The sample program shown at the start of this chapter is a script. Although scripts are excellent for rapid

prototyping, they are not suitable for larger software components. F# supports the transition from scripting to

structured code through several techniques.

The most important of these is object-oriented programming through the use of class type definitions, interface

type definitions, and object expressions. Object-oriented programming is a primary application programming

interface (API) design technique for controlling the complexity of large software projects. For example, here is a

class definition for an encoder/decoder object.

open System

/// Build an encoder/decoder object that maps characters to an

/// encoding and back. The encoding is specified by a sequence

/// of character pairs, for example, [('a','Z'); ('Z','a')]

type CharMapEncoder(symbols: seq<char*char>) =

 let swap (x, y) = (y, x)

 /// An immutable tree map for the encoding

 let fwd = symbols |> Map.of Seq

 /// An immutable tree map for the decoding

 let bwd = symbols |> Seq.map swap |> Map.of Seq

 let encode (s:string) =

 String [| for c in s - > if fwd.ContainsKey(c) then fwd.[c] else c |]

 let decode (s:string) =

 String [| for c in s - > if bwd.ContainsKey(c) then bwd.[c] else c |]

 /// Encode the input string

 member x.Encode(s) = encode s

 /// Decode the given string

 member x.Decode(s) = decode s

You can instantiate an object of this type as follows:

let rot13 (c:char) =

 char(int 'a' + ((int c - int 'a' + 13) % 26))

let encoder =

 CharMapEncoder([for c in 'a'..'z' - > (c, rot13 c)])

And use the object as follows:

> "F# is fun!" |> encoder.Encode ;;

val it : string = "F# vf sha!"

> "F# is fun!" |> encoder.Encode |> encoder.Decode ;;

val it : String = "F# is fun!"

An interface type can encapsulate a family of object types:

open System

17

type IEncoding =

 abstract Encode : string - > string

 abstract Decode : string - > string

In this example, IEncoding is an interface type that includes both Encode and Decode object types.

Both object expressions and type definitions can implement interface types. For example, here is an object

expression that implements the IEncoding interface type:

let nullEncoder =

 { new IEncoding with

 member x.Encode(s) = s

 member x.Decode(s) = s }

Modules are a simple way to encapsulate code during rapid prototyping when you do not want to spend the time

to design a strict object-oriented type hierarchy. In the following example, we place a portion of our original script

in a module.

module ApplicationLogic =

 let numbers n = [1 .. n]

 let square x = x * x

 let squares n = numbers n |> List.map square

printfn "Squares up to 5 = %A" (ApplicationLogic.squares 5)

printfn "Squares up to 10 = %A" (ApplicationLogic.squares 10)

System.Console.ReadKey(tr ue)

Modules are also used in the F# library design to associate extra functionality with types. For example, List.map

is a function in a module.

Other devices aimed at supporting software engineering include signatures, which can be used to give explicit

types to components, and namespaces, which serve as a way of organizing the name hierarchies for larger APIs.

1.2 Notational Conventions in This Specification
This specification describes the F# language by using a mixture of informal and semiformal techniques. All

examples in this specification use lightweight syntax, unless otherwise specified.

Regular expressions are given in the usual notation, as shown in the table:

Notation Meaning

regexp+ One or more occurrences

regexp* Zero or more occurrences

regexp? Zero or one occurrences

[char - char] Range of ASCII characters

[^ char - char] Any characters except those in the range

Unicode character classes are referred to by their abbreviationðfor example, \ Lu refers to any uppercase letter.

The following characters are referred to using the indicated notation:

Character Name Notation

\ b backspace ASCII/UTF-8/UTF-16/UTF-32 code 08

\ n newline ASCII/UTF-8/UTF-16/UTF-32 code 10

18

Character Name Notation

\ r return ASCII/UTF-8/UTF-16/UTF-32 code 13

\ t tab ASCII/UTF-8/UTF-16/UTF-32 code 09

Strings of characters that are clearly not a regular expression are written verbatim. Therefore, the following string

abstract

matches precisely the characters abstract .

Where appropriate, apostrophes and quotation marks enclose symbols that are used in the specification of the

grammar itself, such as '<' and '|' . For example, the following regular expression matches (+) or (-) :

'(' (+| -) ')'

This regular expression matches precisely the characters #if :

"#i f"

Regular expressions are typically used to specify tokens.

token token - name = regexp

In the grammar rules, the notation element - nameopt indicates an optional element. The notation ... indicates

repetition of the preceding non-terminal construct and the separator token. For example, expr ',' ... ','

expr means a sequence of one or more expr elements separated by commas.

 Program Structure
The inputs to the F# compiler or the F# Interactive dynamic compiler consist of:

¶ Source code files, with extensions .fs , .fsi , .fsx , or .fsscript .

¶ Files with extension .fs must conform to grammar element implementation - file in §12.1.

¶ Files with extension .fsi must conform to grammar element signature - file in §12.2.

¶ Files with extension .fsx or .fsscript must conform to grammar element script - file in §12.3.

¶ Script fragments (for F# Interactive). These must conform to grammar element script - fragment . Script

fragments can be separated by ;; tokens.

¶ Assembly references that are specified by command line arguments or interactive directives.

¶ Compilation parameters that are specified by command line arguments or interactive directives.

¶ Compiler directives such as #time .

The COMPILED compilation symbol is defined for input that the F# compiler has processed. The INTERACTIVE

compilation symbol is defined for input that F# Interactive has processed.

Processing the source code portions of these inputs consists of the following steps:

1. Decoding. Each file and source code fragment is decoded into a stream of Unicode characters, as

described in the C# specification, sections 2.3 and 2.4. The command-line options may specify a code page

for this process.

2. Tokenization. The stream of Unicode characters is broken into a token stream by the lexical analysis

described in §3.

3. Lexical Filtering. The token stream is filtered by a state machine that implements the rules described

in §15. Those rules describe how additional (artificial) tokens are inserted into the token stream and how

some existing tokens are replaced with others to create an augmented token stream.

4. Parsing. The augmented token stream is parsed according to the grammar specification in this document.

5. Importing. The imported assembly references are resolved to F# or CLI assembly specifications, which are

then imported. From the F# perspective, this results in the pre-definition of numerous namespace declaration

groups (§12.1) and types. The namespace declaration groups are then combined to form an initial name

resolution environment (§14.1).

6. Checking. The results of parsing are checked one by one. Checking involves such procedures as Name

Resolution (§14.1), Constraint Solving (§14.5), and Generalization (§14.6.7), as well as the application of

other rules described in this specification.

Type inference uses variables to represent unknowns in the type inference problem. The various checking

processes maintain tables of context information including a name resolution environment and a set of

current inference constraints. After the processing of a file or program fragment is complete, all such

variables have been either generalized or resolved and the type inference environment is discarded.

7. Elaboration. One result of checking is an elaborated program fragment that contains elaborated

declarations, expressions, and types. For most constructs, such as constants, control flow, and data

expressions, the elaborated form is simple. Elaborated forms are used for evaluation, CLI reflection, and the

F# expression trees that are returned by quoted expressions (§6.8).

20

8. Execution. Elaborated program fragments that are successfully checked are added to a collection of

available program fragments. Each fragment has a static initializer. Static initializers are executed as

described in (§12.5).

 Lexical Analysis
Lexical analysis converts an input stream of Unicode characters into a stream of tokens by iteratively processing

the stream. If more than one token can match a sequence of characters in the source file, lexical processing

always forms the longest possible lexical element. Some tokens, such as block - comment- start , are discarded

after processing as described later in this section.

3.1 Whitespace
Whitespace consists of spaces and newline characters.

regexp whitespace = ' ' +
regexp newline = ' \ n' | ' \ r' ' \ n'
token whitespace - or - newline = whitespace | newline

Whitespace tokens whitespace - or - newline are discarded from the returned token stream.

3.2 Comments
Block comments are delimited by (* and *) and may be nested. Single-line comments begin with // and extend

to the end of the line.

token block - comment- start = "(*"
token block - comment - end = "*)"
token end- of - line - comment = "//" [^' \ n' ' \ r']*

When the input stream matches a block - comment- start token, the subsequent text is tokenized recursively

against the tokens that are described in §3 until a block - comment- end token is found. The intermediate tokens

are discarded.

For example, comments can be nested, and strings that are embedded within comments are tokenized by the

rules for string and verbatim - string . In particular, strings that are embedded in comments are tokenized in

their entirety, without considering closing *) marks. As a result of this rule, the following is a valid comment:

(* Here's a code snippet: let s = "*)" *)

For the purposes of this specification, comment tokens are discarded from the returned lexical stream. In

practice, XML documentation tokens are end- of - line - comments that begin with ///. The delimiters are retained

and are associated with the remaining elements to generate XML documentation.

3.3 Conditional Compilation
The lexical preprocessing directives #if ident /#else/#endif delimit conditional compilation sections. The

following describes the grammar for such sections:

token if - directive = "#if" whitespace ident - text
token else - directive = "#else"
token endif - directive = "#endif"

A preprocessing directive always occupies a separate line of source code and always begins with a # character

followed immediately by a preprocessing directive name, with no intervening whitespace. However, whitespace

22

can appear before the # character. A source line that contains the #if , #else , or #endif directive can end with

whitespace and a single-line comment. Multiple-line comments are not permitted on source lines that contain

preprocessing directives.

If an if - directive token is matched during tokenization, text is recursively tokenized until a corresponding

else - directive or endif - directive . If the compilation environment defines the associated ident - text (for

example, by using the command line option Ƶdefine), the token stream includes the tokens between the if -

directive and the corresponding else - directive or endif - directive . Otherwise, the tokens are discarded.

The converse applies to the text between any corresponding else - directive and the endif - directive .

¶ In skipped text, #if ident /#else/#endif sections can be nested.

¶ Strings and comments are not treated as special

3.4 Identifiers and Keywords
Identifiers follow the specification below. Any sequence of characters that is enclosed in double-backtick marks

(`` ``), excluding newlines, tabs, and double-backtick pairs themselves, is treated as an identifier.

regexp digit - char = [0 - 9]
regexp letter - char = ' \ Lu' | ' \ Ll' | ' \ Lt' | ' \ Lm' | ' \ Lo' | ' \ Nl'
regexp connecting - char = ' \ Pc'
regexp combining - char = ' \ Mn' | ' \ Mc'
regexp formatting - char = ' \ Cf'

regexp ident - start - char =
 | letter - char
 | _

regexp ident - char =
 | letter - char
 | digit - char
 | connecting - char
 | combining - char
 | formatting - char
 | '
 | _

regexp ident - text = ident - start - char ident - char *
token ident =
 | ident - text For example, myName1
 | `` [^ ' \ n' ' \ r ' ' \ t '] + | [^ ' \ n' ' \ r ' ' \ t '] ``
 For example, `` value .with odd#name``

All input files are currently assumed to be encoded as UTF-8. See the C# specification for a list of the Unicode

characters that are accepted for the Unicode character classes \Lu, \Li, \Lt, \Lm, \Lo, \Nl, \Pc, \Mn, \Mc, and \Cf.

The following identifiers are treated as keywords of the F# language:

token ident - keyword =
 abstract and as assert base begin class default delegate do done
 downcast downto elif else end exception extern false finally for
 fun function global if in inherit inline interface internal lazy let
 match member module mutable namespace new null of open or
 override private public rec return sig static struct then to
 true try type upcast use val void when while with yield

The following identifiers are reserved for future use:

token reserved - ident - keyword =

 atomic break checked component const constraint constructor

23

 continue eager fixed fori functor include

 measure method mixin object parallel params process protected pure

 recursive sealed tailcall trait virtual volatile

A future revision of the F# language may promote any of these identifiers to be full keywords.

The following token forms are reserved, except when they are part of a symbolic keyword (§3.6).

token reserved - ident - formats =

 | ident - text ('!' | '#')

In the remainder of this specification, we refer to the token that is generated for a keyword simply by using the

text of the keyword itself.

3.5 Strings and Characters
String literals may be specified for two types:

¶ Unicode strings, type string = System.String

¶ Unsigned byte arrays, type byte[] = bytearray

Literals may also be specified by using C#-like verbatim forms that interpret \ as a literal character rather than an

escape sequence. In a UTF-8-encoded file, you can directly embed the following in a string in the same way as in

C#:

¶ Unicode characters, such as ñ\ u0041bcò

¶ Identifiers, as described in the previous section, such as ñabcò

¶ Trigraph specifications of Unicode characters, such as ñ\067ò which represents ñCò

regexp escape- char = ' \ ' [" \ 'ntbr]
regexp non- escape- chars = ' \ ' [^" \ 'ntbr]
regexp simple - char - char =
 | (any char except ' \ n' ' \ t' ' \ r' ' \ b' ' \ ")

regexp unicodegraph - short = ' \ ' 'u' hexdigit hexdigit hexdigit hexdigit
regexp unicodegraph - long = ' \ ' 'U' hexdigit hexdigit hexdigit hexdig it
 hexdigit hexdigit hexdigit hexdigit

regexp trigraph = ' \ ' digit - char digit - char digit - char

regexp char - char =
 | simple - char - char
 | escape- char
 | trigraph
 | unicodegraph - short

regexp string - char =
 | simple - string - char
 | escape- char
 | non- escape- chars
 | trigraph
 | unicodegraph - short
 | unicodegraph - long
 | newline

regexp string - elem =
 | string - char
 | ' \ ' newline whitespace * string - elem

token char = ' char - char '
token string = " string - char * "

24

regexp verbatim - string - char =
 | simple - string - char
 | non- escape- chars
 | newline
 | \
 | ""

token verbatim - string = @" verbatim - string - char * "

token bytechar = ' simple - or - escape- char 'B
token bytearray = " string - char * "B
token verbatim - bytearray = @" verbatim - string - char * "B
token simple - or - escape- char = escape- char | simple - char
token simple - char = any char except newline,return,tab,backspace ,', \ ,"

To translate a string token to a string value, the F# parser concatenates all the Unicode characters for the

string - char elements within the string. Strings may include \ n as a newline character. However, if a line ends

with \ , the newline character and any leading whitespace elements on the subsequent line are ignored. Thus, the

following gives s the value "abcdef" :

let s = "abc \

 def"

Without the backslash, the resulting string includes the newline and whitespace characters. For example:

let s = "abc

 def"

In this case, s has the value "abc \ 010 def" where \ 010 is the embedded control character for \ n, which

has Unicode UTF-16 value 10.

Verbatim strings may be specified by using the @ symbol preceding the string as in C#. For example, the

following assigns the value "abc \ def" to s.

let s = @"abc \ def"

String-like and character-like literals can also be specified for unsigned byte arrays (type byte[]). These tokens

cannot contain Unicode characters that have surrogate-pair UTF-16 encodings or UTF-16 encodings greater than

127.

3.6 Symbolic Keywords
The following symbolic or partially symbolic character sequences are treated as keywords:

token symbolic - keyword =
 let! use! do! yield! return!
 | - > < - . : () [] [< >] [| |] { }
 ' # :?> :? :> .. :: := ;; ; =
 _ ? ?? (*) <@ @> <@@ @@>

The following symbols are reserved for future use:

token reserved - symbolic - sequence =
 ~ `

25

3.7 Symbolic Operators
User-defined and library-defined symbolic operators are sequences of characters as shown below, except where

the sequence of characters is a symbolic keyword (§3.6).

regexp first - op- char = !%&*+ - ./<=>@^|~
regexp op- char = first - op- char | ?

token quote - op- left =
 | <@ <@@

token quote - op- right =
 | @> @@>

token symbolic - op =
 | ?
 | ?< -
 | first - op- char op- char *
 | quote - op- left
 | quote - op- right

For example, &&& and ||| are valid symbolic operators. Only the operators ? and ?<- may start with ?.

The quote - op- left and quote - op- right operators are used in quoted expressions (§6.8).

For details about the associativity and precedence of symbolic operators in expression forms, see §4.4.

3.8 Numeric Literals
The lexical specification of numeric literals is as follows:

regexp digit = [0 - 9]
regexp hexdigit = digit | [A - F] | [a - f]
regexp octaldigit = [0 - 7]
regexp bitdigit = [0 - 1]

regexp int =
 | digit + For example, 34

regexp xint =
 | int For example, 34
 | 0 (x|X) hexdigit + For example, 0x22
 | 0 (o|O) octaldigit + For example, 0o42
 | 0 (b|B) bitdigit + For example, 0b10010

token sbyte = xint 'y' For example , 34y
token byte = xint ' uy' For example , 34uy
token int16 = xint ' s' For example , 34 s
token uint16 = xint ' us' For example , 34us
token int32 = xint ' l' For example , 34l
token uint32 = xint ' ul' For example , 34ul
 | xint ' u' For example , 34u
token nativeint = xint ' n' For example , 34n
token unativeint = xint ' un' For example , 34un
token int64 = xint ' L' For example , 34L
token uint64 = xint ' UL' For example , 34UL
 | xint ' uL' For example , 34uL

token ieee32 =
 | float [Ff] For example , 3.0F or 3.0f
 | xint 'lf' For example , 0x00000000lf
token ieee64 =
 | float For example, 3.0

26

 | xint 'LF' For example , 0x0000000000000000LF

token bignum = int ('Q ' | ' R' | 'Z' | 'I' | 'N ' | 'G')
 For example , 34742626263193832612536171N

token decimal = (float | int) [Mm]

token float =
 digit + . digit *
 digit + (. digit *)? (e|E) (+| -)? digit +

3.8.1 Post-filtering of Adjacent Prefix Tokens

Negative integers are specified using the Ƶ token; for example, - 3. The token steam is post-filtered according to

the following rules:

¶ If the token stream contains the adjacent tokens Ƶ token :

If token is a constant numeric literal, the pair of tokens is merged. For example, adjacent tokens - and 3

becomes the single token ñ- 3ò. Otherwise, the tokens remain separate. However the ñ-ò token is marked as

an ADJACENT_PREFIX_OP token.

This rule does not apply to the sequence token1 - token2 , if all three tokens are adjacent and token1 is a

terminating token from expression forms that have lower precedence than the grammar production

expr = MINUS expr .

For example, the Ƶ and b tokens in the following sequence are not merged if all three tokens are adjacent:

a- b

¶ Otherwise, the usual grammar rules apply to the uses of Ƶ and +, with an addition for ADJACENT_PREFIX_OP:

expr = expr MINUS expr

 | MINUS expr

 | ADJACENT_PREFIX_OP expr

3.8.2 Post-filtering of Integers Followed by AÄÊÁÃÅÎÔ ȰȢȢȱ

Tokens of the form

token intdotdot = int..

such as 34.. are post-filtered to two tokens: one int and one symbolic - keyword , ñ.. ò.

This rule allows ñ.. ò to immediately follow an integer. This construction is used in expressions of the form [for x

in 1..2 - > x + x] . Without this rule, the longest-match rule would consider this sequence to be a floating-

point number followed by a ñ.ò.

3.8.3 Reserved Numeric Literal Forms

The following token forms are reserved for future numeric literal formats:

token reserved - literal - formats =
 | (xint | ieee32 | ieee64) ident - char+

27

3.9 Line Directives
Line directives adjust the source code filenames and line numbers that are reported in error messages, recorded

in debugging symbols, and propagated to quoted expressions. F# supports the following line directives:

token line - directive =
 # int
 # int string
 # i nt verbatim - string
 #line int
 #line int string
 #line int verbatim - string

A line directive applies to the line that immediately follows the directive. If no line directive is present, the first line

of a file is numbered 1.

3.10 Hidden Tokens
Some hidden tokens are inserted by lexical filtering (§15) or are used to replace existing tokens. See §15 for a

full specification and for the augmented grammar rules that take these into account.

3.11 Identifier Replacements
The following table lists identifiers that are automatically replaced by expressions.

Identifier Replacement

__SOURCE_DIRECTORY__ A literal verbatim string that specifies the name of the directory that contains the

current file. For example:

 C: \ source

The name of the current file is derived from the most recent line directive in the file. If

no line directive has appeared, the name is derived from the name that was

specificed to the command-line compiler in combination with

System.IO.Path.GetFullPath .

In F# Interactive, the name stdin is used. When F# Interactive is used from tools

such as Visual Studio, a line directive is implicitly added before the interactive

execution of each script fragment.

__SOURCE_FILE__ A literal verbatim string that contains the name of the current file. For example:

 file.fs

__LI NE__ A literal string that specifies the line number in the source file, after taking into

account adjustments from line directives.

 Basic Grammar Elements
This section defines grammar elements that are used repeatedly in later sections.

4.1 Operator Names
Several places in the grammar refer to an ident - or - op rather than an ident :

ident - or - op :=
 | ident
 | (op- name)
 | (*)

op- name :=
 | symbolic - op
 | range - op- name
 | active - pattern - op- name

range - op- name :=
 | ..
 |

active - pattern - op- name :=
 | | ident | ... | ident |
 | | ident | ... | ident | _ |

In operator definitions, the operator name is placed in parentheses. For example:

let (+++) x y = (x, y)

This example defines the binary operator +++. The text (+ ++) is an ident - or - op that acts as an identifier with

associated text +++. Likewise, for active pattern definitions (§7), the active pattern case names are placed in

parentheses, as in the following example:

let (|A|B|C|) x = if x < 0 then A elif x = 0 then B else C

Because an ident - or - op acts as an identifier, such names can be used in expressions. For example:

List.map ((+) 1) [1; 2; 3]

The three character token (*) defines the * operator:

let (*) x y = (x + y)

To define other operators that begin with * , whitespace must follow the opening parenthesis; otherwise (* is

interpreted as the start of a comment:

let (*+*) x y = (x + y)

30

Symbolic operators and some symbolic keywords have a compiled name that is visible in the compiled form of F#

programs. The compiled names are shown below.

[] op_Nil
:: op_ColonColon
+ op_Addition
- op_Subtraction
* op_Multiply
/ op_Division
** op_Exponentiation
@ op_Append
^ op_Concatenate
% op_Modulus
&&& op_BitwiseAnd
||| op_BitwiseOr
^^^ op_ExclusiveOr
<<< op_LeftShift
~~~ op_LogicalNot  
>>> op_RightShift  
~+ op_UnaryPlus  
~-  op_UnaryNegation  
= op_Equality  
<> op_Inequality  
<= op_LessThanOrEqual  
>= op_GreaterThanOrEqual  
< op_LessThan 
> op_GreaterThan  
? op_Dynamic 
?<-  op_DynamicAssignment  
|>  op_PipeRight  
||>  op_PipeRight2  
|||>  op_PipeRight3  
<|  op_PipeLeft  
<||  op_PipeLeft2  
<|||  op_PipeLeft3  
!  op_Dereference  
>> op_ComposeRight 
<< op_ComposeLeft  
<@ @> op_Quotation  
<@@ @@> op_QuotationUntyped 
~% op_Splice  
~%% op_SpliceUntyped  
~& op_AddressOf  
~&& op_IntegerAddressOf  
||  op_BooleanOr  
&& op_BooleanAnd 
+= op_AdditionAssignment  
- = op_SubtractionAssignment  
*=  op_MultiplyAssignment  
/=  op_DivisionAssignment  
..  op_Range 
.. ..  op_RangeStep 

  



31 
 

Compiled names for other symbolic operators are op_N1...N n where N1 to Nn are the names for the characters as 

shown in the table below. For example, the symbolic identifier <*  has the compiled name op_LessMultiply : 

> Greater  
< Less  
+ Plus  
-  Minus 
*  Multiply  
= Equals  
~ Twiddle  
% Percent  
.  Dot 
& Amp 
|  Bar 
@ At  
# Hash 
^ Hat 
!  Bang 
? Qmark 
/  Divide  
.  Dot 
:  Colon  
(  LParen 
,  Comma 
)  RParen 
[  LBrack  
]  RBrack  

4.2 Long Identifiers  
Long identifiers long - ident  are sequences of identifiers that are separated by ƥƚƦ and optional whitespace. 

Long identifiers long - ident - or - op are long identifiers that may terminate with an operator name. 

long - ident  :=  ident  '.' ... '.' ident   
long - ident - or - op :=   
  | long - ident  '.'  ident - or - op 
  | ident - or - op  

4.3 Constants  
The constants in the following table may be used in patterns and expressions. The individual lexical formats for 

the different constants are defined in §3.  

const  :=  
      | sbyte   
      | int16   
      | int32   
      | int64   --  8, 16, 32 and 64 - bit signed integers  
      | byte   
      | uint 16  
      |  uint32   
      | int   --  32- bit signed integer  
      | uint64   --  8, 16, 32 and 64 - bit unsigned integers  
      | ieee32   --  32- bit number of type "float32"  
      | ieee64   --  64- bit number of type "float"  
      | bignum  --  User or library - defined integral literal type  
      | char   --  Unicode character of type "char"  
      | string   --  String of type "string" (System.String)  
      | verbatim - string  --  String of type "string" (System.String)  



32 
 

      | bytestring  --  String of type "byte []"  
      | verbatim - bytearray  --  String of type "byte[]"  
      | bytechar  --  Char of type "byte"  
      | false | true  --  Boolean constant of type "bool"  
      | ()   --  unit constant of type "unit"  

4.4 Operators and Precedence  

4.4.1 Categorization of Symbolic Operators  

The following symbolic - op tokens can be used to form prefix and infix expressions. The marker OP represents 

all symbolic - op tokens that begin with the indicated prefix, except for tokens that appear elsewhere in the table. 

 
infix - or - prefix - op :=  
    +,  - , +. , - . , %, &, && 
 
prefix - op :=  
    infix - or - prefix - op  
    ~ ~~ ~~~    (and any repetitions of ~)  
    !OP                  (except !=)  
 
infix - op :=  
    infix - or - prefix - op  
    - OP +OP || <OP  >OP = |OP &OP ^OP *OP /OP %OP !=  
                         ƽÏÒ ÁÎÙ ÏÆ ÔÈÅÓÅ ÐÒÅÃÅÄÅÄ ÂÙ ÏÎÅ ÏÒ ÍÏÒÅ ƥƚƦƾ 
    :=  
    ::  
    $ 
    or  
    ? 

The operators +,  - , +. , - . , %, &, && can be used as both prefix and infix operators. When these operators are 

used as prefix operators, the tilde character is prepended internally to generate the operator name so that the 

parser can distinguish such usage from an infix use of the operator. For example, - x is parsed as an application 

of the operator ~-  to the identifier x. This generated name is also used in definitions for these prefix operators. 

Consequently, the definitions of the following prefix operators include the ~ character: 

// To complete ly  redefin e the prefix + operator:  
let (~+) x = x  
 
// To complete ly  redefin e the infix + operator to be addition modulo - 7  
let (+) a b = (a + b) % 7  
 
// To define  the operator on a type:  
type C(n:int) =  
    let n = n % 7  
    member x.N = n  
    static member (~+) (x:C) = x  
    static member (~ - ) (x:C) = C( - n)  
    static member (+) (x1:C,x2:C) = C(x1.N+x2.N)  
    static member ( - ) (x1:C,x2:C) = C(x1.N - x2.N)  

 

The::  operator is special. It represents the union case for the addition of an element to the head of an immutable 

linked list, and cannot be redefined, although it may be used to form infix expressions.It always accepts 

arguments in tupled formðas do all union casesðrather than in curried form. 



33 
 

4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs  

Rules of precedence control the order of evaluation for ambiguous expression and pattern constructs. Higher 

precedence items are evaluated before lower precedence items.  

The following table shows the order of precedence, from highest to lowest, and indicates whether the operator or 

expression is associated with the token to its left or right. The OP marker represents the symbolic - op tokens that 

begin with the specified prefix, except those listed elsewhere in the table. For example, +OP represents any token 

that begins with a plus sign, unless the token appears elsewhere in the table.  

Operator or expression Associativity Comments 

f<types>  Left High-precedence type application; see §15.3 

f(x)  Left High-precedence application; see §15.2 

.  Left  

prefix - op Left Applies to prefix uses of these symbols 

"| rule"  Right Pattern matching rules 

"f x"  

"lazy x"  

"assert x"  

Left  

**OP Right  

*OP /OP %OP Left  

- OP +OP Left Applies to infix uses of these symbols 

:?  Not associative  

::  Right  

^OP Right  

!=OP <OP >OP = |OP &OP $  Left  

:> :?>  Right  

& && Left  

or ||  Left  

,  Not associative  

:=  Right  

- > Right  

if  Not associative  

function, fun, match, try  Not associative  

let  Not associative  

;  Right  

|  Left  

when Right  

as Right  

 



34 
 

If ambiguous grammar rules (such as the rules from §6) involve tokens in the table, a construct that appears 

earlier in the table has higher precedence than a construct that appears later in the table. The associativity 

indicates whether the operator or construct applies to the item to the left or the right of the operator.   

For example, consider the following token stream: 

a + b * c  

In this expression, the expr  infix - op expr  rule for b * c  takes precedence over the expr  infix - op expr  

rule for a + b , because the * operator has higher precedence than the + operator. Thus, this expression can be 

pictured as follows: 

a + b * c  

rather than 

a + b  * c  

Likewise, given the tokens 

a * b * c  

the left associativity of *  means we can picture the resolution of the ambiguity as: 

a * b  * c  

In the preceding table, leading .  characters are ignored when determining precedence for infix operators. For 

example,  .*  has the same precedence as * . This rule ensures that operators such as .* ,  which is frequently 

used for pointwise-operation on matrices, have the expected precedence.  

The table entries marked as ñHigh-precedence applicationò and ñHigh-precedence type applicationò are the result 

of the augmentation of the lexical token stream, as described in §15.2 and §15.3.



 Types and Type Constraints  
The notion of type is central to both the static checking of F# programs and to dynamic type tests and reflection 

at runtime. The word is used with four distinct but related meanings: 

¶ Type definitions, such as the actual CLI or F# definitions of System.String  or 

Microsoft.FSharp.Collections . Map<_,_ >. 

¶ Syntactic types, such as the text option<_>  that might occur in a program text. Syntactic types are 

converted to static types during the process of type checking and inference. 

¶ Static types, which result from type checking and inference, either by the translation of syntactic types that 

appear in the source text, or by the application of constraints that are related to particular language 

constructs. For example, opti on<int>  is the fully processed static type that is inferred for an expression 

Some(1+1). Static types may contain type variables as described later in this section. 

¶ Runtime types, which are objects of type System.Type  and represent some or all of the information that 

type definitions and static types convey at runtime. The obj.GetType()  method, which is available on all F# 

values, provides access to the runtime type of an object. An objectôs runtime type is related to the static type 

of the identifiers and expressions that correspond to the object. Runtime types may be tested by built-in 

language operators such as :?  and :?> , the expression form downcast expr , and pattern matching type 

tests. Runtime types of objects do not contain type variables. Runtime types that System.Reflection  

reports may contain type variables that are represented by System.Type  values.  

The following describes the syntactic forms of types as they appear in programs: 

type  :=   
    ( type  )  
    type  - > type  --  function type  
    type  * ... * type  --  tuple type  
    typar   --  variable type  
    long - ident   --  named type, such as  int  
    long - ident <types >  --  named type, such as  list<int>  
    long - ident < >  --  named type, such as  IEnumerable< >  
    type  long - ident  --  named type, such as  int list  
    type [ , ... ,  ]  --  array type  
    type  lazy   --  lazy type  
    type  typar - defns  --  type with constraints  
    typar  :> type  --  variable type with subtype constrain t  
    #type   --  anonymous type with subtype constraint  
 
types  :=  type , ..., type  
 
atomic - type :=  
     type :  one of  
           #type typar  (  type )  long - ident long - ident <types >  
 
typar  :=  
    _   --  anonymous variable type  
    ' ident   --  type variable  
    ^ ident   --  static head - type type variable  
 
constraint  :=   
    typar  :> type  --  coercion constraint  
    typar  : null  --  nullness constraint  
    static - typars  : ( member- sig  )  --  member "trait" constraint  
    typar  : (new : unit - > 'T)  --  CLI default con structor constraint  
    typar  : struct  --  CLI non - Nullable struct  
    typar  : not struct  --  CLI reference type  
    typar  : enum< type > --  enum decomposition constraint  



36 
 

    typar  : unmanaged  --  unmanaged constraint   
    typar  : delegate< type, type >  --  delegate  decomposition constraint  
    typar :  equality  
    typar :  comparison  
 
 
typar - defn := attributes opt  typar  
 
typar - defns   := < typar - defn, ..., typar - defn  typar - constraints opt  > 
 
typar - constraints  := when constraint  and ... and constraint   
 
static - typars :=  
    ^ ident  
    (^ ident or ... or ^ ident )  
 
member- sig  := <see Section 10>  

In a type instantiation, the type name and the opening angle bracket must be syntactically adjacent with no 

intervening whitespace, as determined by lexical filtering (§15). Specifically: 

array<int>  

and not 

array <  int   >  

5.1 Checking Syntactic Types  
Syntactic types are checked and converted to static types as they are encountered. Static types are a 

specification device used to describe  

¶ The process of type checking and inference.  

¶ The connection between syntactic types and the execution of F# programs.  

Every expression in an F# program is given a unique inferred static type, possibly involving one or more explicit 

or implicit generic parameters. 

For the remainder of this specification we use the same syntax to represent syntactic types and static types. For 

example int32 * int32  is used to represent the syntactic type that appears in source code and the static type 

that is used during checking and type inference.  

The conversion from syntactic types to static types happens in the context of a name resolution environment 

(§14.1), a floating type variable environment, which is a mapping from names to type variables, and a type 

inference environment (§14.5).  

The phrase ñfresh typeò means a static type that is formed from a fresh type inference variable. Type inference 

variables are either solved or generalized by type inference (§14.5). During conversion and throughout the 

checking of types, expressions, declarations, and entire files, a set of current inference constraints is maintained. 

That is, each static type is processed under input constraints ɉ, and results in output constraints ɉô. Type 

inference variables and constraints are progressively simplified and eliminated based on these equations through 

constraint solving (§14.5).  



37 
 

5.1.1 Named Types 

Named types have several forms, as listed in the following table.  

Form Description 
long - ident <ty 1ƗƛƗÔÙn> Named type with one or more suffixed type arguments. 

long - ident  Named type with no type arguments  

type  long - ident  Named type with one type argument; processed the same as long - ident <type > 

ty  lazy  Shorthand for the named type Microsoft.FSharp.Control.Lazy< ty> . 

ty 1 - > ty 2 A function type, where: 

Á ty1  is the domain of the function values associated with the type 

Á ty2 is the range. 
 
In compiled code it is represented by the named type 

Microsoft.FSharp.Core.FastFunc< ty 1, ty 2>. 

 
Named types are converted to static types as follows: 

¶ Name Resolution for Types (§14.1) resolves long - ident  to a type definition with formal generic parameters 

<typar 1ƗƛƗ typar n> and formal constraints C. The number of type arguments n is used during the name 

resolution process to distinguish between similarly named types that take different numbers of type 

arguments.  

¶ Fresh type inference variables <ty' 1ƗƛƗÔÙʔn> are generated for each formal type parameter. The formal 

constraints C are added to the current inference constraints for the new type inference variables; and 

constraints ty i = ty' i  are added to the current inference constraints. 

5.1.2 Variable Types  

A type of the form 'ident  is a variable type. For example, the following are all variable types: 

'a  

'T  

'Key  

During checking, Name Resolution (§14.1) is applied to the identifier. 

¶ If name resolution succeeds, the result is a variable type that refers to an existing declared type parameter.  

¶ If name resolution fails, the current floating type variable environment is consulted, although only in the 

context of a syntactic type that is embedded in an expression or pattern. If the type variable name is 

assigned a type in that environment, F# uses that mapping. Otherwise, a fresh type inference variable is 

created (see §14.5) and added to both the type inference environment and the floating type variable 

environment. 

A type of the form _ is an anonymous variable type. A fresh type inference variable is created and added to the 

type inference environment (see §14.5) for such a type. 



38 
 

A type of the form ^ident  is a statically resolved type variable. A fresh type inference variable is created and 

added to the type inference environment (see §14.5). This type variable is tagged with an attribute that indicates 

that it can be generalized only at inline  definitions (see §14.6.7). The same restriction on generalization applies 

to any type variables that are contained in any type that is equated with the ^ident  type in a type inference 

equation. 

Note: this specification generally uses uppercase identifiers such as 'T  or 'Key  for user-declared 

generic type parameters, and uses lowercase identifiers such as 'a  or 'b  for compiler-inferred 

generic parameters. 

5.1.3 Tuple Types  

A tuple type has the following form:  

ty 1 * ... * ty n 

The elaborated form of a tuple type is shorthand for a use of the family of F# library types 

System.Tuple<_,...,_> . See §6.3.2 for the details of this encoding.  

When considered as static types, tuple types are distinct from their encoded form. However, the encoded form of 

tuple types is visible in the F# type system through runtime types. For example, typeof<int * int>  is 

equivalent to typeof<System.Tuple<int,int>> . 

5.1.4 Array Types  

Array types have the following forms: 

ty []  

ty [ , ... , ]  

A type of the form ty []  is a single-dimensional array type, and a type of the form ty [ , ... ,  ]  is a 

multidimensional array type. For example, int[,,]  is an array of integers of rank 3.  

Except where specified otherwise in this document, these array types are treated as named types, as if they are 

an instantiation of a fictitious type definition System.Array n<ty > where n corresponds to the rank of the array 

type. 

Note: The type int[][,]  in F# is the same as the type in t [,][]  in C# although the dimensions 

are swapped. This ensures consistency with other postfix type names in F# such as int list 

list . 

F# 2.0 supports multidimensional array types only up to rank 4. 

5.1.5 Constrained Types  

A type with constraints has the following form: 

type  when constraints  

During checking, type  is first checked and converted to a static type, then constraints  are checked and added 

to the current inference constraints. The various forms of constraints are described in§5.2. 

A type of the form typar  :> type  is a type variable with a subtype constraint and is equivalent to typar  when 

typar :> type . 

A type of the form #type  is an anonymous type with a subtype constraint and is equivalent to 'a when 'a  :> 

type , where 'a  is a fresh type inference variable.  



39 
 

5.2 Type Constraints  
A type constraint limits the types that can be used to create an instance of a type parameter or type variable. F# 

supports the following type constraints: 

¶ Subtype constraints 

¶ Nullness constraints 

¶ Member constraints 

¶ Default constructor constraints 

¶ Value type constraints 

¶ Reference type constraints 

¶ Enumeration constraints 

¶ Delegate constraints 

¶ Unmanaged constraints 

¶ Equality and comparison constraints 

 

5.2.1 Subtype Constraints  

An explicit subtype constraint has the following form:  

typar  :> type  

During checking, typar  is first checked as a variable type, type  is checked as a type, and the constraint is 

added to the current inference constraints. Subtype constraints affect type coercion as specified in §5.4.7. 

Note that subtype constraints also result implicitly from: 

¶ Expressions of the form expr :> type . 

¶  Patterns of the form pattern :> type . 

¶ The use of generic values, types, and members with constraints. 

¶ The implicit use of subsumption when using values and members (§14.4.2). 

 
A type variable cannot be constrained by two distinct instantiations of the same named type. If two such 

constraints arise during constraint solving, the type instantiations are constrained to be equal. For example, 

during type inference, if a type variable is constrained by both IA <int > and I A<string >, an error occurs when 

the type instantiations are constrained to be equal. This limitation is specifically necessary to simplify type 

inference, reduce the size of types shown to users, and help ensure the reporting of useful error messages. 

5.2.2 Nullness Constraints  

An explicit nullness constraint has the following form:  

typar : null  

During checking, typar  is checked as a variable type and the constraint is added to the current inference 

constraints. The conditions that govern when a type satisfies a nullness constraint are specified in §5.4.8. 

In addition: 

¶ The typar  must be a statically resolved type variable of the form ^ident . This limitation ensures that the 

constraint is resolved at compile time, and means that generic code may not use this constraint unless that 

code is marked inline  (§14.6.7). 



40 
 

Note: Nullness constraints are primarily for use during type checking and are used relatively rarely 

in F# code.  

Nullness constraints also arise from expressions of the form null .  

5.2.3 Member Constraints  

An explicit member constraint has the following form:  

( typar  or ... or  typar ) : ( member- sig )  

For example, the F# library defines the + operator with the following signature: 

val inline (+) : ^a - > ^b - > ^c  

      when (^a or ^b) : (static member (+) : ^a * ^b - > ^c)  

This definition indicates that each use of the + operator results in a constraint on the types that correspond to 

parameters ^a, ^b, and ^c . If these are named types, then either the named type for ^a or the named type for ^b 

must support a static member called + that has the given signature. 

In addition: 

¶ Each typar  must be a statically resolved type variable (§5.1.2) in the form ^ident . This ensures that the 

constraint is resolved at compile time against a corresponding named type. It also means that generic code 

cannot use this constraint unless that code is marked inline  (§14.6.7).  

¶ The member- sig  cannot be generic; that is, it cannot include explicit type parameter definitions. 

¶ The conditions that govern when a type satisfies a member constraint are specified in §14.5.4 . 

Note: Member constraints are primarily used to define overloaded functions in the F# library and are 

used relatively rarely in F# code. 

Uses of overloaded operators do not result in generalized code unless definitions are marked as 

in line . For example, the function 

  let f x = x + x  

results in a function f  that can be used only to add one type of value, such as int  or float . The 

exact type is determined by later constraints.  

A type variable may not be involved in the support set of more than one member constraint that has the same 

name, staticness, argument arity, and support set (§14.5.4). If it is, the argument and return types in the two 

member constraints are themselves constrained to be equal.This limitation is specifically necessary to simplify 

type inference, reduce the size of types shown to users, and ensure the reporting of useful error messages. 

5.2.4 Default Constructor Constraints  

An explicit default constructor constraint has the following form: 

typar  : (new : unit - > 'T)  

During constraint solving (§14.5), the constraint type  : (new : unit - > 'T)  is met if type  has a 

parameterless object constructor. 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

5.2.5 Value Type Constraints  

An explicit value type constraint has the following form: 

typar  : struct  



41 
 

During constraint solving (§14.5), the constraint type  : struct  is met if type  is a value type other than the CLI 

type System.Nullable<_> . 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

The restriction on System.Nullable  is inherited from C# and other CLI languages, which give this 

type a special syntactic status. In F#, the type option<_>  is similar to some uses of 

System.Nullable<_> . For various technical reasons the two types cannot be equated, notably 

because types such as System.Nullable<System.Nullable<_>>  and 

System.Nullable<string>  are not valid CLI types. 

5.2.6 Reference Type Constraints  

An explicit reference type constraint has the following form: 

typar  : not struct  

During constraint solving (§14.5), the constraint type  : not struct  is met if type  is a reference type. 

Note: This constraint form exists primarily to provide the full set of constraints that CLI 

implementations allow. It is rarely used in F# programming. 

5.2.7 Enumeration Constraints  

An explicit enumeration constraint has the following form:  

typar  : enum< underlying - type > 

During constraint solving (§14.5), the constraint type  : enum< underlying - type > is met if type  is a CLI or F# 

enumeration type that has constant literal values of type underlying - type . 

Note: This constraint form exists primarily to allow the definition of library functions such as enum. It 

is rarely used directly in F# programming. 

The enum constraint does not imply anything about subtypes. For example, an enum constraint does 

not imply that the type is a subtype of Syst em.Enum. 

5.2.8 Delegate Constraints  

An explicit delegate constraint has the following form: 

typar  : delegate< tupled - arg - type ,  return - type > 

During constraint solving (§14.5), the constraint type  : delegate< tupled - arg - type , return - types > is met 

if type  is a delegate type D with declaration type D = delegate of  object * arg1 * ... * argN  and 

tupled - arg - type  = arg1  * ... * argN. That is, the delegate must match the CLI design pattern where the 

sender  object is the first argument to the event. 

Note: This constraint form exists primarily to allow the definition of certain F# library functions that 

are related to event programming. It is rarely used directly in F# programming. 

The delegate  constraint does not imply anything about subtypes. In particular, a ódelegateô 

constraint does not imply that the type is a subtype of System.Delegate . 

The delegate  constraint applies only to delegate types that follow the usual form for CLI event 

handlers, where the first argument is a ñsenderò object. The reason is that the purpose of the 

constraint is to simplify the presentation of CLI event handlers to the F# programmer.  



42 
 

5.2.9 Unmanaged Constraints  

An unmanaged constraint has the following form: 

typar  : unmanaged  

During constraint solving (§14.5), the constraint type  : unmanaged is met if type is unmanaged as specified 

below: 

¶ Types sbyte , byte , char , nativeint , unativeint , float32 , float , int16 , uint16 , int32 , uint32 , 

int64 , uint64 , decimal  are unmanaged. 

¶ Type nativeptr< type> is unmanaged. 

¶ A non-generic struct type whose fields are all unmanaged types is unmanaged. 

5.2.10 Equality and Comparison Constraints  

 Equality constraints and comparison constraints have the following forms, respectively: 

typar  : equality  

typar  : comparison  

During constraint solving (§14.5), the constraint type  : equality  is met if both of the following conditions are 

true: 

¶ The type is a named type, and the type definition does not have, and is not inferred to have, the NoEquality  

attribute. 

¶ The type has equality dependencies ty 1, ..., ty n, each of which satisfies ty i  : equality . 

The constraint type  : comparison  is a comparison constraint. Such a constraint is met if all the following 

conditions hold: 

¶ If the type is a named type, then the type definition does not have, and is not inferred to have, the 

NoComparison attribute, and the type definition implements System.IComparable  or is an array type or is 

System.IntPtr  or is System.UIntPtr . 

¶ If the type has comparison dependencies ty 1, ..., ty n, then each of these must satisfy ty i  : comparison   

An equality constraint is a relatively weak constraint, because with two exceptions, all CLI types satisfy this 

constraint. The exceptions are F# types that are annotated with the NoEquality  attribute and structural types 

that are inferred to have the NoEquality  attribute. The reason is that in other CLI languages, such as C#, it 

possible to use reference equality on all reference types.  

A comparison constraint is a stronger constraint, because it usually implies that a type must implement 

System.IComparable .  

5.3 Type Parameter Definitions  
Type parameter definitions can occur in the following locations: 

¶ Value definitions in modules 

¶ Member definitions 

¶ Type definitions 

¶ Corresponding specifications in signatures 

For example, the following defines the type parameter óT in a function definition: 

let id<'T> (x:'T) = x     



43 
 

Likewise, in a type definition: 

type Funcs<'T1,'T2> =   
    { Forward: 'T1 - > 'T2;  
      Backward : 'T2 - > 'T2 }  

Likewise, in a signature file: 

val id<'T> : 'T - > 'T   
 

Explicit type parameter definitions can include explicit constraint declarations. For example:  

let dispose2<'T when 'T :> System.IDisposable> ( x: 'T, y: 'T) =  
    x.Dispose()  
    y.Dispose()  

The constraint in this example requires that ' T be a type that supports the IDisposable  interface. 

However, in most circumstances, declarations that imply subtype constraints on arguments can be written more 

concisely: 

let throw (x: Exception) = raise x  

Multiple explicit constraint declarations use and: 

let multipleConstraints <'T when 'T :> System.IDisposable and   
                                'T :> System.IComparable > (x: 'T, y: 'T) =  
    if x.CompareTo(y) < 0 then x.Dispose() else y.Dispose()  

Explicit type parameter definitions can declare custom attributes on type parameter definitions (§13.1).  

5.4 Logical Properties of Types   
During type checking and elaboration, syntactic types and constraints are processed into a reduced form 

composed of: 

¶ Named types op<types >, where each op consists of a specific type definition, an operator to form function 

types, an operator to form array types of a specific rank, or an operator to form specific n-tuple types.  

¶ Type variables ' ident .  

5.4.1 Characteristics of Type Definitions  

Type definitions include CLI type definitions such as System.String  and types that are defined in F# code (§8). 

The following terms are used to describe type definitions: 

¶ Type definitions may be generic, with one or more type parameters; for example, 

System.Collecti ons.Generi c.Dictionary<'Key,'Value >. 

¶ The generic parameters of type definitions may have associated formal type constraints. 

¶ Type definitions may have custom attributes (§13.1), some of which are relevant to checking and inference. 

¶ Type definitions may be type abbreviations (§8.3). These are eliminated for the purposes of checking and 

inference (see §5.4.2). 

¶ Type definitions have a kind which is one of the following: 

¶ Class 

¶ Interface 

¶ Delegate 



44 
 

¶ Struct 

¶ Record 

¶ Union 

¶ Enum  

¶ Measure 

¶ Abstract 

The kind is determined at the point of declaration by Type Kind Inference (§8.2) if it is not specified explicitly 

as part of the type definition. The kind of a type refers to the kind of its outermost named type definition, after 

expanding abbreviations. For example, a type is a class type if it is a named type C<types > where C is of 

kind class. Thus, System.Collections.Generic.List<int>  is a class type.  

¶ Type definitions may be sealed. Record, union, function, tuple, struct, delegate, enum, and array types are 

all sealed, as are class types that are marked with the SealedAttribute  attribute. 

¶ Type definitions may have zero or one base type declarations. Each base type declaration represents an 

additional type that is supported by any values that are formed using the type definition. Furthermore, some 

aspects of the base type are used to form the implementation of the type definition. 

¶ Type definitions may have one or more interface declarations. These represent additional encapsulated 

types that are supported by values that are formed using the type. 

Class, interface, delegate, function, tuple, record, and union types are all reference type definitions. A type is a 

reference type if its outermost named type definition is a reference type, after expanding type definitions. 

Struct types are value types. 

5.4.2 Expanding Abbreviations and Inference Equations  

Two static types are considered equivalent and indistinguishable if they are equivalent after taking into account 

both of the following:  

¶ The inference equations that are inferred from the current inference constraints (§14.5). 

¶ The expansion of type abbreviations (§8.3).  

For example, static types may refer to type abbreviations such as int , which is an abbreviation for 

System.Int32 and is declared by the F# library: 

type int = System.Int32   

This means that the types int32  and System.Int32  are considered equivalent, as are System. Int32  - > int  

and int - > System.Int32 . 

Likewise, consider the process of checking this function: 

let checkString (x:string) y =  
    (x = y), y.Contains("Hello")   

During checking, fresh type inference variables are created for values x and y; letôs call them ty 1 and ty 2. 

Checking imposes the constraints ty 1 = string  and ty 1 = ty 2. The second constraint results from the use of 

the generic = operator. As a result of constraint solving, ty 2 = string  is inferred, and thus the type of y is 

string .  



45 
 

All relations on static types are considered after the elimination of all equational inference constraints and type 

abbreviations. For example, we say int  is a struct type because System.Int32  is a struct type.  

Note: Implementations of F# should attempt to preserve type abbreviations when reporting types 

and errors to users. This typically means that type abbreviations should be preserved in the logical 

structure of types throughout the checking process. 

5.4.3 Type Variables and Definition Sites  

Static types may be type variables. During type inference, static types may be partial, in that they contain type 

inference variables that have not been solved or generalized. Type variables may also refer to explicit type 

parameter definitions, in which case the type variable is said to be rigid and have a definition site.  

For example, in the following, the definition site of the type parameter 'T  is the type definition of C:   

type C<'T> = 'T * 'T  

Type variables that do not have a binding site are inference variables. If an expression is composed of multiple 

sub-expressions, the resulting constraint set is normally the union of the constraints that result from checking all 

the sub-expressions. However, for some constructs (notably function, value and member definitions), the 

checking process applies generalization (§14.6.7). Consequently, some intermediate inference variables and 

constraints are factored out of the intermediate constraint sets and new implicit definition site(s) are assigned for 

these variables.  

For example, given the following declaration, the type inference variable that is associated with the value x is 

generalized and has an implicit definition site at the definition of function id :  

let id x = x  

Occasionally in this specification we use a more fully annotated representation of inferred and generalized type 

information. For example: 

let id <'a>  x 'a  = x 'a  

Here, 'a  represents a generic type parameter that is inferred by applying type inference and generalization to the 

original source code (§14.6.7), and the annotation represents the definition site of the type variable. 

5.4.4 Base Type of a Type 

The base type for the static types is shown in the table. These types are defined in the CLI specifications and 

corresponding implementation documentation.  

Static Type Base Type 

Abstract types  System.Object   

All array types System.Array  

Class types The declared base type of the type definition if the type has one; otherwise, 

System.Object . For generic types C<type - inst >, substitute the formal generic 

parameters of C for type - inst .  

Delegate types System.MulticastDelegate  

Enum types  System.Enum  

Exception types System.Exception   

Interface types System.Object   

Record types System.Object  



46 
 

Static Type Base Type 

Struct types  System.ValueType   

Union types  System.Object   

Variable types System.Object   

5.4.5 Interfaces Types of a Type  

The interface types of a named type C<type - inst > are defined by the transitive closure of the interface 

declarations of C and the interface types of the base type of C, where formal generic parameters are substituted 

for the actual type instantiation type - inst . 

The interface types for single dimensional array types ty []  include the transitive closure that starts from the 

interface System.Collections.Generic.IList< ty >, which includes 

System.Collections.Generic.ICollection< ty > and System.Collections.Generic.IEnumer able< ty >.  

5.4.6 Type Equivalence   

Two static types ty 1 and ty 2 are definitely equivalent (with respect to a set of current inference constraints) if 

either of the following is true: 

¶ ty 1 has form op<ty 11, ..., ty 1n>, ty 2 has form op<ty 21, ..., ty 2n> and each ty 1i  is definitely 

equivalent to ty 2i  for all 1 <= i  <= n. 

ðORð 

¶ ty 1 and ty 2 are both variable types, and they both refer to the same definition site or are the same type 

inference variable. 

This means that the addition of new constraints may make types definitely equivalent where previously they were 

not. For example, given ɉ = { 'a = int  }, we have list<int>  = list<'a> . 

Two static types ty 1 and ty 2 are feasibly equivalent if ty 1 and ty 2 may become definitely equivalent if further 

constraints are added to the current inference constraints. Thus list<int>  and list<'a>  are feasibly 

equivalent for the empty constraint set. 

5.4.7 Subtyping and Coercion  

A static type ty 2 coerces to static type ty 1 (with respect to a set of current inference constraints X), if ty 1 is in the 

transitive closure of the base types and interface types of ty 2. Static coercion is written with the :>  symbol: 

ty 2 :>  ty 1,  

Variable types 'T  coerce to all types ty  if the current inference constraints include a constraint of the form 'T :>  

ty 2, and ty  is in the inclusive transitive closure of the base and interface types of ty 2. 

A static type ty 2 feasibly coerces to static type ty 1 if ty 2 coerces to ty 1 may hold through the addition of further 

constraints to the current inference constraints. The result of adding constraints is defined in Constraint Solving 

(§14.5). 



47 
 

5.4.8 Nullness 

The design of F# aims to greatly reduce the use of null  literals in common programming tasks, because they 

generally result in error-prone code. However:  

¶ The use of some null  literals is required for interoperation with CLI libraries. 

¶ The appearance of null  values during execution cannot be completely precluded for technical reasons 

related to the CLI and CLI libraries. 

As a result, F# types differ in their treatment of the null  literal and null  values. All named types and type 

definitions fall into one of the following categories: 

¶ Types with the null  literal. These types have null  as an ñextraò value. The following types are in this 

category: 

¶ All CLI reference types that are defined in other CLI languages. 

¶ All types that are defined in F# and annotated with the AllowNullLiteral  attribute. 

For example, System.String  and other CLI reference types satisfy this constraint, and these types permit 

the direct use of the null  literal.  

¶ Types with null  as an abnormal value. These types do not permit the null  literal, but do have null  as an 

abnormal value. The following types are in this category: 

¶ All F# list, record, tuple, function, class, and interface types.  

¶ All F# union types except those that have null  as a normal value, as discussed in the next bullet point.  

For types in this category, the use of the null  literal is not directly allowed. However, strictly speaking, it is 

possible to generate a null  value for these types by using certain functions such as 

Unchecked.defaul tof< type >. For these types, null  is considered an abnormal value. Operations differ in 

their use and treatment of null  values; for details about evaluation of expressions that might include null  

values, see §6.9. 

¶ Types with null  as a representation value. These types do not permit the null  literal but use the null  

value as a representation.  

For these types, the use of the null  literal is not directly permitted. However, one or all of the ñnormalò 

values of the type is represented by the null  value. The following types are in this category: 

¶ The unit type. The null  value is used to represent all values of this type.  

¶ Any union type that has the 

Microsoft.FSharp.Core.CompilationRepresentation(CompilationRepresentationFlags.UseN

ullAsTrueValue)  attribute flag and a single null union case. The null  value represents this case. In 

particular, null  represents None in the F# option<_>  type. 

¶ Types without null . These types do not permit the null  literal and do not have the null  value. All value 

types are in this category, including primitive integers, floating-point numbers, and any value of a CLI or F# 

struct  type. 

A static type ty  satisfies a nullness constraint ty  : null if it: 

¶ Has an outermost named type that has the null  literal. 

¶ Is a variable type with a typar  : null  constraint. 



48 
 

5.4.9 Default Initialization  

Related to nullness is the default initialization of values of some types to zero values. This technique is common 

in some programming languages, but the design of F# deliberately de-emphasizes it. However, default 

initialization is allowed in some circumstances: 

¶ Checked default initialization may be used when a type is known to have a valid and ñsafeò default zero 

value. For example, the types of fields that are labeled with DefaultValue (true)  are checked to ensure 

that they allow default initialization. 

¶ CLI libraries sometimes perform unchecked default initialization, as do the F# library primitives 

Unchecked.defaultof<_>  and Array.zeroCreate .  

The following types permit default initialization: 

¶ Any type that satisfies the nullness constraint. 

¶ Primitive value types. 

¶ Struct types whose field types all permit default initialization. 

5.4.10 Dynamic Conversion Between Types  

A runtime type vty  dynamically converts to a static type ty  if any of the following are true: 

¶ vty  coerces to ty . 

¶ vty  is int32[] and ty  is uint32[] (or conversely). Likewise for sbyte[] /byte[] , int16[] /uint16[] , 

int64[] /uint64[] , and nativeint[] /unativeint[] . 

¶ vty  is enum[]  where enum has underlying type underlying , and ty  is underl ying []  (or conversely), or the 

(un)signed equivalent of underlying []  by the immediately preceding rule. 

¶ vty  is elemty 1[],  ty  is elemty 2[] , elemty 1 is a reference type, and elemty 1 converts to elemty 2. 

¶ ty  is System.Nullable< vty >. 

 
Note that this specification does not define the full algebra of the conversions of runtime types to static types 

because the information that is available in runtime types is implementation dependent. However, the 

specification does state the conditions under which objects are guaranteed to have a runtime type that is 

compatible with a particular static type.  

Note: This specification covers the additional rules of CLI dynamic conversions, all of which apply 

to F# types. For example: 

  let x = box [| System.DayOfWeek.Monday |]  
  let y = x :? int32[]  
  printf "%b" y // true  

In the previous code, the type System.DayOfWeek.Monday[]  does not statically coerce to 

int32[] , but the expression x :? int32[]  evaluates to true. 

  let x = box [| 1 |]  
  let y = x :? uint32 []  
  printf "%b" y // true  

In the previous code, the type int32[]  does not statically coerce to uint32[] , but the 

expression x :? uint32 []  evaluates to true. 

  let x = box [| "" |]  
  let y = x :? obj []  
  printf  "%b" y // true  



49 
 

In the previous code, the type string[]  does not statically coerce to obj[] , but the 

expression x :? obj [] evaluates to true. 

  let x = box 1  
  let y = x :? System.Nullable<int32>  
  printf "%b" y // true  

In the previous code, the type int32  does not coerce to System.Nullable<int32> , but the 

expression x :? System.Nullable<int32> evaluates to true.





 Expressions 
The expression forms and related elements are as follows: 

expr  :=   
    const    --  a constant value  
    ( expr  )    --  block expression  
    begin expr  end  --  block expression  
    long - ident - or - op  --  lookup expression  
    expr '.' long - ident - or - op --  dot lookup expression  
    expr expr    --  application expression  
    expr ( expr )    --  high precedence application  
    expr <types >  --  type application expression  
    expr  infix - op expr   --  infix application expression  
    prefix - op expr   --  prefix application expression  
    expr .[ expr ]   --  indexed lookup expression  
    expr .[ sl ice - range ]   --  slice expression (1D)  
    expr .[ slice - range, slice - range ]  --  slice expression (2D)  
    expr  <-  expr   --  assignment expression  
    expr  , ... , expr   --  tuple expression  
    new type  expr   --  simple object expression  
    { new base- call  object - members interface - impls }  --  object expression  
    { field - initializer s }   --  record expression  
    { expr  with field - initializer s }  --  record cloning expression  
    [ expr  ; ... ; expr  ]  --  list expression  
    [| expr  ; ... ; expr  |]  --  array expression  
    expr  { comp- or - range - expr }  --  computation expression  
    [ comp- or - range - expr ]  --  computed list expression  
    [| comp- or - range - expr |]  --  computed array expression  
    lazy expr    --  delayed expression  
    null    --  the "null" value for a reference type  
    expr  : type   --  type annotation  
    expr  :> type   --  static upcast coercion  
    expr  :? type   --  dynamic type test  
    expr  :?> type   --  dynamic downcast coercion  
    upcast expr   --  static upcast expression  
    downcast expr   --  dynamic  downcast expression  
    let function - defn  in expr    Ƶ-  function definition  expression  
    let value - defn  in expr        Ƶ-  value definition  expression  
    let rec function - or - value - defns  in expr   --  recursive definition expression  
    use ident  = expr  in expr                  Ƶ-  deterministic disposal expression  
    fun argument - pats  - > expr  --  function expression  
    function rules   --  matching function expression  
    expr  ; expr   --  sequential execution expression  
    match expr  with rules  --  match expres sion  
    try expr  with rules   --  try/with expression  
    try expr  finally expr  --  try/finally expression  
    if expr  then expr  elif - branches opt  else - branch opt  --  conditional expression  
    while expr  do expr  done --  while loop  
    for ident  = expr  to expr  do expr  done           --  simple for loop  
    for pat  in expr - or - range - expr  do expr  done      --  enumerable for loop  
    assert expr   --  assert expression  
    <@ expr  @>   --  quoted expression  
    <@@ expr  @@>  --  quoted expression  

    %expr     --  expression splice  
    %%expr   --  weakly typed expression splice  

    ( static - typars : ( member- sig ) expr ) -Ƶ static member invocation  

  



52 
 

Expressions are defined in terms of patterns and other entities that are discussed later in this specification. The 

following constructs are also used: 

exprs  := expr  ',' ... ',' expr   
 
expr - or - range - expr  :=  
    expr  
    range - expr  
 
elif - branches  := elif - branch  ... elif - branch  
 
elif - branch  := elif expr  then expr  
 
else - branch  := else expr   
 
function - or - value - defn  :=  
    function - defn  
    value - defn  
 
function - defn  :=  
    inline opt  access opt  ident - or - op typar - defns opt  argument - pats  return - type opt  = expr  
 
value - defn  :=  
    mutable opt  access opt  pat  typar - defns opt  return - type opt  = expr   
 
return - type  :=  
    :  type   
 
function - or - value - defn s :=  
    function - or - value - defn  and ... and  function - or - value - defn   
 
argument - pats := atomic - pat  ... atomic - pat  
 
field - initializer  :=  
    long - ident  = expr  --  field initialization  
 
field - initializer s := field - initializer  ; ... ; field - initializer   
 
object - construction  :=  
    type expr  --  construction expression  
    type  --  interface construction expression  
 
base- call  :=  
    object - construction   --  anonymous base construction  
    object - construction  as ident  --  named base construct ion  
 
interface - impls  := interface - impl  ... interface - impl  
 
interface - impl  :=  
    interface type  object - membersopt  --  interface implementation  
 
object - members := with member- defns  end 
 
member- defns  :=  member- defn  ... member- defn  

  



53 
 

Computation and range expressions are defined in terms of the following productions: 

comp- or - range - expr :=  
    comp- expr  
    short - comp- expr  
    range - expr  
 
comp- expr  :=  
    let! pat  = expr  in comp- expr  --  binding  computation  
    do!   expr  in comp- expr  --  sequential computation  
    use! pat  = expr in comp- expr  --  auto cleanup computation  
    yield! expr   --  yield computation  
    yield expr    --  yield result  
    return! expr   --  return computation  
    return expr   --  return result  
    expr    --  control flow or imperative action  
 
short - comp- expr  :=  
    for pat  in expr - or - range - expr  - > expr  --  yield result  
 
range - expr  :=  
    expr  .. expr   --  range sequence  
    expr  .. expr  .. expr   --  range sequence with skip  
 
slice - range  :=  
    expr ..    --  slice from index to end  
    .. expr    --  slice from start to index  
    expr .. expr    --  slice from index to index  
    '* '    --  slice from start to end  

6.1 Some Checking and Inference Terminology  
The rules applied to check individual expressions are described in the following subsections. Where necessary, 

these sections reference specific inference procedures such as Name Resolution (§14.1) and Constraint Solving 

(§14.5). 

All expressions are assigned a static type through type checking and inference. During type checking, each 

expression is checked with respect to an initial type. The initial type establishes some of the information available 

to resolve method overloading and other language constructs. We also use the following terminology: 

¶ The phrase ñthe type ty 1 is asserted to be equal to the type ty 2ò or simply ñty 1 = ty 2 is assertedò indicates 

that the constraint ñty 1 = ty 2ò is added to the current inference constraints.  

¶ The phrase ñty 1 is asserted to be a subtype of ty 2ò or simply ñty 1 :> ty 2 is assertedò indicates that the 

constraint ty 1 :> ty 2 is added to the current inference constraints. 

¶ The phrase ñtype ty  is known to ...ò indicates that the initial type satisfies the given property given the current 

inference constraints. 

¶ The phrase ñthe expression expr  has type ty ò means the initial type of the expression is asserted to be 

equal to ty .  

Additionally: 

¶ The addition of constraints to the type inference constraint set fails if it causes an inconsistent set of 

constraints (§14.5). In this case either an error is reported or, if we are only attempting to assert the 

condition, the state of the inference procedure is left unchanged and the test fails. 



54 
 

6.2 Elaboration an d Elaborated Expressions  
Checking an expression generates an elaborated expression in a simpler, reduced language that effectively 

contains a fully resolved and annotated form of the expression. The elaborated expression provides more explicit 

information than the source form. For example, the elaborated form of System.Console.WriteLine("Hello")  

indicates exactly which overloaded method definition the call has resolved to. Elaborated forms are underlined in 

this specification, for example, let x = 1 in x  + x.  

Except for this extra resolution information, elaborated forms are syntactically a subset of syntactic expressions, 

and in some cases (such as constants) the elaborated form is the same as the source form. This specification 

uses the following elaborated forms: 

¶ Constants 

¶ Resolved value references: path  

¶ Lambda expressions: (fun ident  - > expr )  

¶ Primitive object expressions 

¶ Data expressions (tuples, union cases, array creation, record creation) 

¶ Default initialization expressions  

¶ Local definitions of values: let ident  = expr  in  expr  

¶ Local definitions of functions:  

let  rec  ident  = expr  and ... and ident  = expr  in  expr  

¶ Applications of methods and functions (with static overloading resolved) 

¶ Dynamic type coercions: expr  :?> type  

¶ Dynamic type tests: expr  :? type  

¶ For-loops: for ident  in ident  to ident  do expr  done 

¶ While-loops: while expr  do expr  done 

¶ Sequencing: expr ; expr  

¶ Try-with: try expr with expr  

¶ Try-finally: try expr finally expr  

¶ The constructs required for the elaboration of pattern matching (§7). 

¶ Null tests 

¶ Switches on integers and other types 

¶ Switches on union cases 

¶ Switches on the runtime types of objects 

The following constructs are used in the elaborated forms of expressions that make direct assignments to local 

variables and arrays and generate ñbyrefò pointer values. The operations are loosely named after their 

corresponding primitive constructs in the CLI. 

¶ Assigning to a byref-pointer: expr  <- stobj  expr   

¶ Generating a byref-pointer by taking the address of a mutable value: &path . 

¶ Generating a byref-pointer by taking the address of a record field: &( expr.field )  

¶ Generating a byref-pointer by taking the address of an array element: &( expr. [ expr ])  

Elaborated expressions form the basis for evaluation (see §6.9) and for the expression trees that quoted 

expressions return(see §6.8). 



55 
 

By convention, when describing the process of elaborating compound expressions, we omit the process of 

recursively elaborating sub-expressions.  

6.3 Data Expressions 
This section describes the following data expressions: 

¶ Simple constant expressions 

¶ Tuple expressions 

¶ List expressions 

¶ Array expressions 

¶ Record expressions 

¶ Copy-and-update record expressions 

¶ Function expressions 

¶ Object expressions 

¶ Delayed expressions 

¶ Computation expressions 

¶ Sequence expressions 

¶ Range expressions 

¶ Lists via sequence expressions 

¶ Arrays via sequence expressions 

¶ Null expressions 

¶ 'printf' formats 



56 
 

6.3.1 Simple Constant Expressions  

Simple constant expressions are numeric, string, Boolean and unit constants. For example: 

3y             // sbyte  

32uy           // byte  

17s            // int16  

18us           // uint16  

86             // int/int32  

99u            // uint32  

99999999L      // int64  

10328273UL     / / uint64  

1.             // float/double  

1.01           // float/double  

1.01e10        // float/double  

1.0f           // float32/single  

1.01f          // float32/single  

1.01e10f       // float32/single  

99999999n      // nativeint       (System.IntPtr)  

10328273un     // unativeint      (System.UIntPtr)  

99999999I      // big int           ( System. Numerics. BigInt eger  or user - specified)  

'a'            // char            (System.Char)  

"3"            // string          (String)  

"c: \ \ home"     // string          (System.String)  

@"c:\ home"     // string          (Verbatim Unicode, System.String)  

"ASCII"B       // byte[]  

()             // unit            (Microsoft.FSharp.Core.Unit)  

false          // bool            (System.Boolean)  

true           // bool            (System.Boolean)  

Simple constant expressions have the corresponding simple type and elaborate to the corresponding simple 

constant value. 

Integer literals with the suffixes Q, R, Z, I , N, G are processed using the following syntactic translation: 

xxxx<suffix>  

For xxxx  = 0   γ NumericLiteral<suffix>.FromZero()  

For xxxx  = 1   γ NumericLiteral<suffix>.FromOne()  

For xxxx  in the Int32  range γ NumericLiteral<suffix>.FromInt32(xxxx)  

For xxxx  in the Int64  range γ NumericLiteral<suffix>.FromInt64(xxxx)  

For other numbers  γ NumericLiteral<suffix>.FromString("xxxx")  

For example, defining a module NumericLiteralZ  as below enables the use of the literal form 32Z to generate a 

sequence of 32 óZô characters. No literal syntax is available for numbers outside the range of 32-bit integers. 

module NumericLiteralZ =  

    let FromZero() = ""  

    let FromOne() = "Z"  

    let FromInt32 n  = String.replicate n "Z"  

F# compilers may optimize on the assumption that calls to numeric literal functions always terminate, are 

idempotent, and do not have observable side effects. 

6.3.2 Tuple Expressions  

An expression of the form expr 1, ...,  expr n is a tuple expression. For example: 

let three = (1,2,"3")  

let blastoff = (10,9,8,7,6,5,4,3,2,1,0)  



57 
 

The expression has the type ( ty 1 * ... * ty n)  for fresh types ty 1 ƛ ty n, and each individual expression ei is 

checked using initial type ty i .  

Tuple types and expressions are translated into applications of a family of F# library types named System.Tuple . 

Tuple types ty 1 * ... * ty n are translated as follows: 

¶ For n <= 7 the elaborated form is Tuple< ty 1,..., ty n>.  

¶ For larger n, tuple types are shorthand for applications of the additional F# library type System.Tuple<_>  as 

follows: 

¶ For n = 8 the elaborated form is Tuple< ty 1,..., ty 7,Tuple< ty 8>>.  

¶ For 9 <= n the elaborated form is Tuple< ty 1,..., ty 7, ty B> where ty B is the converted form of the type 

( ty 8 *...* ty n) . 

Tuple expressions ( expr 1,..., expr n)  are translated as follows: 

¶ For n <= 7 the elaborated form new Tuple< ty 1ƗƛƗty n>( expr 1,..., expr n) .  

¶ For n = 8 the elaborated form new Tuple< ty 1ƗƛƗty 7,Tuple< ty 8>>( expr 1,..., expr 7, new 

Tuple<ty 8>( expr 8) .  

¶ For 9 <= n the elaborated form new Tuple< ty 1,... ty 7, ty 8n>( expr 1,...,  expr 7, new ty 8n( e8n)  where 

ty 8n is the type ( ty 8*...* ty n)  and expr 8n is the elaborated form of the expression 

 expr 8,...,  expr n. 

When considered as static types, tuple types are distinct from their encoded form. However, the encoded form of 

tuple values and types is visible in the F# type system through runtime types. For example, typeof<int * int>  

is equivalent to typeof<System.Tuple<int,int>> , and ( 1,2)  has the runtime type System.Tuple<int,int> . 

Likewise, (1,2,3,4,5,6,7,8,9)  has the runtime type 

Tuple<int,int,int,int,int,int,int,Tuple<int,int>> .  

Note: The above encoding is invertible and the substitution of types for type variables preserves this 

inversion. This means, among other things, that the F# reflection library can correctly report tuple 

types based on runtime System.Type  values. The inversion is defined by: 

¶ For the runtime type Tuple< ty 1,..., ty N> when n <= 7, the corresponding F# tuple type is 
ty 1 * ... * ty N 

¶ For the runtime type Tuple< ty 1,..., Tuple< ty N>> when n = 8, the corresponding F# tuple 

type is ty 1 * ... * ty 8 

¶ For the runtime type Tuple< ty 1,..., ty 7, ty Bn> , if ty Bn corresponds to the F# tuple type ty 8 

* ... * ty N, then the corresponding runtime type is ty 1 * ... * ty N. 

Runtime types of other forms do not have a corresponding tuple type. In particular, runtime types 

that are instantiations of the eight-tuple type Tuple<_,_,_,_,_,_,_,_>  must always have 

Tuple<_>  in the final position. Syntactic types that have some other form of type in this position are 

not permitted, and if such an instantiation occurs in F# code or CLI library metadata that is 

referenced by F# code, an F# implementation may report an error. 

6.3.3 List Expressions  

An expression of the form [ expr 1;...;  expr n]  is a list expression. The initial type of the expression is asserted 

to be Microsoft.FSharp.Collections.List< ty > for a fresh type ty .  

If ty  is a named type, each expression expr i  is checked using a fresh type ty '  as its initial type, with the 

constraint ty'  :> ty . Otherwise, each expression expr i  is checked using ty  as its initial type. 



58 
 

List expressions elaborate to uses of Microsoft.FSharp.Collections.List<_>  as 

op_Cons(expr 1,(op_Cons( expr 2... op_Cons ( expr n, op_Nil)...)  where op_Cons and op_Nil  are the 

union cases with symbolic names ::  and []  respectively.  

6.3.4 Array Expressions  

An expression of the form [| expr 1;...;  expr n |]  is an array expression. The initial type of the expression is 

asserted to be ty []  for a fresh type ty . 

If this assertion determines that ty  is a named type, each expression expr i  is checked using a fresh type ty'  as 

its initial type, with the constraint ty'  :> ty . Otherwise, each expression expr i  is checked using ty  as its initial 

type. 

Array expressions are a primitive elaborated form.  

Note: The F# 2.0 implementation ensures that large arrays of constants of type bool , char , byte , 

sbyte , int16 , uint16 , int32 , uint32 , int64  and uint64  are compiled to an efficient binary 

representation based on a call to 

System.Runtime.CompilerServices.RuntimeHelpers.Initi alizeArray . 

6.3.5 Record Expressions  

An expression of the form { field - initializer 1 Ƙ ƛ Ƙ field - initializer n }  is a record construction 

expression. For example: 

type Data = { Count : int; Name : string }  

let data1 = { Count = 3; Name = "Hello"; }  

let data2 = { Name = "Hello"; Count= 3 }  

In the following example, data4  uses a long identifier to indicate the relevant field: 

module M =  

    type Data = { Age : int; Name : string; Height  :  float }  

 

let data3 = { M.Age = 17; M.Name = "John"; M.Height  = 186.0 }  

let data4 = { data3 with M.Name = "Bill"; M.Height  = 176.0  }  

Fields may also be referenced by using the name of the containing type: 

module M2 =  

    type Data = { Age : int; Name : string; Height  : float }  

 

let data5 = { M2.Data.Age = 17; M2.Data.Name = "John"; M2.Data.Height  = 186.0 }  

let data6 = { data5 with M2.Data.Name = "Bill"; M2.Data.Height=176.0  }  

 

open M2 

let data7  = {  Data.Age = 17; Data .Name = "John"; Data.Height = 186.0 }  

let data8 = { data5 with Data.Name = "Bill"; Data.Height=176.0  }  

 

Each field - initializer i  has the form field - label i  = expr i . Each field - label i  is a long - ident , which 

must resolve to a field Fi  in a unique record type R as follows: 

¶ If field - label i  is a single identifier fld  and the initial type is known to be a record type R<_,...,_>  that 

has field Fi  with name fld , then the field label resolves to Fi . 

¶ If field - label i  is not a single identifier or if the initial type is a variable type, then the field label is resolved 

by performing Field Label Resolution (see §14.1) on field - label i . This procedure results in a set of fields 

FSet i . Each element of this set has a corresponding record type, thus resulting in a set of record types 

RSeti . The intersection of all RSeti  must yield a single record type R, and each field then resolves to the 

corresponding field in R. 



59 
 

The set of fields must be complete. That is, each field in record type R must have exactly one field definition. 

Each referenced field must be accessible (see §10.5), as must the type R. 

After all field labels are resolved, the overall record expression is asserted to be of type R<ty 1,..., ty N> for fresh 

types ty 1,..., ty N. Each expr i  is then checked in turn. The initial type is determined as follows: 

1. Assume the type of the corresponding field Fi  in R<ty 1,..., ty N> is fty i  

2. If the type of Fi  prior to taking into account the instantiation <ty 1,..., ty N> is a named type, then the initial 

type is a fresh type inference variable ft y' i  with a constraint fty' i  :>  fty i . 

3. Otherwise the initial type is fty i . 

 
Primitive record constructions are an elaborated form in which the fields appear in the same order as in the 

record type definition. Record expressions themselves elaborate to a form that may introduce local value 

definitions to ensure that expressions are evaluated in the same order that the field definitions appear in the 

original expression. For example:  

type R = {b : int; a : int }  

{ a  = 1 + 1; b  = 2 }  

The expression on the last line elaborates to let v = 1  + 1 in { b  = 2; a  = v } . 

Records expressions are also used for object initializations in additional object constructor definitions (§8.6.3). 

For example:  

type C =  

    val x : int   

    val y : int  

    new() = { x = 1; y = 2 }  

Note: The following record initialization form is deprecated: 

{ new type  with Field 1 = expr 1 ÁÎÄ ƛ ÁÎÄ Field n = expr n }  

The F# 2.0 implementation allows the use of this formonly with uppercase identifiers.  

F# code should not use this expression form. A future version of the F# language will issue a 

deprecation warning. 

6.3.6 Copy-and-update Record Expressions  

A copy-and-update record expression has the following form: 

{ expr  with field - initializers  }  

where field - initializer s is of the following form: 

field - label 1 = expr 1 Ƙ ƛ Ƙ field - label n = expr n 

Each field - label i  is a long - ident . In the following example, data2  is defined by using such an expression: 

type Data = { Age : int; Name : string; Height  : float }  

let data1 = { Age = 17; Name = "John";  Height  = 186.0 }  

let data2 = { data1 with Name = "Bill"; Height  = 176.0  }  

The expression expr  is first checked with the same initial type as the overall expression. Next, the field 

definitions are resolved by using the same technique as for record expressions. Each field label must resolve to a 

field Fi in a single record type R, all of whose fields are accessible. After all field labels are resolved, the overall 

record expression is asserted to be of type R<ty 1,..., ty N> for fresh types ty 1,..., ty N. Each expr i  is then 

checked in turn with initial type that results from the following procedure: 

1. Assume the type of the corresponding field Fi  in R<ty 1,..., ty N> is fty i . 



60 
 

2. If the type of Fi  before considering the instantiation <ty 1,..., ty N> is a named type, then the initial type is a 

fresh type inference variable fty' i  with a constraint fty' i  :>  fty i . 

3. Otherwise, the initial type is fty i . 

A copy-and-update record expression elaborates as if it were a record expression written as follows: 

let v = expr  in {  field - label 1 = expr 1 Ƙ ƛ Ƙ field - label n = expr n; F 1 = v.F 1; ... ; F M = v.F M }  

where F1 ... FM are the fields of R that are not defined in field - initializer s and v is a fresh variable. 

6.3.7 Function Expressions  

An expression of the form fun pat 1 ... pat n - > expr  is a function expression. For example: 

(fun x - > x + 1)  

(fun x y - > x + y)  

(fun [x] - > x) //  note, incomplete match  

(fun (x,y) (z,w) - > x + y + z + w)  

Function expressions that involve only variable patterns are a primitive elaborated form. Function expressions 

that involve non-variable patterns elaborate as if they had been written as follows: 

fun v1 ... vn - >  

    let  pat 1 = v 1  

    ...  

    let  pat n = v n  

    expr  

No pattern matching is performed until all arguments have been received. For example, the following does not 

raise a MatchFailureException  exception: 

let f = fun [x] y - > y  

let g = f []  // ok  

However, if a third line is added, a MatchFailureException  exception is raised: 

let  z = g 3 // MatchFailureException is raised  

6.3.8 Object Expressions  

An expression of the following form is an object expression: 

{ new ty 0 args - expr opt  object - members  

  interface  ty 1 object - members1 

  ƛ 

  interface  ty n object - membersn }   

In the case of the interface declarations, the object - members are optional and are considered empty if absent. 

Each set of object - members has the form: 

with member- defns  endopt  

Lexical filtering inserts simulated $end tokens when lightweight syntax is used. 

Each member of an object expression members can use the keyword member, override , or default . The 

keyword member can be used even when overriding a member or implementing an interface. 

For example: 

let obj1 =  

   { new System.Collections.Generic.IComparer<int> with  

        member x.Compare(a,b) = compare (a % 7) (b % 7) }  

 

let obj2 =  



61 
 

   { new System.Object() with  

         member x.ToString () = "Hello" }  

 

let obj3 =  

   { new System.Object ()  with  

         member x.ToString () = "Hello, base.ToString() = " + base.ToString() }  

 

let obj4 =  

   { new System.Object() with  

         member x.Finalize() = printfn "Finalize";  

     interface System.IDisposable with  

         member x.Dispose() = pri ntfn "Dispose";  }  

 

An object expression can specify additional interfaces beyond those required to fulfill the abstract slots of the type 

being implemented. For example, obj4  in the preceding examples has static type System.Object  but the object 

additionally implements the interface System.IDisposable . The additional interfaces are not part of the static 

type of the overall expression, but can be revealed through type tests.  

Object expressions are statically checked as follows.  

1. First, ty 0 to ty n are checked to verify that they are named types. The overall type of the expression is ty 0 

and is asserted to be equal to the initial type of the expression. However, if ty 0 is type equivalent to 

System.Object  and ty 1 exists, then the overall type is instead ty 1. 

2. The type ty 0 must be a class or interface type. The base construction argument args - expr  must appear if 

and only if ty 0 is a class type. The type must have one or more accessible constructors; the call to these 

constructors is resolved and elaborated using Method Application Resolution (see §14.4). Except for ty 0, 

each ty i  must be an interface type. 

3. The F# compiler attempts to associate each member with a unique dispatch slot by using dispatch slot 

inference (§14.7). If a unique matching dispatch slot is found, then the argument types and return type of the 

member are constrained to be precisely those of the dispatch slot. 

4. The arguments, patterns, and expressions that constitute the bodies of all implementing members are next 

checked one by one to verify the following: 

¶ For each member, the ñthisò value for the member is in scope and has type ty 0.  

¶ Each member of an object expression can initially access the protected members of ty 0.  

¶ If the variable base- ident  appears, it must be named base, and in each member a base variable with 

this name is in scope. Base variables can be used only in the member implementations of an object 

expression, and are subject to the same limitations as byref values described in §14.9. 

The object must satisfy dispatch slot checking (§14.8) which ensures that a one-to-one mapping exists between 

dispatch slots and their implementations. 

Object expressions elaborate to a primitive form. At execution, each object expression creates an object whose 

runtime type is compatible with all of the ty i  that have a dispatch map that is the result of dispatch slot checking 

(§14.8). 

The following example shows how to both implement an interface and override a method from System.Object . 

The overall type of the expression is INewIdentity . 

type public INewIdent ity =  

    abstract IsAnonymous : bool  

 

let anon =  

    { new System.Object() with  

        member i.ToString() = "anonymous"  



62 
 

      interface INewIdentity with  

        member i.IsAnonymous = true }  

6.3.9 Delayed Expressions 

An expression of the form lazy expr  is a delayed expression. For example: 

lazy (printfn "hello world")  

is syntactic sugar for  

new System.Lazy (fun () - > expr )  

The behavior of the System.Lazy  library type ensures that expression expr  is evaluated on demand in response 

to a . Value  operation on the lazy value.  

6.3.10 Computation Expressions  

The following expression forms are all computation expressions:  

expr  { for  ... }  
expr  { let ... }   
expr  { let! ... }  
expr  { use ... }   
expr { while ... }   
expr  { yield ... }  
expr  { yield! ... }  
expr  { try ... }  
expr  { return ... }  
expr  { return! ... }  

More specifically, computation expressions are of the following form: 

builder - expr { cexpr  }   

where cexpr  is, syntactically, the grammar of expressions with the additional constructs that are defined in comp-

expr . Computation expressions are used for sequences and other non-standard interpretations of the F# 

expression syntax. The expression 

builder - expr {  cexpr }  

translates to  

let  b = builder - expr  in b.Run (b.Delay(fun () - > {| cexpr  |}C))  

for a fresh variable b. The type of b must be a named type after the checking of. If a Run method does not exist 

on the inferred type of b when builder - expr  is checked, the call to Run is omitted. Likewise, if no Delay  method 

exists on the type of b when the expression is checked, that call is omitted. The resulting expression is then 

checked.  

The translation {|  _ |}C is defined recursively according to the following rules: 

{| let binds in cexpr  |}C  = let binds in {| cexpr |}C)  
{| let! pat  = expr in cexpr  |}C = b.Bind( expr , (fun pat  - > {| cexpr |}C))  
{| do expr in cexpr  |}C  = expr; {| cexpr |}C 
{| do! expr in cexpr  |}C  = b.Bind( expr , (fun () - > {| cexpr |}C))  
 
{| yield expr  |}C   = b.Yield( expr )  
{| yield! expr  |}C   = b. YieldFrom( expr )  
 
{| return expr  |}C   = b.Return( expr )  
{| return! expr  |}C  = b.Return From(expr )  
 
{| use pat  = expr in cexpr  |}C = b.Using( expr , (fun pat  - > {| cexpr |}C))   
{| use! v = expr in cexpr  |}C = b.Bind( expr , (fun v - >  



63 
 

     b.Using( v,(fun v - > {| cexpr |}C)))  
 
{| if expr then cexpr 0 |}C  = if expr then {| cexpr 0 |}C else b.Zero()  
{| if expr then cexpr 0 else cexpr 1 |}C = if expr then {| cexpr 0 |}C else {| cexpr 1 |}C 
{| match expr with pat i  - > cexpr i  |}C = match expr with pat i  - > {| cexpr i  |}C 
 
{| for pat  in expr  do cexpr  |}C           = b.For( {| expr |}E, (fun pat  - > {| cexpr |}C))  
 
{| for ident  = expr 1 to expr 2 do expr 3 |}C            
   = b.For( {| seq { expr 1 .. expr 2 } |}E, (fun pat  - > {| cexpr |}C))  
 
{| while expr  do cexpr  |}C  = b.While((fun () - > expr ), {| cexpr  |}Delayed )  
 
{| try cexpr with pat i  - > cexpr i |}C = b.TryWith( {| cexpr |}Delayed , (fun v - > 
           match v with  
     | ( pat i :exn) - > {| cexpr i  |}C  
     | _ - > re raise exn)  
 
{| try cexpr finally expr  |} = b.TryFinally(  {| cexpr |}Delayed , (fun () - > expr ))  
 
{| trans - cexpr 0; cexpr 1 |}  = b.Combine( {| trans - cexpr 0 |}C, {| cexpr 1 |}Delayed )  
 
{| other - expr 0 ; cexpr 1 |}  = other - expr ; {| cexpr 1 |}C 
 
{| other - expr  |}   = other - expr ; b.Zero()  

Where 

¶ The auxiliary translation {| cexpr |}Delayed  is b.Delay(fun () - > {| cexpr |}C) . 

¶ A trans - cexpr 0 is any syntactic expression form that receives an explicit translation by any of these rules, 

except for the final rule. 

¶ The auxiliary translation {|  _ |}E converts expr  to an expression with the type 

System.Collections.Generic.IEnumerable< ty >, for some type ty , by using enumerable extraction 

§6.5.6. 

This translation implicitly places type constraints on the expected form of the builder methods. For example, for 

the async  builder found in the Microsoft.FSharp.Control  library, these correspond to implementing a builder 

of a type that has the following member signatures: 

type AsyncBuilder with  

    member For: seq<'T> * ('T - > Async<unit>) - > Async<unit>  

    member Zero : unit - > Async<unit>  

    member Combine : Async<unit> * Async<'T> - > Async<'T>  

    member While : (unit - > bool) * Async<unit> - > Async<unit>  

    member Return  : 'T - > Async<'T>  

    member Delay : (unit - > Async<'T>) - > Async<'T>  

    member Using: 'T * ('T - > Async<'U>) - > Async<'U>  

                           when 'U :> System.IDisposable  

    member Bind: Async<'T> * ('T - > Async<'U>) - > Async<'U>  

    member TryFinally: Async<'T> * (unit - > unit) - > Async<'T>  

    member TryWith: Async<'T> * (exn - > Async<'T>) - > Async<'T>  

The following example shows a common approach to implementing a new computation expression builder for a 

monad. The example uses computation expressions to define computations that can be "partially run" by 

executing them step-by-step, for example, up to a time limit. 

/// Computations that can cooperatively yield by returning a continuation  

type Eventually<'T> =  

    | Done of 'T  

    | NotYetDone of (unit - > Eventually<'T>)  

 

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]  



64 
 

module Eventually =  

 

    /// The bind for the computations. Stitch ' k'  on to the end of the computation.  

    /// Note combinators like  this are usually written in the reverse way,  

    /// for example,   

    ///     e |> bind k  

    let rec bind k e =  

        match e with  

        | Done x - > NotYetDone (fun () - > k x)  

        | NotYetDone work - > NotYetDone (fun () - > bind k (work()))  

 

    /// The return for the computations.  

    let result x = Done x  

 

    type OkOrException<'T> =  

        | Ok of 'T  

        | Exception of System.Exception                      

 

    /// The catch for the computations. Stitch try/with throughout  

    /// t he computation and return the overall result as an OkOrException .  

    let rec catch e =  

        match e with  

        | Done x - > result (Ok x)  

        | NotYetDone work - >  

            NotYetDone (fun () - >  

                let res = try Ok(work()) with | e - > Exception e  

                match res with  

                | Ok cont - > catch cont // note, a tailcall  

                | Exception e - > result (Exception e))  

     

    /// The delay operator .  

    let de lay f = NotYetDone (fun () - > f())  

 

    /// The stepping action for the computations.  

    let step  c =  

        match c with  

        | Done _ - > c  

        | NotYetDone f - > f ()  

 

    // The rest of the operations are boiler plate  

 

    /// The tryFinally operator .  

    /// This is boiler - plate in terms of " result " , " catch "  and " bind " .  

    let tryFinally e compensation =     

        catch (e)  

        |> bind (fun res - >  compensation();  

                             match res with  

                             | Ok v - > result v  

                             | Exception e - > raise e)  

 

    /// The tryWith operator .  

    /// This is boiler - plate in terms of "result", "catch" and "bind".  

    let tryWith e handler =     

        catch e  

        |> bind (function Ok v - > result v | Exception e - > handler e)  

 

    /// The whileLoop operator .  

    /// This is boiler - plate in terms of "result"  and "bind" .  

    let rec whileLoop gd body =     

        if gd() then body |> bind (fun v - > whileLoop gd body)  



65 
 

        else result ()  

     

    /// The sequential composition operator  

    /// This is boiler - plate in terms of "result" and "bind" .  

    let combine e1 e2 =     

        e1 |> bind (fun () - > e2)  

     

    /// The using operator .  

    let using (resource: #System.IDisposable) f =  

        tryFinally (f resource) (fun () - > resource.Dispose())  

 

    /// The forLoop operator .  

    /// This is boiler - plate in terms of "catch" , "result" and "bind" .  

    let forLoop (e:seq<_>) f =  

        let ie = e.GetEnumerator()  

        tryFinally (whileLoop (fun () - > ie.MoveNext())  

                              (delay (fun () - > let v = ie.Current in f v)))  

                   (fun () - > ie.Dispose())  

 

     

// Give the mapping for F# computation expre ssions .  

type EventuallyBuilder() =  

    member x.Bind(e,k)                  = Eventually.bind k e  

    member x.Return(v)                  = Eventually.result v     

    member x.ReturnFrom(v)              = v     

    member x.Combine(e1,e2)             = Eventually.combine e1 e2  

    member x.Delay(f)                   = Eventually.delay f  

    member x.Zero()                     = Eventually.result ()  

    member x.TryWith(e,handler)         = Eventually.tryWith e handler  

    member x.TryFinally(e,compensation) = Eventually.tryFinally e compensation  

    member x.For(e:seq<_>,f)            = Eventually.forLoop e f  

    member x.Using(resource,e)          =  Eventually.using resource e  

 

let eventually = new EventuallyBuilder()  

After the computations are defined, they can be built by using eventually { ... } : 

let comp =  

    eventually { for x in 1  ..  2 do  

                    printfn " x = %d" x  

                 return 3  + 4 }  

These computations can now be ñstepped.ò For example: 

let step x = Eventually.step x  

comp |> step  

   // returns " NotYetDone <closure> "  

 

comp |> step |> step  

   // prints " x = 1 "  

   // returns " NotYetDone <closure> "  

 

comp |> step |> step |> step |> step |> step |> step  

   // prints " x = 1 "  

   // prints " x = 2 "  

   ƳƳ ÒÅÔÕÒÎÓ Ƨ.ÏÔ9ÅÔ$ÏÎÅ ˱ÃÌÏÓÕÒÅ˲ƨ 

 

comp |> step |> step |> step |> step |> step |> step |> step |> step  

   // prints " x = 1 "  

   // prints " x = 2 "  

   // returns " Done 7"  



66 
 

6.3.11 Sequence Expressions  

An expression in one of the following forms is a sequence expression: 

seq { comp- expr  }  
seq { short - comp- expr  }  

For example: 

seq { for x in [  1;  2;  3 ] do for y in [5;  6] do yield x  + y }  

seq { for x in [  1;  2;  3 ] do yield x  + x }  

seq { for x in [  1;  2;  3 ] - > x  + x }  

Logically speaking, sequence expressions can be thought of as computation expressions with a builder of type 

Microsoft.FSharp.Collections.SeqBuilder . This type can be considered to be defined as follows: 

type SeqBuilder() =  
    member x.Yield (v) = Seq.singleton v  
    member x.YieldFrom (s:seq<_>) = s  
    member x.Return (():unit) = Seq.empty  
    member x.Combine (xs1,xs2) = Seq.append xs1 xs2  
    member x.For (xs,g) = Seq.collect f xs  
    member x.While (guard,body) = SequenceExpressionHelpers.EnumerateWhile guard body  
    member x.TryFinally (xs,compensation) =  
        SequenceExpressionHelpers.EnumerateThenFinally xs compensation  
    member x.Using (resource,xs) = SequenceExpressionHelpers.EnumerateUsing resource xs  

However, this builder type is not actually defined in the F# library. Instead, sequence expressions are elaborated 

directly as follows: 

{| yield  expr  |}   Ą Seq.singleton expr  
{| yield! expr  |}   Ą expr  
{| expr 1 ; expr 2 |}  Ą Seq.append {| expr 1 |} {| expr 2 |} 
{| for pat  in expr 1 - > expr 2 |} Ą Seq.map (fun pat - > {| expr 2 |}) expr 1 
{| for pat  in expr 1 do expr 2 |} Ą Seq.collect (fun pat - > {| expr 2 |}) expr 1 
{| while expr 1 do expr 2 |}  Ą RuntimeHelpers .EnumerateWhile  
                                          (fun ()  - > expr 1)  
                                       {| expr 2 |})   
{| try expr 1 finally expr 2 |} Ą RuntimeHelpers .EnumerateThenFinally  
                                          (| expr 1 |})   
                                                                                  (fun ()  - > expr 2)  
{| use v = expr 1 in expr 2 |} Ą let v = expr 1 in  
                                RuntimeHelpers .EnumerateUsing v {| expr 2 |} 
{| let v = expr 1 in expr 2 |} Ą let v = expr 1 in {| expr 2 |} 
{| match expr with pat i  - > expr i  |} Ą.match expr with pat i  - > {| cexpr i  |} 
{| expr 1 |}   Ą expr 1 ; Seq.empty   
{| if expr then expr 0 |}C  Ą i f expr then {| expr 0 |}C else Seq.empty  
{| if expr then expr 0 else expr 1 |} Ą i f expr then {| expr 0 |}C else {| expr 1 |}C 
 

Here the use of Seq and RuntimeHelpers  refers to the corresponding functions in 

Microsoft.FSharp.Collections.Seq  and Microsoft.FSharp.Core.CompilerService s.RuntimeHelpers  

respectively. This means that a sequence expression generates an object of type 

System.Collections.Generic.IEnumerable< ty > for some type ty . Such an object has a GetEnumerator  

method that returns a System.Collections.Generic.IEnumerator< ty > whose MoveNext, Current  and 

Dispose  methods implement an on-demand evaluation of the sequence expressions. 

6.3.12 Range Expressions  

Expressions of the following forms are range expressions.  

{  e1 .. e2 }   
{  e1 .. e2 .. e3  }  
seq {  e1 .. e2 }   
seq {  e1 .. e2 .. e3  }  



67 
 

Range expressions generate sequences over a specified range. For example: 

seq { 1 .. 10 } // 1; 2; 3; 4; 5; 6; 7; 8; 9; 10  

seq { 1 .. 2 .. 10 } // 1; 3; 5; 7; 9  

Range expressions involving expr 1 .. expr 2 are translated to uses of the (..)  operator, and those involving 

expr 1 .. expr 1 .. expr 3 are translated to uses of the (.. ..)  operator: 

seq {  e1 .. e2 }    γ ( .. )  e1 e2 
seq {  e1 .. e2 .. e3  } γ ( .. .. )  e1 e2 e3 

The default definition of these operators is in Microsoft.FSharp.Core.Operators . The ( .. )  operator 

generates an IEnumerable<_>  for the range of values between the start (expr 1) and finish (expr 2) values, using 

an increment of 1 (as defined by Microsoft.FSharp. Core. LanguagePrimitives.GenericOne ). The ( ..  .. )  

operator generates an IEnumerable<_>  for the range of values between the start (expr 1) and finish (expr 3) 

values, using an increment of expr 2.  

The seq keyword, which denotes the type of computation expression, can be omitted for simple range 

expressions, but this is not recommended and might be deprecated in a future release. It is always preferable to 

explicitly mark the type of a computation expression. 

Range expressions also occur as part of the translated form of expressions, including the following: 

¶ [  expr 1 .. expr 2 ]  

¶ [| expr 1 .. expr 2 |]  

¶ for var  in expr 1 .. expr 2 do expr 3  

A sequence iteration expression of the form for var  in  expr 1 .. expr 2 do expr 3 done is sometimes 

elaborated as a simple for loop-expression (§6.5.7). 

6.3.13 Lists via Sequence Expressions  

A list sequence expression is an expression in one of the following forms  

[ comp- expr  ]   

[ short - comp- expr  ]   

[ range - expr  ]   

In all cases [ cexpr  ]  elaborates to Microsoft.FSharp.Collections.Seq.toList(seq {  cexpr }) . 

For example: 

let x2 = [ yield 1; yield 2 ]  

 

let x3 = [ yield 1  

           if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then  

               yield 2]  

6.3.14 Arrays Sequence Expressions  

An expression in one of the following forms is an array sequence expression: 

[| comp- expr  |]   

[ |  short - comp- expr  | ]   

[ |  range - expr  | ]   

In all cases [|  cexpr  | ]  elaborates to Microsoft.FSharp.Collections.Seq.toArray(seq { cexpr } ) . 



68 
 

For example: 

let x2 = [| yield 1; yield 2 |]  

let x3 = [| yield 1  

            if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then  

                yield 2 |]  

6.3.15 Null Expressions  

An expression in the form null  is a null expression. A null expression imposes a nullness constraint (§5.2.2, 

§5.4.8) on the initial type of the expression. The constraint ensures that the type directly supports the value null . 

Null expressions are a primitive elaborated form. 

6.3.16 'printf' Formats  

Format strings are strings with % markers as format placeholders. Format strings are analyzed at compile time 

and annotated with static and runtime type information as a result of that analysis. They are typically used with 

one of the functions printf , fprintf , sprintf , or bprintf  in the Microsoft.FSharp. Core.Printf  module. 

Format strings receive special treatment in order to type check uses of these functions more precisely. 

More concretely, a constant string is interpreted as a printf-style format string if it is expected to have the type 

Microsoft.FSharp. Core. Printf Format<'Printer,'State,'Residue,'Result,'Tuple> . The string is 

statically analyzed to resolve the generic parameters of the PrintfFormat  type, of which 'Printer  and 'Tuple  

are the most interesting: 

¶ 'Printer  is the function type that is generated by applying a printf -like function to the format string. 

¶ 'Tuple  is the type of the tuple of values that are generated by treating the string as a generator (for 

example, when the format string is used with a function similar to scanf in other languages). 

A format placeholder has the following shape:   

%[flags][width][.precision][type]  

where: 

flags    

Are 0, - , +, and the space character. The # flag is invalid and results in a compile-time error. 

width  

Is an integer that specifies the minimum number of characters in the result. 

precision  

Is the number of digits to the right of the decimal point for a floating-point type. . 

type  

Is as shown in the following table. 

Placeholder string Type 

%b bool  

%s string  

%c char  

%d, %i One of the basic integer types: 
byte , sbyte , int16 , uint16 , int32 , uint32 , int64 , uint64 , nativeint  or 
unativeint  

%u Basic integer type formatted as an unsigned integer 



69 
 

Placeholder string Type 

%x Basic integer type formatted as an unsigned hexadecimal integer with lowercase 
letters a through f.  

%X Basic integer type formatted as an unsigned hexadecimal integer with uppercase 
letters A through F. 

%o Basic integer type formatted as an unsigned octal integer. 

 %e, %E, %f, %F, %g, %G float  or float32  

%M System.Decimal   

%O System.Object  

%A Fresh variable type 'T   

%a Formatter of type 'State - > 'T - > 'Residue  for a fresh variable type 'T  

%t Formatter of type 'State - > 'Residue   

 
For example, the format string "%s %d %s" is given the type Printf Format<(string - > int - > string - > 

'd), 'b, 'c, 'd,(string * int * string)>  for fresh variable types 'b, 'c, 'd . Applying printf to it 

yields a function of type string - > int - > string - > unit . 

6.4 Application Expressions  

6.4.1 Basic Application Expressions  

Application expressions involve variable names, dot-notation lookups, function applications, method applications, 

type applications, and item lookups, as shown in the following table.  

Expression Description 

long - ident - or - op Long-ident lookup expression 

expr '.' long - ident - or - op Dot lookup expression 

expr expr  Function or member application expression  

expr(expr)  High precedence function or member application 

expression  

expr <types > Type application expression  

expr < > Type application expression with an empty type list 

type  expr  Simple object expression 

 
The following are examples of application expressions: 

System.Math.PI  

System.Math.PI.ToString()  

(3 + 4).ToString()  

System.Environment.GetEnvironmentVariable("PATH").Length  

System.Console.WriteLine("Hello World")  

Application expressions may start with object construction expressions that do not include the new keyword: 

System.Object()  

System.Collections.Generic.List<int>(10)  

System.Collections.Generic.KeyValuePair(3,"Three")  



70 
 

System.Object().GetType()  

System.Collections.Generic.Dictionary<int,int>(10).[1]  

If the long - ident - or - op starts with the special pseudo-identifier keyword global , F# resolves the identifier with 

respect to the global namespaceðthat is, ignoring all open directives (see §14.2). For example: 

global. System.Math.PI  

is resolved to System.Math.PI  ignoring all open directives. 

The checking of application expressions is described in detail as an algorithm in §14.2. To check an application 

expression, the expression form is repeatedly decomposed into a lead expression expr  and a list of projections 

projs  through the use of Unqualified Lookup (§14.2.1). This in turn uses procedures such as Expression-

Qualified Lookup and Method Application Resolution.  

As described in §14.2, checking an application expression results in an elaborated expression that contains a 

series of lookups and method calls. The elaborated expression may include: 

¶ Uses of named values 

¶ Uses of union cases  

¶ Record constructions 

¶ Applications of functions 

¶ Applications of methods (including methods that access properties)  

¶ Applications of object constructors 

¶ Uses of fields, both static and instance 

¶ Uses of active pattern result elements 

Additional constructs may be inserted when resolving method calls into simpler primitives:  

¶ The use of a method or value as a first-class function may result in a function expression.  

For example, System.Environment.GetEn vironmentVariable  elaborates to: 

(fun v - > System.Environment.GetEnvironmentVariable(v))  

for some fresh variable v. 

¶ The use of post-hoc property setters results in the insertion of additional assignment and sequential 

execution expressions in the elaborated expression.  

For example, new System.Windows.Forms.Form(Text="Text")  elaborates to 

let v = new System.Windows.Forms.Form() in v.set_Text("Text"); v   

for some fresh variable v. 

¶ The use of optional arguments results in the insertion of Some(_) and None data constructions in the 

elaborated expression. 

For uses of active pattern results (see §10.2.4), for result i  in an active pattern that has N possible results of 

types types , the elaborated expression form is a union case Choice NOfi  of type 

Microsoft.FSharp.Core.Choice< type s>.  

6.4.2 Object Construction Expressions  

An expression of the following form is an object construction expression: 

new ty ( e1 ... en)   



71 
 

An object construction expression constructs a new instance of a type, usually by calling a constructor method on 

the type. For example: 

new System.Object()  

new System.Collections.Generic.List<int>()  

new System.Windows.Forms.Form (Text="Hello World")  

new 'T()  

The initial type of the expression is first asserted to be equal to ty . The type ty  must not be an array, record, 

union or tuple type. If ty  is a named class or struct type: 

¶ ty  must not be abstract.  

¶ If ty  is a struct type, n is 0, and ty  does not have a constructor method that takes zero arguments, the 

expression elaborates to the default ñzero-bit patternò value for ty . 

¶ Otherwise, the type must have one or more accessible constructors. The overloading between these 

potential constructors is resolved and elaborated by using Method Application Resolution (see §14.4). 

If ty  is a delegate type the expression is a delegate implementation expression.  

¶ If the delegate type has an Invoke  method that has the following signature 

Invoke( ty 1,..., ty n) - > rty A,  

then the overall expression must be in this form: 

new ty ( expr )  where expr  has type ty 1 - > ... - > ty n - > rty B 

If type rty A is a CLI void  type, then rty B is unit , otherwise it is rty A. 

¶ If any of the types ty i  is a byref-type then an explicit function expression must be specified. That is, the 

overall expression must be of the form new ty ( fun  pat 1 ... pat n - > expr body) .  

If ty  is a type variable: 

¶ There must be no arguments (that is, n = 0 ). 

¶ The type variable is constrained as follows:  

ty  : (new : unit - > ty )  --  CLI default constructor constraint  

¶ The expression elaborates to a call to 

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicFunctions.CreateInstance< ty >() , which 

in turn calls System.Activator.CreateInstance< ty >() , which in turn uses CLI reflection to find and call 

the null object constructor method for type ty . On return from this function, any exceptions are wrapped by 

using System.TargetInvocationException . 

6.4.3 Operator Expressions  

Operator expressions are specified in terms of their shallow syntactic translation to other constructs. The 

following translations are applied in order: 

infix - or - prefix - op e1  γ (~ infix - or - prefix - op) e1  

prefix - op e1         γ ( prefix - op) e1  

e1 infix - op e2         γ ( infix - op) e1 e2  

Note: When an operator that may be used as either an infix or prefix operator is used in prefix 

position, a tilde character ~ is added to the name of the operator during the translation process. 

These rules are applied after applying the rules for dynamic operators (§6.4.4). 



72 
 

The parenthesized operator name is then treated as an identifier and the standard rules for unqualified name 

resolution (§14.1) in expressions are applied. The expression may resolve to a specific definition of a user-

defined or library-defined operator. For example: 

let (+++) a b = (a,b)  

3 +++ 4  

In some cases, the operator name resolves to a standard definition of an operator from the F# library. For 

example, in the absence of an explicit definition of (+),  

3 + 4  

resolves to a use of the infix operator Microsoft.FSharp.Core.Operators.(+) . 

Some operators that are defined in the F# library receive special treatment in this specification. In particular: 

¶ The &expr  and &&expr  address-of operators (§6.4.5) 

¶ The expr  && expr  and expr  || expr  shortcut control flow operators (§6.5.4) 

¶ The %expr  and %%expr  expression splice operators in quotations (§6.8.3) 

¶ The library-defined operators, such as +, - , * , / , %, ** , <<<, >>>, &&&, ||| , and ^^^  (§17.2). 

If the operator does not resolve to a user-defined or library-defined operator, the name resolution rules (§14.1) 

ensure that the operator resolves to an expression that implicitly uses a static member invocation expression 

(§6.4.8) that involves the types of the operands. This means that the effective behavior of an operator that is not 

defined in the F# library is to require a static member that has the same name as the operator, on the type of one 

of the operands of the operator. In the following code, the otherwise undefined operator -- > resolves to the static 

member on the Receiver  type, based on a type-directed resolution: 

type Receiver(latestMessage:string) =  

    static member (< -- ) (receiver:Receiver,message:string) =  

        Receiver(message)  

 

    static member ( -- >) (message,receiver:Receiver) =  

        Receiver(message)  

 

let  r = Receiver "no message"  

 

r < --  "Message One"  

 

"Message Two" -- > r  

6.4.4 Dynamic  Operator Expressions  

Expressions of the following forms are dynamic operator expressions: 

expr 1 ? expr 2  

expr 1 ? expr 2 <-  expr 3  

These expressions are defined by their syntactic translation: 

expr  ? ident                γ (?) expr  " ident "  
expr 1 ? ( expr 2)             γ (?) expr 1 expr 2 
expr 1 ? ident <-  expr 2     γ (?< - ) expr 1 " ident " expr 2 
expr 1 ? ( expr 2)  <-  expr 3   γ (?< - ) expr 1 expr 2 expr 3 

Here " ident "  is a string literal that contains the text of ident .  

Note: The F# core library FSharp.Core.dll  does not define the (?)  and (?< - )  operators. 

However, user code may define these operators. For example, it is common to define the operators 

to perform a dynamic lookup on the properties of an object by using reflection. 



73 
 

This syntactic translation applies regardless of the definition of the (?)  and (?< - )  operators. However, it does 

not apply to uses of the parenthesized operator names, as in the following: 

(?) x y  

6.4.5 The AddressOf Operators  

Under default definitions, expressions of the following forms are address-of expressions, called byref-address-of 

expression and nativeptr-address-of expression, respectively:  

&expr   

&&expr   

Such expressions take the address of a mutable local variable, byref-valued argument, field, array element, or 

static mutable global variable. 

For &expr  and &&expr  , the initial type of the overall expression must be of the form byref< ty > and 

nativeptr< ty > respectively, and the expression expr  is checked with initial type ty . 

The overall expression is elaborated recursively by taking the address of the elaborated form of expr , written 

AddressOf(expr , DefinitelyMutates ), defined in §6.9.4. 

Use of these operators may result in unverifiable or invalid common intermediate language (CIL) code; when 

possible, a warning or error is generated. In general, their use is recommended only: 

¶ To pass addresses where byref  or nativeptr  parameters are expected. 

¶ To pass a byref parameter on to a subsequent function. 

¶ When required to interoperate with native code. 

  
Addresses that are generated by the && operator must not be passed to functions that are in tail call position. The 

F# compiler does not check for this. 

Direct uses of byref  types, nativeptr  types, or values in the Microsoft.FSharp.NativeInterop  module may 

result in invalid or unverifiable CIL code. In particular, byref  and nativeptr  types may NOT be used within 

named types such as tuples or function types. 

When calling an existing CLI signature that uses a CLI pointer type ty* , use a value of type nativeptr<ty> . 

Note: The rules in this section apply to the following prefix operators, which are defined in the F# 

core library for use with one argument.   

  Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(~&)  

  Microsoft.FSharp.Core.LanguagePrimitives.Intrinsi cOperators.(~&&)  

Other uses of these operators are not permitted. 

6.4.6 Lookup Expressions  

Lookup expressions are specified by syntactic translation: 

e1.[ e2]               γ e1. get_ Item( e2)  
e1.[ e2, e3]              γ e1.get_Item( e2, e3)  
e1.[ e2, e3, e4]           γ e1.get_Item( e2, e3, e4)  
e1.[ e2, e3, e4, e5]       γ e1.get_Item( e2, e3, e4, e5)  
e1.[ e2] < -  e3         γ e1. set_ Item( e2,  e3)  
e1.[ e2, e3] < -  e4         γ e1.set_Item( e2, e3, e4)  
e1.[ e2, e3, e4]  <-  e5    γ e1.set_Item( e2, e3, e4, e5)  
e1.[ e2, e3, e4, e5] < -  e6        γ e1.set_Item( e2, e3, e4, e5, e6)  



74 
 

In addition, for the purposes of resolving expressions of this form, array types of rank 1, 2, 3, and 4 are assumed 

to support a type extension that defines an Item  property that has the following signatures: 

type 'T[] with  
    member arr.Item : int - > 'T  
 
type 'T[,] with  
    member arr.Item : int * int - > 'T  
 
type 'T[,,] with  
    member arr.Item : int * int * int - > 'T  
 
type 'T[,,,] with  
    member arr.Item : int * int * int * int - > 'T  

In addition, if type checking determines that the type of e1 is a named type that supports the DefaultMember  

attribute, then the member name identified by the DefaultMember  attribute is used instead of Item . 

6.4.7 Slice Expressions 

Slice expressions are defined by syntactic translation. For 1-D slices: 

e1.[ e2opt .. e 3opt ]     γ e1.GetSlice( arg 2, arg 3)  
e1.[*]      γ e1.GetSlice(None,None)  

where arg i  is Some ei opt  if ei opt  is present and None otherwise. At least one ei opt  must be present. A similar 

translation is used for 2-D slices: 

e1.[ e2opt .. e 3opt , e 4opt .. e 5opt ]  γ e1.GetSlice( arg 2, arg 3, arg 4, arg 5)  
e1.[ *, e 2opt .. e 3opt ]      γ e1.GetSlice(None,None, arg 2, arg 3)  
e1.[ e2opt .. e 3opt , *]   γ e1.GetSlice( arg 2, arg 3,None,None)  
e1.[ * ,*]    γ e1.GetSlice(None,None,None,None)  

Because this is a shallow syntactic translation, the GetSlice  name may be resolved by any of the relevant Name 

Resolution (§14.1) techniques, including defining the method as a type extension for an existing type. 

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a method 

GetSlice  that has the following signature: 

type 'T[] with  
    member arr.GetSlice : ?start1:int * ?end1:int - > 'T[,]  
 
type 'T[,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int - > 'T[,]  
 
type 'T[,,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int *  
                          ?start3:int * ?end3:int  
                             - > 'T[,,]  
 
type 'T[,,,] with  
    member arr.GetSlice : ?start1:int * ?end1:int * ?start2:int * ?end2:int *  
                          ?start3:int * ?end3:int * ?start4:int * ?end4:int  
                             - > 'T[,,,]  

6.4.8 Member Constraint Invocat ion Expressions  

An expression of the following form is a member constraint invocation expression: 

( static - typars  : ( member- sig ) expr )  

Type checking proceeds as follows: 

1. The expression is checked with initial type ty . 



75 
 

2. A statically resolved member constraint is applied (§5.2.3): 

static - typars  : ( member- sig )  

3. ty  is asserted to be equal to the return type of the constraint. 

4. expr  is checked with an initial type that corresponds to the argument types of the constraint. 

The elaborated form of the expression is a member invocation. For example: 

let inline speak (a: ^a) =  

    let x = (^a : (member Speak: unit - > string) (a))  

    printfn "It said: %s" x  

    let y = (^a : (member MakeNoise: unit - > string) (a))  

    printfn "Then it went:  %s" y  

 

type Duck() =  

    member x.Speak() = "I'm a duck"  

    member x.MakeNoise() = "quack"  

type Dog() =  

    member x.Speak() = "I'm a dog"  

    member x.MakeNoise() = " grrrr "  

 

let x = new Duck()  

let y = new Dog()  

speak x  

speak y  

Outputs: 

It said: I'm a duck  

Then it went:  quack 

It said: I'm a  dog 

Then it went:  grrrr  

6.4.9 Assignment Expressions  

An expression of the following form is an assignment expression: 

expr 1 <-  expr 2 

A modified version of Unqualified Lookup (§14.2.1) is applied to the expression expr 1 using a fresh expected 

result type ty , thus producing an elaborate expression expr 1. The last qualification for expr 1 must resolve to one 

of the following constructs: 

¶ An invocation of a property with a setter method. The property may be an indexer. 

Type checking incorporates expr 2 as the last argument in the method application resolution for the setter 

method. The overall elaborated expression is a method call to this setter property and includes the last 

argument. 

¶ A mutable value path  of type ty . 

Type checking of expr 2 uses the expected result type ty  and generates an elaborated expression expr 2. 

The overall elaborated expression is an assignment to a value reference &path < - stobj  expr 2. 

¶ A reference to a value path  of type byref< ty >.  

Type checking of expr 2 uses the expected result type ty  and generates an elaborated expression expr 2. 

The overall elaborated expression is an assignment to a value reference path < - stobj  expr 2. 



76 
 

¶ A reference to a mutable field expr 1a. field  with the actual result type ty .  

Type checking of expr 2 uses the expected result type ty  and generatesan elaborated expression expr 2. The 

overall elaborated expression is an assignment to a field (see §6.9.4): 

AddressOf ( expr 1a. field , DefinitelyMutates )  <- stobj  expr 2  

¶ A array lookup expr 1a.[ expr 1b]  where expr 1a has type ty [] .  

Type checking of expr 2 uses the expected result type ty  and generates thean elaborated expression expr 2. 

The overall elaborated expression is an assignment to a field (see §6.9.4): 

AddressOf ( expr 1a.[ expr 1b]  , DefinitelyMutates )  <- stobj  expr 2  

Note: Because assignments have the preceding interpretations, local values must be mutable so 

that primitive field assignments and array lookups can mutate their immediate contents. In this 

context, ñimmediateò contents means the contents of a mutable value type. For example, given 

 [<Struct>]  
 type SA =  
     new(v) = { x = v }  
     val mutable x : int  
 
 [<Struct>]  
 type SB =  
     new(v) = { sa = v }  
     val mutable sa : SA  
  
 let s1 = SA(0)  
 let mutable s2 = SA(0)  
 let s3 = SB(0)  
 let mutable s4 = SB(0)  

Then these are not permitted: 

 s1.x < -  3 
 s3.sa.x < -  3 

and these are: 

 s2.x < -  3 
 s4.sa.x < -  3 
 s4.sa < -  SA(2)  

6.5 Control Flow Expressions  

6.5.1 Parenthesized and Block Expressions  

A parenthesized expression has the following form: 

( expr )   

A block expression has the following form:  

begin expr  end  

The expression expr  is checked with the same initial type as the overall expression. 

The elaborated form of the expression is simply the elaborated form of expr . 



77 
 

6.5.2 Sequential Execution Expressions  

A sequential execution expression has the following form:  

expr 1; expr 2 

For example: 

printfn "Hello"; printfn " World"; 3  

The ;  token is optional when both of the following are true: 

¶ The expression expr 2 occurs on a subsequent line that starts in the same column as expr 1. 

¶ The current pre-parse context that results from the syntax analysis of the program text is a SeqBlock (§15).  

When the semicolon is optional, parsing inserts a $sep token automatically and applies an additional syntax rule 

for lightweight syntax (§15.1.1). In practice, this means that code can omit the ;  token for sequential execution 

expressions that implement functions or immediately follow tokens such as begin  and ( . 

The expression expr 1 is checked with an arbitrary initial type ty . After checking expr 1, ty  is asserted to be equal 

to unit . If the assertion fails, a warning rather than an error is reported. The expression expr 2 is then checked 

with the same initial type as the overall expression. 

Sequential execution expressions are a primitive elaborated form. 

6.5.3 Conditional Expressions  

A conditional expression  has the following form:s  

if expr 1a then expr 1b   

elif  expr 3a then expr 2b  

ƛ  

elif  expr na then expr nb  

else expr last   

The elif and else branches may be omitted. For example: 

if (1  + 1 = 2) then "ok" else "not ok"  

if (1  + 1 = 2) then printfn "ok"  

Conditional expressions are equivalent to pattern matching on Boolean values. For example, the following 

expression forms are equivalent:  

if expr 1 then expr 2 else expr 3 

match ( expr 1:bool) with true - > expr 2 | false - > expr 3  

If the else branch is omitted, the expression is a sequential conditional expression and is equivalent to:  

match ( expr 1:bool) with true - > expr 2 | false - > ()   

with the exception that the initial type of the overall expression is first asserted to be unit . 

6.5.4 Shortcut Operator  Expressions 

Under default definitions, expressions of the following form are respectively an shortcut and expression and a 

shortcut or expression: 

expr && expr   

expr || expr  

These expressions are defined by their syntactic translation: 

expr 1 && expr 2               γ if expr 1 then expr 2 else false  

expr 1 || expr 2               γ if expr 1 then true else expr 2  



78 
 

Note: The rules in this section apply when the following operators, as defined in the F# core library, 

are applied to two arguments. 

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(&&)  
Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(||)  

If the operator is not immediately applied to two arguments, it is interpreted as a strict function that 

evaluates both its arguments before use. 

6.5.5 Pattern -Matching Expressions and Functions  

A pattern-matching expressionhas the following form:  

match expr  with rules  

Pattern matching is used to evaluate the given expression and select a rule (§7). For example: 

match (3,  2) with  

  | 1,  j - > printfn "j = %d" j  

  | i,  2 - > printfn "i = %d" i  

  | _    - > printfn "no match"  

A pattern-matching function is an expression of the following form: 

function rules  

A pattern-matching function is syntactic sugar for a single-argument function expression that is followed by 

immediate matches on the argument. For example:  

function   

  | 1,  j - > printfn "j = %d" j  

  | _    - > printfn "no match"  

is syntactic sugar for the following, where x is a fresh variable: 

fun x - >  

  match x with  

  | 1,  j - > printfn "j = %d" j  

  | _    - > printfn "no match"  

6.5.6 Sequence Iteration Expressions  

An expression of the following form is a sequence iteration expression: 

for pat  in expr 1 do expr 2 done  

The done token is optional if expr 2 appears on a later line and is indented from the column position of the for  

token. In this case, parsing inserts a $done token automatically and applies an additional syntax rule for 

lightweight syntax (§15.1.1). 

For example: 

for x,  y in [(1,  2); (3,  4)] do  

    printfn "x = %d, y = %d" x y   

The expression expr 1 is checked with a fresh initial type ty expr ,  which is then asserted to be a subtype of type 

IEnumerable< ty >, for a fresh type ty . If the assertion succeeds, the expression elaborates to the following, 

where v is of type IEnumerator< ty > and pat  is a pattern of type ty : 

let v = expr 1.GetEnumerator()  
try  
    while ( v.MoveNext()) do  
        match v.Current with  
        | pat  - > expr 2 
        | _ - > ()  



79 
 

finally  
    match box( v) with  
    | :? System.IDisposable as d - > d.Dispose()  
    | _ - > ()  

If the assertion fails, the type ty expr  may also be of any static type that satisfies the ñcollection patternò of CLI 

libraries. If so, the enumerable extraction process is used to enumerate the type. In particular, ty expr  may be any 

type that has an accessible GetEnumerator  method that accepts zero arguments and returns a value that has 

accessible MoveNext and Current  properties. The type of pat  is the same as the return type of the Current  

property on the enumerator value. However, if the Current  property has return type obj  and the collection type 

ty  has an Item  property with a more specific (non-object) return type ty 2, type ty 2 is used instead, and a 

dynamic cast is inserted to convert v.Current  to ty 2. 

A sequence iteration of the form  

for var  in expr 1 .. expr 2 do expr 3 done  

where the type of expr 1 or expr 2 is equivalent to int , is elaborated as a simple for-loop expression (§6.5.7) 

6.5.7 Simple for -Loop Expressions  

An expression of the following form is a simple for loop expression: 

for var  = expr 1 to expr 2 do expr 3 done  

The done token is optional when e2 appears on a later line and is indented from the column position of the for  

token. In this case, a $done token is automatically inserted, and an additional syntax rule for lightweight syntax 

applies (§15.1.1). For example: 

for x = 1 to 30 do  

    printfn "x = %d, x^2 = %d" x (x*x)  

The bounds expr 1 and  expr 2 are checked with initial type int . The overall type of the expression is unit . A 

warning is reported if the body expr 3 of the for  loop does not have static type unit .  

The following shows the elaborated form of a simple for-loop expression for fresh variables start  and finish : 

let start  = expr 1 in  
let finish  = expr 2 in  
for var  = start  to finish  do expr 3 done 

For-loops over ranges that are specified by variables are a primitive elaborated form. When executed, the 

iterated range includes both the starting and ending values in the range, with an increment of 1. 

An expression of the form  

for var  in expr 1 .. expr 2 do expr 3 done  

is always elaborated as a simple for-loop expression whenever the type of expr 1 or expr 2 is equivalent to int . 

6.5.8 While Expressions  

A while loop expression has the following form: 

while expr 1 do expr 2 done  

The done token is optional when expr 2 appears on a subsequent line and is indented from the column position 

of the while . In this case, a $done token is automatically inserted, and an additional syntax rule for lightweight 

syntax applies (§15.1.1). 

For example: 

while System.DateTime.Today.DayOfWeek = System.DayOfWeek.Monday do  

    printfn "I don't like Mondays"  



80 
 

The overall type of the expression is unit . The expression expr 1 is checked with initial type bool . A warning is 

reported if the body expr 2 of the while  loop cannot be asserted to have type unit .  

6.5.9 Try -with  Expressions 

A try-with expression has the following form:  

try expr  with rules  

For example: 

try "1" with _ - > "2"  

 

try  

    failwith "fail"  

with  

   | Failure msg - > "caught"  

   | :? System.InvalidOperationException - > "unexpected"  

Expression expr  is checked with the same initial type as the overall expression. The pattern matching clauses 

are then checked with the same initial type and with input type System.Exception . 

Try-with expressions are a primitive elaborated form. 

6.5.10 Reraise Expressions 

A reraise expression is an application of the re raise  F# library function. This function must be applied to an 

argument and can be used only on the immediate right-hand side of rules  in a try-with expression. 

try  

    failwith "fail"  

with e - > printfn "Failing"; reraise()  

Note: The rules in this section apply to any use of the function 

Microsoft.FSharp.Core.Operators.reraise , which is defined in the F# core library. 

When executed, reraise ()  continues exception processing with the original exception information. 

6.5.11 Try -finally Expressions  

A try-finally expression has the following form:  

try expr 1 finally expr 2 

For example: 

try "1" finally printfn "Finally!"  

 

try  

    failwith "fail"  

finally  

    printfn "Finally block"  

Expression expr 1 is checked with the initial type of the overall expression. Expression expr 2 is checked with 

arbitrary initial type, and a warning occurs if this type cannot then be asserted to be equal to unit . 

Try-finally expressions are a primitive elaborated form. 



81 
 

6.5.12 Assertion Expressions  

An assertion expression has the following form: 

assert expr  

The expression assert expr  is syntactic sugar for System.Diagnostics.Debug.Assert(expr)  

Note: System.Diagnostics.Debug.Assert  is a conditional method call. This means that 

assertions are triggered only if the DEBUG conditional compilation symbol is defined. 

6.6 Definition  Expressions 
A definition expression has one of the following forms:  

let function - defn  i n expr   

let value - defn i n expr   

let rec function - or - value - defns  in expr  

use ident  = expr 1 in expr   

Such an expression establishes a local function or value definition within the lexical scope of expr  and has the 

same overall type as expr . 

In each case, the in  token is optional if expr  appears on a subsequent line and is aligned with the token let . In 

this case, a $in  token is automatically inserted, and an additional syntax rule for lightweight syntax applies 

(§15.1.1) 

For example: 

let x = 1  

x + x 

and 

let x,  y = ("One", 1)  

x.Length + y  

and 

let id x = x in (id 3, id "Three")  

and 

let swap (x,  y) = (y,x)  

List.map swap [  (1,  2); (3,  4)  ]  

and 

let K x y = x in List.map (K 3) [  1;  2;  3;  4 ]  

Function and value definitions in expressions are similar to function and value definitions in class definitions 

(§8.6.1.3), modules (§10.2.1), and computation expressions (§6.3.10), with the following exceptions: 

¶ Function and value definitions in expressions may not define explicit generic parameters (§5.3). For 

example, the following expression is rejected: 

let f<'T> (x:'T) = x in f 3  

¶ Function and value definitions in expressions are not public and are not subject to arity analysis (§14.10). 

¶ Any custom attributes that are specified on the declaration, parameters, and/or return arguments are ignored 

and result in a warning. As a result, function and value definitions in expressions may not have the 

ThreadStatic  or ContextStatic  attribute. 



82 
 

6.6.1 Value Definition  Expressions  

A value definition expression has the following form: 

let value - defn i n expr   

where value - defn  has the form: 

mutable opt  access opt  pat  typar - defns opt  return - type opt  = rhs - expr   

Checking proceeds as follows: 

1. Check the value - defn  (§14.6), which defines a group of identifiers ident j  with inferred types ty j   

2. Add the identifiers ident j  to the name resolution environment, each with corresponding type ty j .  

3. Check the body expr  against the initial type of the overall expression. 

In this case, the following rules apply: 

¶ If pat  is a single value pattern ident , the resulting elaborated form of the entire expression is 

let  ident 1 <typars1 > = expr 1 in  

body- expr  

where ident 1, typars 1 and expr 1 are defined in §14.6. 

¶ Otherwise, the resulting elaborated form of the entire expression is 

let  tmp <typars 1ƛ typars n> = expr  in  

let  ident 1 <typars 1> = expr 1 in  

ƛ 

let  ident n <typars n> = expr n in  

body- expr  

where tmp is a fresh identifier and ident i , typars i , and expr i  all result from the compilation of the pattern 

pat  (§7) against the input tmp. 

Value definitions in expressions may be marked as mutable . For example: 

let mutable v = 0  
while v < 10 do  
    v < -  v + 1  
    printfn "v = %d" v  

Such variables are under the same restrictions as values of type byref<_>  (§14.9), and are implicitly 

dereferenced each time they are used. 

6.6.2 Function Definition  Expressions 

A function definition expression has the form: 

let function - defn i n expr   

where function - defn has the form: 

inline opt  access opt  ident - or - op typar - defns opt  pat 1 ... pat n return - type opt  = rhs - expr   

Checking proceeds as follows: 

1. Check the function - defn  (§14.6), which defines ident 1, ty 1, typars 1 and expr 1 

2. Add the identifier ident 1 to the name resolution environment, each with corresponding type ty 1.  

3. Check the body expr  against the initial type of the overall expression. 



83 
 

The resulting elaborated form of the entire expression is 

let  ident 1 <typars 1> = expr 1 in  

expr  

where ident 1, typars 1 and expr 1 are as defined in §14.6. 

6.6.3 Recursive Definition Expressions 

An expression of the following form is a recursive definition expression: 

let rec function - or - value - defn s in expr  

The defined functions and values are available for use within their own definitionsðthat is can be used within any 

of the expressions on the right-hand side of function - or - value - def ns. Multiple functions or values may be 

defined by using ÌÅÔ ÒÅÃ ƛ ÁÎÄ ƛ. For example: 

let test() =  

    let rec twoForward count =  

        printfn "at %d, taking two steps forward" count  

        if count = 1000 then "got there!"  

        else oneBack (cou nt + 2)  

    and oneBack count =  

        printfn "at %d, taking one step back " count  

        twoForward (count -  1)  

 

    twoFor ward 1  

 

test()  

In the example, the expression defines a set of recursive functions. If one or more recursive values are defined, 

the recursive expressions are analyzed for safety (§14.6.6). This may result in warnings (including some reported 

as compile-time errors) and runtime checks. 

6.6.4 Deterministic Disposal Expressions  

A deterministic disposal expression has the form:  

use ident  = expr 1 in expr 2  

For example: 

use inStream = System.IO.File.OpenText "input.txt"  

let line1 = inStream.ReadLine()  

let line2 = inStream.ReadLine()  

(line1,line2)  

The expression is first checked as an expression of form let ident  = expr 1 in expr 2 (§Error! Reference 

ource not found.), which results in an elaborated expression of the following form: 

let  ident 1 :  ty 1 = expr 1 in  expr 2.  

Only one value may be defined by a deterministic disposal expression, and the definition is not generalized 

(§14.6.7). The type ty 1, is then asserted to be a subtype of System.IDisposable . If the dynamic value of the 

expression after coercion to type obj  is non-null, the Dispose  method is called on the value when the value goes 

out of scope. Thus the overall expression elaborates to this: 

let  ident 1 :  ty 1 = expr 1  
try expr 2  
finally (match ( ident  :> obj) with  
         | null - > ()  
         | _ - > ( ident :> System.IDisposable) .Dispose())  



84 
 

6.7 Type-Related Expressions  

6.7.1 Type-Annotated  Expressions  

A type-annotated expression has the following form, where ty  indicates the static type of expr : 

expr  : ty  

For example: 

(1 : int)  

let f x = (x : string) + x  

When checked, the initial type of the overall expression is asserted to be equal to ty . Expression expr  is then 

checked with initial type ty . The expression elaborates to the elaborated form of expr . This ensures that 

information from the annotation is used during the analysis of expr  itself.  

6.7.2 Static Coercion Expressions  

A static coercion expressionðalso called  a flexible type constraintðhas the following form:   

expr  :> ty  

The expression upcast  expr  is equivalent to expr  :> _, so the target type is the same as the initial type of the 

overall expression. For example: 

(1 :> obj)  

("Hello" :> obj)  

([1;2;3] :> seq<int>).GetEnumerator()  

(upcast 1 : obj)  

The initial type of the overall expression is ty . Expression expr  is checked using a fresh initial type ty e, with 

constraint ty e :>  ty . Static coercions are a primitive elaborated form. 

6.7.3 Dynamic Type -Test Expressions 

A dynamic type-test expression has the following form:  

expr  :? ty  

For example: 

((1 :> obj) :? int)  

((1 :> obj) :? string)  

The initial type of the overall expression is bool . Expression expr  is checked using a fresh initial type ty e. After 

checking: 

¶ The type ty e must not be a variable type. 

¶ A warning is given if ty e coerces to ty . 

¶ The type ty e must not be sealed. 

¶ If type ty  is sealed, or if ty  is a variable type, or if type ty e is not an interface type, then ty :> ty e is 

asserted. 

Dynamic type tests are a primitive elaborated form. 

6.7.4 Dynamic Coercion Expressions  

A dynamic coercion expression has the following form:  

expr  :?> ty  



85 
 

The expression downcast e1 is equivalent to expr  :?> _, so the target type is the same as the initial type of the 

overall expression. For example: 

let obj1 = (1 :> obj)  

(obj1 :?> int)  

(obj1 :?> string)  

(downcast  obj1 : int)  

The initial type of the overall expression is ty . Expression expr  is checked using a fresh initial type ty e. After 

these checks: 

¶ The type ty e must not be a variable type. 

¶ A warning is given if ty e coerces to ty . 

¶ The type ty e must not be sealed. 

¶ If type ty  is sealed, or if ty  is a variable type, or if type ty e is not an interface type, then ty :> ty e is 

asserted. 

Dynamic coercions are a primitive elaborated form. 

6.8 Quoted Expressions  
An expression in one of these forms is a quoted expression: 

  <@ expr  @> 

 <@@ expr  @@> 

The former is a strongly typed quoted expression, and the latter is a weakly typed quoted expression. In both 

cases, the expression forms capture the enclosed expression in the form of a typed abstract syntax tree. 

The exact nodes that appear in the expression tree are determined by the elaborated form of expr  that type 

checking produces. 

For details about the nodes that may be encountered, see the documentation for the 

Microsoft.FSharp.Quotations .Expr  type in the F# core library. In particular, quotations may contain:  

¶ References to module-bound functions and values, and to type-bound members. For example: 

let id x = x  

let f (x  :  int) = <@ id 1 @>  

In this case the value appears in the expression tree as a node of kind 

Microsoft.FSharp.Quotations.Expr. Call . 

¶ A function, value, or member that is annotated with the ReflectedDefinition  attribute. If so, the 

expression tree that forms its definition may be retrieved dynamically using the 

Microsoft.FSharp.Quotations.Expr.TryGetReflectedDefinition .  

¶ References to defined values, such as the following: 

let f (x  :  int) = <@ x + 1 @>  

Such a value appears in the expression tree as a node of kind 

Microsoft.FSharp.Quotations.Expr.Value .  



86 
 

¶ References to generic type parameters or uses of constructs whose type involves a generic parameter, such 

as the following: 

let f (x:'T) = <@ (x, x) : 'T * 'T @>  

In this case, the actual value of the type parameter is implicitly substituted throughout the type annotations 

and types in the generated expression tree.  

In F# 2.0, the following limitations apply to quoted expressions:  

¶ Quotations may not use object expressions. 

¶ Quotations may not define expression-bound functions that are themselves inferred to be generic. Instead, 

expression-bound functions should either include type annotations to refer to a specific type or should be 

written by using module-bound functions or class-bound members. 

6.8.1 Strongly Typed Quoted Expression s  

A strongly typed quoted expression has the following form: 

<@ expr  @> 

For example: 

<@ 1 + 1 @> 

     

<@ (fun x - > x + 1) @>  

In the first example, the type of the expression is Microsoft.FSharp.Quotations.Expr <int> . In the second 

example, the type of the expression is Microsoft.FSharp.Quotations.Expr <int - > int> . 

When checked, the initial type of a strongly typed quoted expression <@ expr  @> is asserted to be of the form 

Microsof t.FSharp.Quotations.Expr< ty > for a fresh type ty . The expression expr  is checked with initial type 

ty .  

6.8.2 Weakly Typed  Quoted Expression s  

A weakly typed quoted expression  has the following form: 

<@@ expr  @@>  

Weakly typed quoted expressions are similar to strongly quoted expressions but omit any type annotation. For 

example: 

<@@ 1 + 1 @@> 

 

<@@ (fun x - > x + 1) @@>  

In both these examples, the type of the expression is Microsoft.FSharp.Quotations.Expr . 

When checked, the initial type of a weakly typed quoted expression <@@ expr  @@> is asserted to be of the form 

Microsoft.FSharp.Quotations.Expr . The expression expr  is checked with fresh initial type ty .  

6.8.3 Expression Splices 

Both strongly typed and weakly typed quotations may contain expression splices in the following forms: 

%expr  

%%expr  

These are respectively strongly typed and weakly typed splicing operators. 



87 
 

6.8.3.1 Strongly  Typed  Expression Splices 

An expression of the following form is a strongly typed expression splice: 

%expr  

For example, given 

open Microsoft.FSharp.Quotations   

let  f1 (v:Expr<int>) = <@ %v + 1 @>  

let expr  = f1 <@ 3 @>  

the identifier expr  evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree for <@ 3 @> 

replaces the splice in the corresponding expression tree node. 

A strongly typed expression splice may appear only in a quotation. Assuming that the splice expression %expr  is 

checked with initial type ty , the expression expr  is checked with initial type 

Microsoft.FSharp.Quotations.Expr <ty >. 

Note: The rules in this section apply to any use of the prefix operator 

Microsoft.FSharp.Core.ExtraTopLevelOperators.( ~%). Uses of this operator must be applied 

to an argument and may only appear in quoted expressions. 

6.8.3.2 Weakly Typed  Expression Splices 

An expression of the following form is a weakly typed expression splice: 

%%expr  

For example, given 

open Microsoft.FSharp.Quotations  

let f1 (v:Expr) = <@ % %v + 1 @>  

let tree = f1 <@ @ 3 @@> 

the identifier tree  evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree replaces the 

splice in the corresponding expression tree node. 

A weakly typed expression splice may appear only in a quotation. Assuming that the splice expression %%expr  is 

checked with initial type ty , then the expression expr  is checked with initial type 

Microsoft.FSharp.Quotations.Expr . No additional constraint is placed on ty .  

Additional type annotations are often required for successful use of this operator. 

Note: The rules in this section apply to any use of the prefix operator 

Microsoft.FSharp.Core.ExtraTopLevelOperators.( ~%%) , which is defined in the F# core 

library. Uses of this operator must be applied to an argument and may only occur in quoted 

expressions. 

6.9 Evaluation of Elaborated Forms  
At runtime, execution evaluates expressions to values. The evaluation semantics of each expression form are 

specified in the subsections that follow. 

6.9.1 Values and Execution Context  

The execution of elaborated F# expressions results in values. Values include:  

¶ Primitive constant values  

¶ The special value null  



88 
 

¶ References to object values in the global heap of object values  

¶ Values for value types, containing a value for each field in the value type 

¶ Pointers to mutable locations (including static mutable locations, mutable fields and array elements) 

 
Evaluation assumes the following evaluation context:  

¶ A global heap of object values. Each object value contains:  

¶ A runtime type and dispatch map 

¶ A set of fields with associated values 

¶ For array objects, an array of values in index order 

¶ For function objects, an expression which is the body of the function  

¶ An optional union case label, which is an identifier  

¶ A closure environment that assigns values to all variables that are referenced in the method bodies that 

are associated with the object 

¶ A global environment that maps runtime-type/name pairs to values.Each name identifies a static field in a 

type definition or a value in a module. 

¶ A local environment mapping names of variables to values. 

¶ A local stack of active exception handlers, made up of a stack of try/with and try/finally handlers. 

 
Evaluation may also raise an exception. In this case, the stack of active exception handlers is processed until the 

exception is handled, in which case additional expressions may be executed (for try/finally handlers), or an 

alternative expression may be evaluated (for try/with handlers), as described below. 

6.9.2 Parallel Execution  and Memory Model  

In a concurrent environment, evaluation may involve both multiple active computations (multiple concurrent and 

parallel threads of execution) and multiple pending computations (pending callbacks, such as those activated in 

response to an I/O event).  

If multiple active computations concurrently access mutable locations in the global environment or heap, the 

atomicity, read, and write guarantees of the underlying CLI implementation apply. The guarantees are related to 

the logical sizes and characteristics of values, which in turn depend on their type: 

¶ F# reference types are guaranteed to map to CLI reference types. In the CLI memory model, reference types 

have atomic reads and writes. 

¶ F# value types map to a corresponding CLI value type that has corresponding fields. Reads and writes of 

sizes less than or equal to one machine word are atomic. 

 
The VolatileField  attribute marks a mutable location as volatile in the compiled form of the code.  

Ordering of reads and writes from mutable locations may be adjusted according to the limitations specified by the 

CLI memory model. The following example shows situations in which changes to read and write order can occur, 

with annotations about the order of reads: 

type ClassContainingMutableData() =  

    let value = (1,  2)  

    let mutable mutableValue = (1,  2)  

    [<VolatileField>]  

    let mutable volatileMutableValue = (1,  2)  

    member x.ReadValues() =  

        // Two reads on an immutable value  

        let (a1,  b1) = value  

 



89 
 

        // One read on mutableValue, which may be duplicated according  

        // to ECMA CLI spec .  

        let (a2,  b2) = mutableValue  

 

        // One read on volatileMutableValue, which may not be duplicated .  

        let (a3,  b3) = volatileMutableValue  

 

        a1,  b1,  a2,  b2,  a3,  b3 

 

    member x.WriteValues() =  

        // One read on mutableValue, which may be duplicated according  

        // to ECMA CLI spec .  

        let (a2,  b2) = mutableValue  

 

        // One write on mutableValue.  

        mutableValue < -  (a2  + 1,  b2 + 1)  

 

        // One read on volatileMutableValue, which may not be duplicated .  

        let (a3,  b3) = volatileMutableValue  

 

        // One write on volatileMutableValue.  

        volatileMutableValue < -  (a3  + 1,  b3 + 1)  

 

let obj = ClassContainingMutableData()  

Async.Parallel [ async { return obj.WriteValues() } ;  

                 async { return obj.WriteValues() };  

                 async { return obj.ReadValues() };  

                 async { return obj.ReadValues() } ]  

6.9.3 Zero Values 

Some types have a zero value. The zero value is theñdefaultò value for the type in the CLI execution environment. 

The following types have the following zero values: 

¶ For reference types, the null  value. 

¶ For value types, the value with all fields set to the zero value for the type of the field. The zero value is also 

computed by the F# library function Unchecked.defaultof< ty >. 

6.9.4 Taking the A ddress of an Elaborated Expression  

When the F# compiler determines the elaborated forms of certain expressions, it must compute a ñreferenceò to 

an elaborated expression expr , written AddressOf(expr , mutation). The AddressOf operation is used internally 

within this specification to indicate the elaborated forms of address-of expressions, assignment expressions, and 

method and property calls on objects of variable and value types. 

The AddressOf operation is computed as follows: 

¶ If expr  has form path  where path  is a reference to a value with type byref< ty >, the elaborated form is 

&path .  

¶ If expr  has form expr a.field  where field  is a mutable, non-readonly CLI field, the elaborated form is 

&( AddressOf(expr a).field ) .  

¶ If expr  has form expr a. [ expr b] where the operation is an array lookup, the elaborated form is 

&( AddressOf(expr a). [ expr b] ) . 

¶ If expr  has any other form, the elaborated form is &v,where v is a fresh mutable local value that is initialized 

by adding let  v = expr  to the overall elaborated form for the entire assignment expression. This 

initialization is known as a defensive copy of an immutable value. If expr  is a struct, expr  is copied each 



90 
 

time the AddressOf operation is applied, which results in a different address each time. To keep the struct in 

place, the field that contains it should be marked as mutable.  

The AddressOf operation is computed with respect to mutation, which indicates whether the relevant elaborated 

form uses the resulting pointer to change the contents of memory. This assumption changes the errors and 

warnings reported. 

¶ If mutation is DefinitelyMutates , then an error is given if a defensive copy must be created.  

¶ If mutation is PossiblyMutates , then a warning is given if a defensive copy arises. 

 
An F# compiler can optionally upgrade Possibl yMutates  to DefinitelyMutates  for calls to property setters 

and methods named MoveNext and GetNextArg , which are the most common cases of struct-mutators in CLI 

library design. This is done by the F# 2.0 compiler. 

Note:In F# 2.0, the warning ñcopy due to possible mutation of value typeò is a level 4 warning and is 

not reported when using the default settings of the F# compiler. This is because the majority of 

value types in CLI libraries are immutable. This is warning number 52 in the F# 2.0 implementation. 

CLI libraries do not include metadata to indicate whether a particular value type is immutable. 

Unless a value is held in arrays or locations marked mutable, or a value type is known to be 

immutable to the F# compiler, F# inserts copies to ensure that inadvertent mutation does not occur.  

6.9.5 Evaluating Value References  

At runtime, an elaborated value reference v is evaluated by looking up the value of v in the local environment. 

6.9.6 Evaluating Function Applications  

At runtime, an elaborated application of a function f  e1 ... en is evaluated as follows:  

¶ The expressions f  and e1 ... en, are evaluated. 

¶ If f  evaluates to a function value with closure environment E, arguments v1 ... vm, and body expr , where m 

<= n, then E is extended by mapping v1 ... vm to the argument values for e1 ... em. The expression expr  is 

then evaluated in this extended environment and any remaining arguments applied. 

¶ If f  evaluates to a function value with more than n arguments, then a new function value is returned with an 

extended closure mapping n additional formal argument names to the argument values for e1 ... em. 

The result of calling the obj.GetType()  method on the resulting object is under-specified (see §6.9.24). 

6.9.7 Evaluating Method Applications  

At runtime an elaborated application of a method is evaluated as follows:  

¶ The elaborated form is e0. M( e1,é,en)  for an instance method or M( e1,é,en)  for a static method. 

¶ The (optional) e0 and e1,é,en are evaluated in order.  

¶  If e0 evaluates to null , a NullReferenceException  is raised. 

¶ If the method is declared abstract ðthat is, if it is a virtual dispatch slotðthen the body of the member is 

chosen according to the dispatch maps of the value of e0 (§14.8). 

¶ The formal parameters of the method are mapped to corresponding argument values. The body of the 

method member is evaluated in the resulting environment . 



91 
 

6.9.8 Evaluating Union Cases 

At runtime, an elaborated use of a union case Case( e1,é,en)  for a union type ty  is evaluated as follows: 

¶ The expressions e1,é,en are evaluated in order. 

¶ The result of evaluation is an object value with union case label Case and fields given by the values of 

e1,é,en.  

¶ If the type ty  uses null  as a representation (§5.4.8) and Case is the single union case without arguments, 

the generated value is null . 

¶ The runtime type of the object is either ty  or an internally generated type that is compatible with ty .  

6.9.9 Evaluating Field Lookups  

At runtime, an elaborated lookup of a CLI or F# fields is evaluated as follows: 

¶ The elaborated form is expr . F for an instance field or F for a static field. 

¶ The(optional) expr  is evaluated. 

¶ If expr  evaluates to null , a NullReferenceException  is raised.  

¶ The value of the field is read from either the global field table or the local field table associated with the 

object.  

6.9.10 Evaluating Array Expressions  

At runtime, an elaborated array expression [|  e1Ƙ ƛ ; en |] ty   is evaluated as follows: 

¶ Each expression e1 ƛ Ån is evaluated in order. 

¶ The result of evaluation is a new array of runtime type ty []  that contains the resulting values in order.  

6.9.11 Evaluating Record Expressions  

At runtime, an elaborated record construction {  field 1 = e1Ƙ ƛ ; field n = en } ty   is evaluated as follows: 

¶ Each expression e1 ƛ Ån is evaluated in order. 

¶ The result of evaluation is an object of type ty  with the given field values 

6.9.12 Evaluating Function Expressions  

At runtime, an elaborated function expression (fun v1 ƛ vn - > expr )  is evaluated as follows: 

¶ The expression evaluates to a function object with a closure that assigns values to all variables that are 

referenced in expr  and a function body that is expr . 

¶ The values in the closure are the current values of those variables in the execution environment.  

¶ The result of calling the obj.GetType()  method on the resulting object is under-specified (see §6.9.24). 

6.9.13 Evaluating Object Expressions  

At runtime, elaborated object expressions  

{ new ty 0 args - expr opt  object - members  
      interface ty 1 object - members1 
      ƛ 
      interface ty n object - membersn }  

is evaluated as follows: 



92 
 

¶ The expression evaluates to an object whose runtime type is compatible with all of the ty i  and which has the 

corresponding dispatch map (§14.8). If present, the base construction expression ty 0 ( args - expr )  is 

executed as the first step in the construction of the object.  

¶ The object is given a closure that assigns values to all variables that are referenced in expr .  

¶ The values in the closure are the current values of those variables in the execution environment.  

The result of calling the obj.GetType()  method on the resulting object is under-specified (see §6.9.24).  

6.9.14 Evaluating Definition  Expressions 

At runtime, each elaborated definition pat  = expr  is evaluated as follows:  

¶ The expression expr  is evaluated. 

¶ The expression is then matched against pat  to produce a value for each variable pattern (§7.2) in pat . 

¶ These mappings are added to the local environment. 

6.9.15 Evaluating Integer For Loops  

At runtime, an integer for loop for var  = expr 1 to expr 2 do expr 3 done is evaluated as follows: 

¶ Expressions expr 1 and expr 2 are evaluated once to values v1 and v2. 

¶ The expression expr 3 is evaluated repeatedly with the variable var  assigned successive values in the range 

of v1 up to v2.  

¶ If v1 is greater than v2, then expr 3 is never evaluated. 

6.9.16 Evaluating While Loops   

As runtime, while-loops while expr 1 do expr 2 done are evaluated as follows: 

¶ Expression expr 1 is evaluated to a value v1. 

¶ If v1 is true , expression expr 2 is evaluated, and the expression while expr 1 do expr 2 done is evaluated 

again.  

¶ If v1 is false , the loop terminates and the resulting value is null  (the representation of the only value of 

type unit ) 

6.9.17 Evaluating Static Coercion Expressions 

At runtime, elaborated static coercion expressions of the form expr  : > ty  are evaluated as follows: 

¶ Expression expr  is evaluated to a value v. 

¶ If the static type of e is a value type, and ty  is a reference type, v is boxed; that is, v is converted to an 

object on the heap with the same field assignments as the original value. The expression evaluates to a 

reference to this object. 

¶ Otherwise, the expression evaluates to v. 

6.9.18 Evaluating Dynamic Type -Test Expressions 

At runtime, elaborated dynamic type test expressions expr :? ty  are evaluated as follows: 

1. Expression expr  is evaluated to a value v.  



93 
 

2. If v is null , then: 

¶ If ty e uses null  as a representation (§5.4.8), the result is true . 

¶ Otherwise the expression evaluates to false . 

3. If v is not null  and has runtime type vty  which dynamically converts to ty (§5.4.10), the expression 

evaluates to true . However, if ty  is an enumeration type, the expression evaluates to true  if and only if ty  

is precisely vty . 

6.9.19 Evaluating Dynamic Coercion Expressions  

At runtime, elaborated dynamic coercion expressions expr :?> ty  are evaluated as follows: 

1. Expression expr  is evaluated to a value v.  

2. If v is null : 

¶ If ty e uses null  as a representation (§5.4.8), the result is the null  value.  

¶ Otherwise a NullReferenceException  is raised.  

3. If v is not null : 

¶ If v has dynamic type vty  which dynamically converts to ty (§5.4.10), the expression evaluates to the 

dynamic conversion of v to ty .  

o If vty  is a reference type and ty  is a value type, then v is unboxed; that is, v is converted from 

an object on the heap to a struct value with the same field assignments as the object. The 

expression evaluates to this value. 

o Otherwise, the expression evaluates to v. 

¶ Otherwise an InvalidC astException  is raised. 

Expressions of the form expr :?> ty  evaluate in the same way as the F# library function unbox<ty> ( expr ) . 

Note: Some F# typesðmost notably the option<_>  typeðuse null  as a representation for 

efficiency reasons (§5.4.8),. For these types, boxing and unboxing can lose type distinctions. For 

example, contrast the following two examples: 

> ( box([]:string list) :?> int list);;  
System.InvalidCastException ƛ 

> (box(None:string option) :?> int option);;  
val it : int option = None  

In the first case, the conversion from an empty list of strings to an empty list of integers (after first 

boxing) fails. In the second case, the conversion from a string option to an integer option (after first 

boxing) succeeds.  

6.9.20 Evaluating Sequential Execution Expressions  

At runtime, elaborated sequential expressions expr 1; expr 2 are evaluated as follows: 

¶ The expression expr 1 is evaluated for its side effects and the result is discarded. 

¶ The expression expr 2 is evaluated to a value v2 and the result of the overall expression is v2. 

6.9.21 Evaluating Try -with  Expressions 

At runtime, elaborated try-with expressions try expr 1 with rules  are evaluated as follows: 

¶ The expression expr 1 is evaluated to a value v1. 



94 
 

¶ If no exception occurs, the result is the value v1. 

¶ If an exception occurs, the pattern rules are executed against the resulting exception value.  

¶ If no rule matches, the exception is reraised.  

¶ If a rule pat - > expr 2 matches, the mapping pat = v 1 is added to the local environment, and 

expr 2 is evaluated. 

6.9.22 Evaluating Try -finally Expressions  

At runtime, elaborated try-finally expressions try expr 1 finally expr 2 are evaluated as follows: 

¶ The expression expr 1 is evaluated.  

¶ If the result of this evaluation is a value v , then expr 2 is evaluated.  

1) If this evaluation results in an exception, then the overall result is that exception. 

2) If this evaluation does not result in an exception, then the overall result is v. 

¶ If the result of this evaluation is an exception, then expr 2 is evaluated.  

3) If this evaluation results in an exception, then the overall result is that exception. 

4) If this evaluation does not result in an exception, then the original exception is re-raised. 

6.9.23 Evaluating AddressOf Expressions  

At runtime, an elaborated address-of expression is evaluated as follows. First, the expression has one of the 

following forms: 

¶ &path  where path  is a static field. 

¶ &( expr.field )   

¶ &( expr a. [ expr b] )  

¶ &v where v is a local mutable value. 

The expression evaluates to the address of the referenced local mutable value, mutable field, or mutable static 

field. 

Note: The underlying CIL execution machinery that F# uses supports covariant arrays, as 

evidenced by the fact that the type string[]  dynamically converts to obj[]  (§5.4.10). Although 

this feature is rarely used in F#, its existence means that array assignments and taking the address 

of array elements may fail at runtime with a System.ArrayTypeMismatchException  if the runtime 

type of the target array does not match the runtime type of the element being assigned. For 

example, the following code fails at runtime: 

let F(x: byref<obj>) = ()  
 
let a = Array.zeroCreate<obj> 10  
let b = Array.zeroCreate<string> 10  
F(&a.[0])  
let bb = ((b :> obj) :?> obj[])  
// The next line raises a System.ArrayTypeMismatchException exception .  
F(&bb.[1])   

6.9.24 Values with Underspecified Object Identity  and Type Identity   

The CLI and F# support operations that detect object identityðthat is, whether two object references refer to the 

same ñphysicalò object. For example, System.Object.ReferenceEquals(obj 1,  obj 2)  returns true  if the two 

object references refer to the same object. Similarly, 

System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode()  returns a hash code that is partly 



95 
 

based on physical object identity, and the AddHandler  and RemoveHandler operations (which register and 

unregister event handlers) are based on the object identity of delegate values. 

The results of these operations are underspecified when used with values of the following F# types: 

¶ Function types 

¶ Tuple types 

¶ Immutable record types 

¶ Union types 

¶ Boxed immutable value types 

 
For two values of such types, the results of System.Object.ReferenceEquals  and 

System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode  are underspecified; however, the 

operations terminate and do not raise exceptions. An implementation of F# is not required to define the results of 

these operations for values of these types. 

For function values and objects that are returned by object expressions, the results of the following operations 

are underspecified in the same way: 

¶ Object.GetHashCode()  

¶ Object.GetType()  

For union types the results of the following operations are underspecified in the same way: 

¶ Object.GetType()  





 Patterns  
Patterns are used to perform simultaneous case analysis and decomposition on values together with the match, 

try...with , function , fun , and let  expression and declaration constructs. Rules are attempted in order from 

top to bottom and left to right. The syntactic forms of patterns are shown in the subsequent table.  

rule  :=  
    pat  pattern - guard opt  - > expr  --  pattern, optional guard and action  
 
pattern - guard := when expr  
 
pat  :=  
    const    --  constant pattern  
    long - ident  pat - paramopt  pat opt  --  named pattern  
    _    --  wildcard pattern  
    pat  as ident   --  "as" pattern  
    pat  '|' pat   --  disjunctive  pattern  
    pat  '&' pat   --  conjunctive  pattern  
    pat  :: pat    --  "cons" pattern  
    pat  : type    --  pattern with type constraint  
    pat ,..., pat   --  tuple pattern  
    ( pat )    --  parenthesized pattern  
    list - pat    --  list pattern  
    array - pat    --  array pattern  
    record - pat    --  record pattern  
    :? atomic - t ype  --  dynamic type test pattern  
    :? atomic - t ype as ident  --  dynamic type test pat tern  
    null    --  null - test pattern  
    attributes  pat   --  pattern with attributes  
 
list - pat :=    
    [ ]  
    [ pat  ; ... ; pat ]  
 
array - pat :=      
    [|  |]  
    [ |  pat  ; ... ; pat | ]  
 
record - pat :=  
    { field - pat  ; ... ; field - pat }  
 
atomic - pat :=  
    pat  :      one of   
          const   long - ident   list - pat   record - pat   array - pat   ( pat )    
          :? atomic - type   
          null   _  
 
field - pat  := long - ident  = pat  
pat - param :=  
    | const   
    | long - ident   
    | [ pat - param ; ... ; pat - param ]  
    | ( pat - param, ..., pat - param )  
    | long - ident  pat - param  
    | pat - param : type  
    | <@ expr  @> 
    | <@@ expr  @@> 
    | null  
 
pats  :=  pat  , ... , pat   
field - pats  := field - pat  ; ... ; field - pat   



98 
 

rules  := '|' opt  rule  '|' ... '|' rule         

Patterns are elaborated to expressions through a process called pattern match compilation. This reduces pattern 

matching to decision trees which operate on an input value, called the pattern input. The decision tree is made up 

of the following constructs: 

¶ Conditionals on integers and other constants  

¶ Switches on union cases  

¶ Conditionals on runtime types 

¶ Null tests 

¶ Value definitions 

¶ An array of pattern-match targets referred to by index 

7.1 Simple Constant Patterns  
The pattern const  is a constant pattern which matches values equal to the given constant. For example: 

let rotate3 x =  

   match x with   

   | 0 - > "two"  

   | 1 - > "zero"  

   | 2 - > "one"  

   | _ - > failwith "rotate3"  

In this example, the constant patterns are 0, 1, and 2. Any constant listed in §6.3.1 may be used as a constant 

pattern except for integer literals that have the suffixes Q, R, Z, I , N, G. 

Simple constant patterns have the corresponding simple type. Such patterns elaborate to a call to the F# 

structural equality function Microsoft.FSharp.Core.Operators.(=)  with the pattern input and the constant as 

arguments. The match succeeds if this call returns true ; otherwise, the match fails. 

Note: The use of Microsoft.FSharp.Core.Operators.(=)  means that CLI floating-point equality 

is used to match floating-point values, and CLI ordinal string equality is used to match strings.  

7.2 Named Patterns  
Patterns in the following forms are named patterns: 

Long- ident  

Long- ident  pat  

Long- ident  pat - params pat  

If long - ident  is a single identifier that does not begin with an uppercase character, it is interpreted as a variable 

pattern. During checking, the variable is assigned the same value and type as the pattern input. 

If long - ident  is more than one-character long or begins with an uppercase character (that is, if 

System.Char.IsUpper Invariant  is true  and System.Char.IsLower Invariant  is false  on the first 

character), it is resolved by using Name Resolution in Patterns (§14.1.6). This algorithm produces one of the 

following: 

¶ A union case  

¶ An exception label 



99 
 

¶ An active pattern case name 

¶ A literal value 

 
Otherwise, long - ident  must be a single uppercase identifier ident . In this case, pat  is a variable pattern. An 

F# implementation may optionally generate a warning if the identifier is uppercase. Such a warning is 

recommended if the length of the identifier is greater than two. 

After name resolution, the subsequent treatment of the named pattern is described in the following sections. 

7.2.1 Union Case Patterns  

If l ong- ident  from §7.2 resolves to a union case, the pattern is a union case pattern. If long - ident  resolves to 

a union case Case, then long - ident  and long - ident  pat  are patterns that match pattern inputs that have 

union case label Case. The long - ident  form is used if the corresponding case takes no arguments, and the 

long - ident  pat  form is used if it takes arguments.  

At runtime, if the pattern input is an object that has the corresponding union case label, the data values carried by 

the union are matched against the given argument patterns. 

For example: 

type Data =  

    | Kind1 of int * int  

    | Kind2 of string * string  

 

let data = Kind1(3, 2)  

 

let result =  

    match data with  

    | Kind1  (a, b) - > a + b  

    | Kind2  (s1, s2) - > s1.Length + s2.Length  

In this case, result is given the value 5. 

7.2.2 Literal P atterns  

If l ong- ident  from §7.2 resolves to a literal value, the pattern is a literal pattern. The pattern is equivalent to the 

corresponding constant pattern.  

In the following example, the Literal  attribute (§10.2.2) is first used to define two literals, and these literals are 

used as identifiers in the match expression: 

[<Literal>]  

let Case1 = 1  

 

[<Literal >]  

let Case2 = 100  

 

let result =  

    match 1 00 with  

    | Case1 - > "Case1"  

    | Case2 - > "Case 2"  

    | _ - > "Some other case"  

In this case, result  is given the value "Case2ò. 



100 
 

7.2.3 Active Patterns  

If long - ident  from §7.2 resolves to an active pattern case name CaseNamei  then the pattern is an active pattern. 

The rules for name resolution in patterns (§14.1.6) ensure that CaseNamei  is associated with an active pattern 

function f  in one of the following forms: 

¶ (| CaseName|)  inp   

Single case. The function accepts one argument (the value being matched) and can return any type. 

¶ (| CaseName| _| )  inp  

Partial. The function accepts one argument (the value being matched) and must return a value of type 

Microsoft.FSharp.Core. option<_>   

¶ (| CaseName1| ...| CaseNamen| )  inp  

Multi-case. The function accepts one argument (the value being matched), and must return a value of type 

Microsoft.FSharp.Core. Choice<_,...,_>  based on the number of case names. In F# 2.0, the limitation 

n Ò 7 applies. 

¶ (| CaseName|)  arg 1 ... arg n inp  

Single case with parameters. The function accepts n+1 arguments, where the last argument (inp ) is the 

value to match, and can return any type.  

¶ (| CaseName| _| )  arg 1 ... arg n inp  

Partial with parameters. The function accepts n+1 arguments, where the last argument (inp ) is the value to 

match, and must return a value of type Microsoft.FSharp.Core. option<_> .  

Other active pattern functions are not permitted. In particular, multi-case, partial functions such as the following 

are not permitted: 

(|CaseName1| ...  |CaseNamen|_|)   

When an active pattern function takes arguments, the pat - params are interpreted as expressions that are 

passed as arguments to the active pattern function. The pat - params are converted to the syntactically identical 

corresponding expression forms and are passed as arguments to the active pattern function f .  

At runtime, the function f  is applied to the pattern input, along with any parameters. The pattern matches if the 

active pattern function returns v, Choice kOfN v , or Some v, respectively, when applied to the pattern input. If the 

pattern argument pat  is present, it is then matched against v. 

The following example shows how to define and use a partial active pattern function: 

let (|Positive|_|) inp = if inp > 0 then Some(inp) else None  

let (|Negative|_|) inp = if inp < 0 then Some( - inp) else None  

 

match 3 with  

| Positive n - > printfn "positive, n = %d" n  

| Negative n - > printfn "negative, n = %d" n  

| _          - > printfn "zero"  

The following example shows how to define and use a multi-case active pattern function: 

let (|A|B|C|) inp = if inp < 0 then A elif inp = 0 then B else C  

 

match 3 with  

| A - > "negative"  

| B - > "zero"  

| C - > "positive"  

 

The following example shows how to define and use a parameterized active pattern function: 



101 
 

let (|MultipleOf|_|) n inp = if inp%n = 0 then Some (inp  /  n) else None  

 

match 16 with  

| MultipleOf 4 n - > printfn "x = 4*%d" n  

| _ - > printfn "not a multiple of 4"  

 
An active pattern function is executed only if a left-to-right, top-to-bottom reading of the entire pattern indicates 

that execution is required. For example, consider the following active patterns:  

let (|A|_|) x =  

    if x  = 2 then failwith "x is two"  

    elif x  = 1 then Some()  

    else None  

 

let (|B|_|) x =  

    if x=3 then failwith "x is three" else None  

 

let (|C|) x = failwith "got to C"  

 

let f x =  

    match x with  

    | 0 - > 0  

    | A - > 1  

    | B - > 2  

    | C - > 3  

    | _ - > 4  

These patterns evaluate as follows: 

f 0 // 0  

f 1  // 1  

f 2 // failwit h "x is two"  

f 3 // failwith "x is three"  

f 4 // failwith "got to C"  

An active pattern function may be executed multiple times against the same pattern input during resolution of a 

single overall pattern match. The precise number of times that the active pattern function is executed against a 

particular pattern input is implementation-dependent. 

7.3 ȰAsȱ Patterns  
An ñasò pattern is of the following form: 

pat  as ident  

The ñasò pattern defines ident  to be equal to the pattern input and matches the pattern input against pat . For 

example: 

let t1 = (1,  2)  

let (x,  y) as t2 = t1  

printfn "%d - %d- %A" x y t2  // 1 - 2- (1,  2)  

This example binds the identifiers x, y, and t1  to the values 1, 2, and (1,2) , respectively.  



102 
 

7.4 Wildcard Patterns  
The pattern _ is a wildcard pattern and matches any input. For example:  

let categorize x =  

    match x with  

    | 1 - > 0  

    | 0 - > 1  

    | _ - > 0  

In the example, if x is 0, the match returns 1. If x has any other value, the match returns 0. 

7.5 Disjunctive  Patterns  
A disjunctive pattern matches an input value against one or the other of two patterns:  

pat  | pat  

At runtime, the patterm input is matched against the first pattern. If that fails, the pattern input is matched against 

the second pattern. Both patterns must bind the same set of variables with the same types. For example: 

type Date = Date of int * int * int  

 

let isYearLimit date =  

    match date with  

    | (Date  (year,  1,  1) | Date (year,  12,  31)) - > Some year  

    | _ - > None 

 

let result = isYearLimit (Date (2010,12,31))  

In this example, result  is given the value true , because the pattern input matches the second pattern. 

7.6 Conjuncti ve Patterns  
A conjunctive pattern matches the pattern input against two patterns.  

pat 1 & pat 2 

For example: 

let (|MultipleOf|_|) n inp = if inp%n = 0 then Some (inp  /  n) else None  

 

let result =  

    match 56 with  

    | MultipleOf 4 m & MultipleOf 7 n - > m + n  

    | _ - > false   

In this example, result  is given the value 22 (= 16 + 8), because the pattern input match matches both patterns. 

7.7  List Patterns  
The pattern pat  :: pat  is a union case pattern that matches the ñconsò union case of F# list values.  

The pattern []  is a union case pattern that matches the ñnilò union case of F# list values. 

The pattern [ pat 1 ; ... ; pat n]  is shorthand for a series of ::  and empty list patterns pat 1 ::  ƛ ƙƙ pat n :: 

[] .  



103 
 

For example: 

let rec count x =  

    match x with  

    | [] - > 0 

    | h :: t - > h + count t  

 

let result 1 = count [1;2;3]   

let result2 =  

    match [1;2;3]  with  

    | [a;b;c] - > a + b + c  

    | _ - > 0  

In this example, both result 1 and result2  are given the value 6. 

7.8 Type-Annotated Patterns  
A type-annotated pattern specifies the type of the value to match to a pattern.  

pat  : type  

For example: 

let rec sum xs =  

    match x s with  

    | [] - > 0  

    | (h : int) :: t - > h + sum t  

In this example, the initial type of h is asserted to be equal to int  before the pattern h is checked. Through type 

inference, this in turn implies that xs  and t  have static type int list , and sum has static type 

int list - > int .  

7.9 Dynamic Type-Test Patterns  
Dynamic type-test patterns have the following two forms: 

:? type  

:? type  as ident  

A dynamic type-test pattern matches any value whose runtime type is type or a subtype of type. For example:  

let message (x : System. Exception) =  

    match x with  

    | :? System.OperationCanceledException - > "cancelled"  

    | :? System.ArgumentException - > "invalid argumen t"  

    | _ - > "unknown error"  

If the type-test pattern is of the form :? type  as ident , then the value is coerced to the given type and ident  is 

bound to the result. For example: 

let findLength (x : obj) =  

    match x with  

    | :? string as s - > s.Length  

    | _ - > 0  

In the example, the identifier s is bound to the value x with type string .  

If the pattern input has type ty in , pattern checking uses the same conditions as both a dynamic type-test 

expression e :? t ype and a dynamic coercion expression e :?> t ype where e has type ty in .  An error occurs 



104 
 

if t ype cannot be statically determined to be a subtype of the type of the pattern input. A warning occurs if the 

type test will always succeed based on type  and the static type of the pattern input. 

A warning is issued if an expression contains a redundant dynamic type-test pattern, after any coercion is 

applied. For example: 

match box "3" with  

| :?  string - > 1  

| :? string - > 1  // a warning is reported that this rule is " never matched "  

| _ - > 2  

 

match box "3" with  

| :? System.IComparable - > 1  

| :? string - > 1  // a warning is reported that this rule is " never matched "  

| _ - > 2  

At runtime, a dynamic type-test pattern succeeds if and only if the corresponding dynamic type-test expression 

e :?  ty  would return true  where e is the pattern input. The value of the pattern is bound to the results of a 

dynamic coercion expression e :?> ty . 

7.10 Record Patterns   
The following is a record pattern: 

{  long - ident 1 = pat 1; ... ; long - ident n = pat n}  

For example:  

type Data = { Header:string; Size: int; Names: str ing list }  

 

let totalSize data =  

    match data with  

    | { Header  = "TCP"; Size  = size;  Names = names } - > size + names.Length * 12  

    | { Header  = "UDP"; Size  = size } - > size  

    | _ - > failwith "unknown header"  

The long - ident i  are resolved in the same way as field labels for record expressions and must together identify 

a single, unique F# record type. Not all record fields for the type need to be specified in the pattern. 

7.11 Arr ay Patterns  
An array pattern matches an array of a partciular length:  

[| pat  ; ... ; pat |]  

For example:  

let checkPackets data =  

    match data with  

    | [| "HeaderA"; data1; data2 |] - > (data1,  data2)  

    | [| "HeaderB"; data2; data1 |] - > (data1,  data2)  

    | _ - > failwith "unknown packet"  



105 
 

7.12 Null Patterns  
The null pattern null  matches values that are represented by the CLI value null . For example:  

let path =  

    match System.Environment.GetEnvironmentVariable("PATH") with  

    | null - > failwith "no path set!"  

    | res - > res  

Most F# types do not use null  as a representation; consequently,  the null pattern is generally used to check 

values passed in by CLI method calls and properties. For a list of F# types that use null  as a representation, see 

§5.4.8. 

7.13 Guarded Pattern Rules  
Guarded pattern rules have the following form:  

pat  when expr   

For example:  

let categorize x =  

    match x with  

    | _ when x < 0 - > - 1 

    | _ when x < 0 - > 1  

    | _ - > 0  

The guards on a rule are executed only after the match value matches the corresponding pattern. For example, 

the following evaluates to 2 with no output. 

match (1,  2) with  

| (3,  x) when (printfn "not printed"; true) - > 0  

| (_,  y) - > y  





 Type Definitions  
Type definitions define new named types. The grammar of type definitions is shown below. 

type - defn  :=   
    abbrev - type - defn  
    record - type - defn  
    union - type - defn  
    anon- type - defn  
    class - type - defn  
    struct - type - defn  
    interface - type - defn  
    enum- type - defn  
    delegate - type - defn             
    type - extension  
 
type - name :=  
    attributes opt  access opt  ident  typar - defns opt  
 
abbrev - type - defn  :=  
    type - name = type   
 
union - type - defn :=  
    type - name '=' union - type - cases type - extension - elements opt  
 
union - type - cases    :=   
    '|' opt  union - type - case  '|' ... '|' union - type - case       
 
union - type - case  :=  
    attributes opt  union - type - case- data  
 
union - type - case- data  :=  
    ident    --  null  union case  
    ident  of type  * ... * type  --  n- ary union case  
    ident  : uncurried - sig  --  n- ary union case  
 
record - type - defn :=  
    type - name = '{' record - fields '}'  type - extension - elements opt  
 
record - fields :=   
    record - field  ; ... ; record - field  ; opt  
 
record - field  :=    
    attributes opt  mutable opt  access opt  ident  : type  
 
anon- type - defn  :=  
    type - name primary - constr - args opt  object - val opt  '=' begin class - type - body end 
 
class - type - defn  :=  
    type - name primary - constr - args opt  object - val opt  '=' class class - type - body end 
 
as- defn  := as ident  
 
class - type - body :=  
    class - inherits - decl opt  class - function - or - value - defn sopt  type - defn - elements opt  
 
class - inherits - decl  := inherit type  expr opt  
 
class - function - or - value - defn  :=  
    attributes opt  static opt  let rec opt  function - or - value - defn s 
    attributes opt  static opt  do expr     
 



108 
 

struct - type - defn  :=  
    type - name primary - constr - args opt  as- defn opt  '=' struct struct - type - body end 
 
struct - type - body := type - defn - elements  
 
interface - type - defn  :=  
    type - name '=' interface interface - type - body end 
 
interface - type - body := type - defn - elements  
 
exception - defn  :=  
    attributes opt  exception union - type - case- data  --  exception definition  
    attributes opt  exception ident  = long - ident  --  exception abbreviation  
 
enum- type - defn :=  
    type - name ' =' enum- type - cases  
 
enum- type - cases  =  
    '|' opt  enum- type - case  '|' ... '|' enum- type - case       
 
enum- type - case  :=  
    ident  '=' const  --  enum constant definition  
 
delegate - type - defn :=  
    type - name ' =' delegate - sig  
 
delegate - sig  :=  
    delegate of uncurried - sig  --  CLI delegate definiti on 
 
type - extension  :=  
    type - name type - extension - elements  
 
type - extension - elements  := with  type - defn - elements  end 
 
type - defn - element  :=  
    member- defn  
    interface - impl  
    interface - spec 
 
type - defn - elements : =  type - defn - element ... type - defn - element    
 
primary - constr - args :=   
    attributes opt  access opt  ( simple - pat, ... , simple - pat )  

 

simple - pat :=  
    | ident  
    | simple - pat : type  

 
additional - constr - defn  :=  
    attributes opt  access opt  new pat  as- defn  = additional - constr - expr   
 
additional - constr - expr  :=  
    stmt  ';' additional - constr - expr  --  sequence construction (after)  
    additional - constr - expr  then expr  --  sequence construction (before)  
    if expr  then additional - constr - expr  else  additional - constr - expr   
    let function - or - value - defn  in  additional - constr - expr   
    additional - constr - init - expr  
 
additional - constr - init - expr  :=  
    '{' class - inherits - decl  field - initializer s '}'  --  explicit construction  
    new type  expr     --  delegated construction  
 
member- defn  :=  
    attributes opt  static opt  member access opt  method- or - prop - defn    --  concrete member  



109 
 

    attributes opt  abstract memberopt  access opt  member- sig  --  abstract member  
    attributes opt  override access opt  method- or - prop - defn    --  override member  
    attributes opt  default access opt  method- or - prop - defn    --  override member  
    attributes opt  static opt  val mutable opt  access opt  ident  : type    --  value member  
    additional - constr - defn  --  additional constructor  
 
method- or - prop - defn  :=  
    ident. opt  function - defn        --  method definition  
    ident. opt  value - defn         --  property definition  
    ident. opt  ident  with function - or - value - defn s  --  property definition via 
get/set methods  
 
member- sig  :=  
    ident typar - defns opt  :  curried - sig   --  method or  property  signature  
    ident typar - defns opt  :  curried - sig  with get  --  property signature  
    ident typar - defns opt  :  curried - sig  with set  --  property signature  
    ident typar - defns opt  :  curried - sig  with get,set  --  property signature  
    ident typar - defns opt  :  curried - sig  with set,get  --  property signature  
 
curried - sig :=  
    args - spec - > ... - > args - spec - > type  
 
uncurried - sig :=   
    args - spec - > type  
 
args - spec :=   
    arg - spec * ... * arg - spec  
 
arg - spec :=   
    attributes opt  arg - name- specopt  type  
 
arg - name- spec :=  
    ?opt  ident :  
 
interface - spec  :=  
    interface type   

For example: 

type int = System.Int32  

type Color = Red | Green | Blue  

type Map<'T> = { entries: 'T[] }  

Type definitions can be declared in: 

¶ Module definitions  

¶ Namespace declaration groups  

F# supports the following kinds of type definitions: 

¶ Type abbreviations (§8.3) 

¶ Record type definitions (§8.4) 

¶ Union type definitions (§8.5)  

¶ Class type definitions (§8.6)  

¶ Interface type definitions (§8.7)  

¶ Struct type definitions (§8.8) 

¶ Enum type definitions (§8.9)  

¶ Delegate type definitions (§8.10)  

¶ Exception type definitions (§8.11)  



110 
 

¶ Type extension definitions (§8.12)  

¶ Measure type definitions (§9.4) 

With the exception of type abbreviations and type extension definitions, type definitions define fresh, named 

types that are distinct from other types.  

A type definition group defines several type definitions or extensions simultaneously: 

type ... and ...  

For example: 

type RowVector(entries: seq<int>) =  

    let entries = Seq.toArray entries  

    member x.Length = entries.Length  

    member x.Permute = ColumnVector(entries)  

 

and ColumnVector(entries: seq<int>) =  

    let entries = Seq.toArray entries  

    member x.Length = entries.Length  

    member x.Permute = RowVector(entries)  

A type definition group can include any type definitions except for exception type definitions and module 

definitions. 

Most forms of type definitions may contain both static elements and instance elements. Static elements are 

accessed by using the type definition. Within a static  definition, only the static  elements are in scope. Most 

forms of type definitions may contain members (§8.13). 

Custom attributes may be placed immediately before a type definition group, in which case they apply to the first 

type definition, or immediately before the name of the type definition: 

[<Obsolete>] type X1() = class end  

 

type [<Obsolete>] X2() = class end  

and [<Obsolete>] Y2() = class end  

8.1 Type Definition Group Checking and Elaboration  
F# checks type definition groups by determining the basic shape of the definitions and then filling in the details. In 

overview, a type definition group is checked as follows: 

1. For each type definition: 

¶ Determine the generic arguments, accessibility and kind of the type definition 

¶ Determine whether the type definition supports equality and/or comparison 

¶ Elaborate the explicit constraints for the generic parameters. 

2. For each type definition: 

¶ Establish type abbreviations 

¶ Determine the base types and implemented interfaces of each new type definition 

¶ Detect any cyclic abbreviations  

¶ Verify the consistency of types in fields, union cases, and base types. 

3. For each type definition: 

¶ Determine the union cases, fields, and abstract members (§8.14) of each new type definition 



111 
 

¶ Check the union cases, fields, and abstract members themselves, as described in the corresponding 

sections of this chapter. 

4. For each member, add items that represent the members to the environment as a recursive group.  

5. Check the members, function, and value definitions in order and apply incremental generalization. 

 
In the context in which type definitions are checked, the type definition itself is in scope, as are all members and 

other accessible functionality of the type. This context enables recursive references to the accessible static 

content of a type. It also enables recursive references to the accessible properties of any object that has the 

same type as the type definition or a related type. 

In more detail, given an initial environment env, a type definition group is checked as described in the following 

paragraphs. 

First, check the individual type definitions. For each type definition:  

1. Determine the number, names, and sorts of generic arguments of the type definition. 

¶ For each generic argument, if a Measure attribute is present, mark the generic argument as a measure 

parameter. The generic arguments are initially inference parameters, and additional constraints may be 

inferred for these parameters. 

¶ For each type definition T, the subsequent steps use an environment envT that is produced by adding 

the type definitions themselves and the generic arguments for T to env. 

2. Determine the accessibility of the type definition. 

3. Determine and check the basic kind of the type definition, using Type Kind Inference if necessary (§8.2). 

4. Mark the type definition as a measure type definition if a Measure attribute is present. 

5. If the type definition is generic, infer whether the type definition supports equality and/or comparison.  

6.  Elaborate and add the explicit constraints for the generic parameters of the type definition, and then 

generalize the generic parameters. Inference of additional constraints is not permitted.  

7. If the type definition is a type abbreviation, elaborate and establish the type being abbreviated.  

8. Check and elaborate any base types and implemented interfaces. 

9. If the type definition is a type abbreviation, check that the type abbreviation is not cyclic.  

10. Check whether the type definition has a single, zero-argument constructor, and hence forms a type that 

satisfies the default constructor constraint. 

11. Recheck the following to ensure that constraints are consist: 

¶ The type being abbreviated, if any. 

¶ The explicit constraints for any generic parameters, if any. 

¶ The types and constraints occurring in the base types and implemented interfaces, if any. 

12. Determine the union cases, fields, and abstract members, if any, of the type definition. Check and elaborate 

the types that the union cases, fields, and abstract members include.  

13. Make additional checks as defined elsewhere in this chapter. For example, check that the AbstractClass  

attribute does not appear on a union type. 

14. For each type definition that is a struct, class, or interface, check that the inheritance graph and the struct-

inclusion graph are not cyclic. This check ensures that a struct does not contain itself and that a class or 

interface does not inherit from itself. This check includes the following steps: 

a) Create a graph with one node for each type definition. 



112 
 

b) Close the graph under edges.  

¶ (T, base-type-definition) 

¶ (T, interface-type-definition) 

¶ (T1, T2) where T1 is a struct and T2 is a type that would store a value of type T1 <é> for some 

instantiation. Here ñX storing Yò means that X is Y or is a struct type with an instance field that 

stores Y. 

c) Check for cycles. 

The special case of a struct S<typars > storing a static field of type S<typars > is allowed. 

15. Collectively add the elaborated member items that represent the members for all new type definitions to the 

environment as a recursive group (§8.13), excluding interface implementation members. 

16. If the type definition has a primary constructor, create a member item to represent the primary constructor. 

 
After these steps are complete for each type definition, check the members. For each member: 

1. If the member is in a generic type, create a copy of the type parameters for the generic type and add the 

copy to the environment for that member. 

2. If the member has explicit type parameters, elaborate these type parameters and any explicit constraints. 

3. If the member is an override, default, or interface implementation member, apply dispatch-slot inference. 

4. If the member has syntactic parameters, assign an initial type to the elaborated member item based on the 

patterns that specify arguments for the members. 

5. If the member is an instance member, assign a type to the instance variable. 

 
Finally, check the function, value, and member definitions of each new type definition in order as a recursive 

group. 

8.2 Type Kind Inference  
A type that is specified in one of the following ways has an anonymous type kind: 

¶ By using begin  and end on the right-hand side of the = token.  

¶ In lightweight syntax, with an implicit begin /end.  

F# infers the kind of an anonymous type by applying the following rules, in order: 

1. If the type has a Class  attribute, Interfac e attribute, or Struct  attribute, this attribute identifies the kind of 

the type.  

2. If the type has any concrete elements, the type is a class. Concrete elements are primary constructors, 

additional object constructors, function definitions, value definitions, non-abstract members, and any 

inherit  declarations that have arguments. 

3. Otherwise, the type is an interface type. 

 
For example: 

// This is implicitly an interface  

type IName =  

    abstract Name : string  

 

// This is implicitly a class, because it has a constructor  



113 
 

type ConstantName(n:string) =  

    member x.Name = n  

 

// This is implicitly a class, because it has a constructor  

type AbstractName(n:string) =  

    abstract Name : string  

    default x.Name = "<no - name>" 

If a type is not an anonymous type, any use of the Class  attribute, Interface  attribute, or Struct  attribute must 

match the class /end, interface /end, and struct /end tokens, if such tokens are present. These attributes 

cannot be used with other kinds of type definitions such as type abbreviations, record, union, or enum types.  

8.3 Type Abbreviations  
Type abbreviations define new names for other types. For example: 

type PairOfInt = int * int  

Type abbreviations are expanded and erased during compilation and do not appear in the elaborated form of F# 

declarations, nor can they be referred to or accessed at runtime.  

The process of repeatedly eliminating type abbreviations in favor of their equivalent types must not result in an 

infinite type derivation. For example, the following are not valid type definitions: 

type X = option<X > 

 

type Identity<'T> = 'T  

and Y = Identity<Y>  

The constraints on a type abbreviation must satisfy any constraints that the abbreviated type requires.  

For example, assuming the following declarations: 

type IA =  

    abstract AbstractMember : int - > int  

 

type IB =  

    abstract AbstractMember : int - > int  

 

type C<'T when 'T :> IB>() =  

    static member StaticMember(x  :  'a) = x.AbstractMember(1)  

the following is permitted: 

type D<'T when 'T :> IB> = C<'T>  

whereas the following is not permitted: 

type E<'T> = C<'T>  // invalid: missing constraint  

 
Type abbreviations can define additional constraints, so the following is permitted: 

type F<'T when 'T :> IA and 'T :> IB> = C<'T>  

The right side of a type abbreviation must use all the declared type variables that appear on the left side. For this 

purpose, the order of type variables that are used on the right-hand side of a type definition is determined by their 

left-to-right occurrence in the type.  

For example, the following is not a valid type abbreviation.  

type Drop<'T,'U> = 'T * 'T // invalid: dropped type variable  



114 
 

Note: This restriction simplifies the process of guaranteeing a stable and consistent compilation to 

generic CLI code.  

Flexible type constraints #type  may not be used on the right side of a type abbreviation, because they expand to 

a type variable that has not been named in the type arguments of the type abbreviation. For example, the 

following type is disallowed:  

type BadType = #Exception - > int  // disallowed  

Type abbreviations may be declared internal  or private .  

Note: Private type abbreviations are still, for all purposes, considered equivalent to the abbreviated 

types. 

8.4 Record Type Definition s 
A record type definition introduces a type in which all the inputs that are used to construct a value are accessible 

as properties on values of the type. For example: 

type R1 =  

    { x : int;  

      y : int }  

    member this.Sum = this.x + this.y  

In this example, the integers x and y can be accessed as properties on values of type R1.  

Record fields may be marked mutable. For example: 

type R2 =  

    { mutable x : int;  

      mutable y : int }  

    member this.Move(dx,dy) =  

        this.x < -  this.x + dx  

        this.y < -  this.y + dy  

The mutable  attribute on x and y makes the assignments valid. 

Record types are implicitly sealed and may not be given the Sealed  attribute. Record types may not be given the 

AbstractClass  attribute.  

Record types are implicitly marked serializable unless the AutoSerializable(false)  attribute is used.  

8.4.1 Members in Record Types  

Record types may declare members (§8.13), overrides, and interface implementations. Like all types with 

overrides and interface implementations, they are subject to Dispatch Slot Checking (§14.8). 

8.4.2 Name Resolution and Record Field Labels  

For a record type, the record field labels field 1 ... field N are added to the FieldLabels table of the current name 

resolution environmentunless the record type has the RequireQualifiedAccess  attribute. 

Record field labels in the FieldLabels table play a special role in Name Resolution for Members (§14.1): an 

expressionôs type may be inferred from a record label. For example: 

type R = { dx : int; dy: int }  

let f x = x.dx // x is inferred to have type R  

In this example, the lookup .dx  is resolved to be a field lookup. 



115 
 

8.4.3 Structural Hashing, Equality , and Comparison for Record Types  

Record types implicitly implement the following interfaces and dispatch slots unless they are explicitly 

implemented as part of the definition of the record type:  

interface System.Collections.IStructuralEquatable  
interface System.Collections.IStructuralComparable  
interface System.IComparable  
overr ide GetHashCode : unit - > int  
override Equals : obj - > bool  

The implicit implementations of these interfaces and overrides are described in §8.15. 

8.4.4 With/End in Record Type Definitions  

Record type definitions can include with/end  tokens, as the following shows: 

type R1 =  

    { x : int;  

      y : int }  

    with  

        member this.Sum = this.x + this.y  

    end 

The with/end  tokens can be omitted if the type - defn - elements  vertically align with the { in the record -

fields . The semicolon (; ) tokens can be omitted if the next record - field  vertically aligns with the previous 

record - field . 

8.5 Union Type  Definition s 
A union type definition is a type definition that includes one or more union cases. For example: 

type Message =  

    | Result of string  

    | Request of int * string  

    member x.Name = match x with Result(nm) - > nm | Request(_,nm) - > nm 

Union case names must begin with an uppercase letter, which is defined to mean any character for which the CLI 

library function System.Char.IsUpper  returns true  and System.Char.IsLower  returns false .  

The union cases Case1 ... CaseN have module scope and are added to the ExprItems and PatItems tables in the 

name resolution environment. This means that their unqualified names can be used to form both expressions and 

patterns, unless the record type has the RequireQualifiedAccess  attribute. 

Parentheses are significant in union definitions. Thus, the following two definitions differ: 

type CType = C of int * int  

type CType = C of (int *  int)  

The lack of parentheses in the first example indicates that the union case takes two arguments. The parentheses 

in the second example indicate that the union case takes one argument that is a first-class tuple value.  

The following declaration defines a type abbreviation if the named type A exists in the name resolution 

environment. Otherwise it defines a union type. 

type OneChoice = A  

To disambiguate this case and declare an explicit union type, use the following: 

type OneChoice =  

    | A  



116 
 

Union types are implicitly marked serializable unless the AutoSerializable(false)  attribute is used.  

8.5.1 Members in Union Types  

Union types may declare members (§8.13), overrides, and interface implementations. As with all types that 

declare overrides and interface implementations, they are subject to Dispatch Slot Checking (§14.8). 

8.5.2 Structural Hashing, Equality , and Comparison for Union Types  

Union types implicitly implement the following interfaces and dispatch slots unless they are explicitly implemented 

as part of the definition of the union type: 

interface System.Collections.IStructuralEquatable  

interface System.Collections.IStructuralComparable  

interface System.IComparable  

override GetHashCode : unit - > int  

override Equals : obj - > bool  

The implicit implementations of these interfaces and overrides are described in §8.15. 

8.5.3 With/End in Union Type Definitions  

Union type definitions can include with/end  tokens, as the following shows: 

type R1 =  

    { x : int;  

      y : int }  

    with  

        member this.Sum = this.x + this.y  

    end 

The with/end  tokens can be omitted if the type - defn - elements  vertically align with the { in the record -

fields . The semicolon (; ) tokens can be omitted if the next record - field  vertically aligns with the previous 

record - field . 

For union types, the with/end  tokens can be omitted if the type - defn - elements  vertically alignwith the first |  in 

the union - type - cases . However, with/end  must be present if the |  tokens align with the type  token. For 

example: 

/// Note: this layout is permitted  

type Message =  

  | Result of string  

  | Request of int * string  

  member x.Name = match x with Result(nm) - > nm | Request(_,nm) - > nm 

 

/// Note: this layout is not permitted  

type Message =  

| Result of string  

| Request o f int * string  

member x.Name = match x with Result( nm) - > nm | Request(_,nm) - > nm 

8.5.4 Compiled Form of Union Types  for Use from Other CLI Languages 

A compiled union type U has: 

¶ One CLI static getter property U.C for each null union case C. This property gets a singleton object that 

represents each such case. 

¶ One CLI nested type U.C for each non-null union case C. This type has instance properties Item1 , Item2 .... 

for each field of the union case, or a single instance property Item  if there is only one field. However, a 



117 
 

compiled union type that has only one case does not have a nested type. Instead, the union type itself plays 

the role of the case type. 

¶ One CLI static method U.NewC for each non-null union case C. This method constructs an object for that 

case. 

¶ One CLI instance property U.IsC  for each case C. This property returns true  or false  for the case. 

¶ One CLI instance property U. Tag for each case C. This property fetches or computes an integer tag 

corresponding to the case. 

¶ If U has more than one case, it has one CLI nested type U.Tags. The U.Tags typecontains one integer literal 

for each case, in increasing order starting from zero. 

¶ A compiled union type has the methods that are required to implement its auto-generated interfaces, in 

addition to any user-defined properties or methods. 

These methods and properties may not be used directly from F#. However, these types have user-facing 

List.Empty , List.Cons , Option.None , and Option.Some  properties and/or methods.  

A compiled union type may not be used as a base type in another CLI language, because it has at least one 

assembly-private constructor and no public constructors. 

8.6 Class Type Definition s 
A class type definition encapsulates values that are constructed by using one or more object constructors. Class 

types have the form: 

type  type - name pat opt  as- defn opt  =  
    class  
        class - inherits - decl opt  
        class - function - or - value - defn sopt  
        type - defn - elements   
    end 

The class/end  tokens can be omitted, in which case Type Kind Inference (§8.2) is used to determine the kind of 

the type. 

In F#, class types are implicitly marked serializable unless the AutoSerializable(false)  attribute is present.  

8.6.1 Primary Constructors in Classes  

An object constructor represents a way of initializing an object. Object constructors can create values of the type 

and can partially initialize an object from a subclass. A class can have an optional primary constructor and zero 

or more additional object constructors.  

If a type definition has a pattern immediately after the type - name and any accessibility annotation, then it has a 

primary constructor. For example, the following type has a primary constructor: 

type Vector2D(dx  :  float, dy  :  float) =  

    let length = sqrt(dx*x  + dy*dy)  

    member v.Length = length  

    member v.DX = dx  

    member v.DY = dy  

Class definitions that have a primary constructor may contain function and value definitions, including those that 

use let  rec .  

The pattern for a primary constructor must have zero or more patterns of the following form:  

( simple - pat , ..., simple - pat )   



118 
 

Each simple - pat  has this form: 

simple - pat  :=  
    | ident  
    |  simple - pat :  type  

Specifically, nested patterns may not be used in the primary constructor arguments. For example, the following is 

not permitted because the primary constructor arguments contain a nested tuple pattern: 

type TwoVectors((px, py), (qx, qy)) =  

    member v.Le ngth = sqrt((qx - px)*(qx - px) + (qy - py)*(qy - py))  

Instead, one or more value definitions should be used to accomplish the same effect: 

type TwoVectors(pv, qv) =  

    let (px, py) = pv  

    let (qx, qy) = qv  

    member v.Length = sqrt((qx - px)*(qx - px) + (qy - py)* (qy - py))  

When a primary constructor is evaluated, the inheritance and function and value definitions are evaluated in 

order.  

8.6.1.1 Object References in Primary Constructors  

For types that have a primary constructor, the name of the object parameter can be bound and used in the non-

non-static function, value and member definitions of the type definition as follows: 

type X( a:int) as x =  

    let mutable currentA  = a  

    let mutable currentB = 0  

    do x.B < -  x.A + 3  

    member self. GetResult() =  currentA + currentB  

    member self.A with get() = currentA and set v = currentA < -  v  

    member self.B  with get() = currentB and set v = currentB < -  v  

During construction, no member on the type may be called before the last value or function definition in the type 

has completed; such a call results in an InvalidOperationException . For example, the following code raises 

this exception: 

type C() as self =  

    let f = (fun (x:C) - > x.F())  

    let y = f self  

    do printfn "construct"  

    member this.F() = printfn "hi , y = %A "  y 

 

let r = new C() // raises InvalidOperationException  

The exception is raised because an attempt may be made to access the value of the field y before initialization is 

complete. 

8.6.1.2 Inheritance Declarations in Primary Constructors  

An inherit  declaration specifies that the type being defined is an extension of an existing type. Such 

declarations have the following form: 

class - inherits - decl  := inherit type  expr opt  

For example: 

type MyDerived(...) =  

   inherit MyBase( ...)  

If a class definition does not contain an inherit  declaration, the class inherits fromSystem.Object  by default.  

The inherit  declaration for a type must have arguments if and only if the type has a primary constructor.  



119 
 

8.6.1.3 Instance Function and Value Definitions in Primary Constructors  

Classes that have primary constructors may include function definitions, value definitions, and ñdoò statements. 

The following rules apply to these definitions: 

¶ Each definition may be marked static  (see §8.6.2.1). If the definition is not marked static , it is called an 

instance definition. 

¶ The functions and values defined by instance definitions are lexically scoped (and thus implicitly private) to 

the object being defined. 

¶ Each value definition may optionally be marked mutable . 

¶ A group of function and value definitions may optionally be marked rec . 

¶ Function and value definitions are generalized. 

¶ Value definitions that declared in classes are represented in compiled code as follows:  

¶ If a value definition is not mutable, and is not used in any function or member, then the value is 

represented as a local value in the object constructor. 

¶ If a value definition is mutable, or used in any function or member, then the value is represented as an 

instance field in the corresponding CLI type. 

¶ Function definitions are represented in compiled code as private members of the corresponding CLI type. 

For example, consider this type: 

type C(x:int,y:int) =  

    let z = x + y  

    let f w = x + w  

    member this.Z = z  

    member this.Add(w) = f w  

The input y is used only during construction, and no field is stored for it. Likewise the function f  is 

represented as a member rather than a field that is a function value. 

A value definition is considered a function definition if its immediate right-hand-side is an anonymous function, as 

in this example:  

let f = (fun w - > x + w)  

Function and value definitions may have attributes as follows: 

¶ Value definitions represented as fields may have attributes that target fields. 

¶ Value definitions represented as locals may have attributes that target fields, but these attributes will not be 

attached to any construct in the resulting CLI assembly. 

¶ Function definitions represented as methods may have attributes that target methods. 

 
For example: 

type C(x:int) =  

    [<System.Obsolete>]   

    let unused = x  

    member __.P = 1  

In this example, no field is generated for unused, and no corresponding compiled CLI attribute is generated. 

8.6.1.4 Static Function and Value Definitions in Primary Constructors  

Classes that have primary constructors may have function definitions, value definitions, and ñdoò statements  that 

are marked as static:  

¶ The values that are defined by static function and value definitions are lexically scoped (and thus implicitly 

private) to the type being defined.  



120 
 

¶ Each value definition may optionally be marked mutable .  

¶ A group of function and value definitions may optionally be marked rec .  

¶ Static function and value definitions are generalized. 

¶ Static function and value definitions are computed once per generic instantiation. 

¶ Static function and value definitions are elaborated to a static initializer associated with each generic 

instantiation of the generated class. Static initializers are executed on demand in the same way as static 

initializers for implementation files §12.5. 

¶ The compiled representation for static value definitions is as follows:  

¶ If the value is not used in any function or member then the value is represented as a local value in the 

CLI class initializer of the type. 

¶ If the value is used in any function or member, then the value is represented as a static field of the CLI 

class for the type. 

¶ The compiled representation for a static function definition is a private static member of the corresponding 

CLI type. 

Static function and value definitions may have attributes as follows: 

¶ Static function and value definitions represented as fields may have attributes that target fields. 

¶ Static function and value definitions represented as methods may have attributes that target methods. 

 
For example: 

type C<'T>() =  

    static let mutable v = 2 + 2  

    static do v < -  3 

     

    member x.P = v  

    static member P2 = v+v  

 

printfn "check: %d = 3" (new C<int>()).P  

printfn "check: %d = 3" (new C<int>()).P  

printfn "check: %d = 3" (new C<string>()).P  

printfn "check: %d = 6" (C<int>.P2)  

printfn "check: %d = 6" (C<string>.P2)  

In this example, the value v is represented as a static field in the CLI type for C. One instance of this field exists 

for each generic instantiation of C. The output of the program is 

check: 3 = 3   

check: 3 = 3  

check: 3 = 3  

check: 6 = 6  

check: 6 = 6  

8.6.2 Members in Classes 

Class types may declare members (§8.13), overrides, and interface implementations. As with all types that have 

overrides and interface implementations, such class types are subject to Dispatch Slot Checking (§14.8). 

8.6.3 Additional Object Constructors in Classes  

Although the use of primary object constructors is generally preferable, additional object constructors may also 

be specified. Additional object constructors are required in two situations:  

¶ To define classes that have more than one constructor.  



121 
 

¶ To specify explicit val  fields without the DefaultValue  attribute. 

 
For example, the following statement adds a second constructor to a class that has a primary constructor: 

type PairOfIntegers(x:int,y:int) =  

    new (x) = PairOfIntegers(x,x)  

The next example declares a class without a primary constructor: 

type PairOfStrings =  

    val s1 : string  

    val s2 : string  

    new (s) = { s1 = s; s2 = s }  

    new (s1,s2) = { s1 = s1; s2 = s2 }  

If a primary constructor is present, additional object constructors must call another object constructor in the same 

type, which may be another additional constructor or the primary constructor.  

If no primary constructor is present, additional constructors must initialize any val  fields of the object that do not 

have the DefaultValue  attribute. They must also specify a call to a base class constructor for any inherited class 

type. No call to a base class constructor is required if the base class is System.Object .  

The use of additional object constructors and val  fields is required if a class has multiple object constructors that 

must each call different base class constructors. For example: 

type BaseClass =  

    val s1 : string  

    new (s) = { s1 = s }  

    new () = { s = "default" }  

 

type SubClass =  

    inherit BaseClass  

    val s2 : string  

    new (s1,s2) = { inherit BaseClass(s1); s2 = s2 }  

    new (s2) = { inher it BaseClass(); s2 = s2 }  

To implement additional object constructors, F# uses a restricted subset of expressions that ensure that the code 

generated for the constructor is valid according to the rules of object construction for CLI objects. Note that 

precisely one additional - constr - init - expr  occurs for each branch of a construction expression.  

For classes without a primary constructor, side effects can be performed after the initialization of the fields of the 

object by using the additional - constr - expr  th en stmt  form. For example: 

type PairOfIntegers(x:int,y:int) =  

    // This additional constructor has a side effect after initialization .  

    new(x) =  

       PairOfIntegers(x,  x)  

       then  

          printfn "Initialized with only one integer"  

The name of the object parameter can be bound within additional constructors. For example: 

type X =  

    val a : (unit - > string)  

    val mutable b : string  

    new() as x = { a = (fun () - > x.b); b = "b" }  

A warning is given if x occurs syntactically in or before the additional - constr - init - expr  of the construction 

expression. If any member is called before the completion of execution of the additional - constr - init - expr  

within the additional-constr-expr then an InvalidOperation Exception  is thrown.  



122 
 

8.6.4 Additional Fields in Classes  

Additional field declarations indicate that a value is stored in an object. They are generally used only for classes 

without a primary constructor, or for mutable fields that use default initialization, and typically occur only in 

generated code. For example:  

type PairOfIntegers =  

    val x : int  

    val y : int  

    new(x,  y) = {x = x; y = y}  

The following shows an additional field declaration as a static field in an explicit class type: 

type TypeWithADefaultMutableBooleanField =  

    [<DefaultValue>]  

    static val mutable ready : bool  

At runtime, such a field is initially assigned the zero value for its type (§6.9.3). For example: 

type MyClass(name:string) =  

    // Keep a global count. It is initially zero.  

    [<DefaultValue>]  

    static val mutable count : int  

 

    // Increment the count each time an object is created  

    do MyClass.count < -  MyClass.count + 1  

 

    static member NumCreatedObjects = MyClass.count  

 

    member x.Name = name 

A val  specification in a type that has a primary constructor must be marked mutable and must have the 

DefaultValue  attribute. For example: 

type X() =  

    [<DefaultValue>]  

    val mutable x : int  

The DefaultValue  attribute takes a check  parameter, which indicates whether to ensure that the val  

specification does not create unexpected null values. The default value for check  is true . If this parameter is 

true , the type of the field must permit default initialization (§5.4.8). For example, the following type is rejected: 

type MyClass<'T>() =  

    [<DefaultValue>]  

    static val mutable uninitial ized : 'T  

This is because the type 'T  does not admit default initialization. However, in compiler-generated and hand-

optimized code it is sometimes essential to be able to emit fields that are completely uninitialized. In this case, 

DefaultValue (false)  can be used. For example: 

type MyNullable<'T>() =  

    [<DefaultValue>]  

    static val mutable ready : bool  

 

    [<DefaultValue(false)>]  

    static val mutable uninitialized : 'T  



123 
 

8.7 Interface Type  Definition s 
An interface type definition represents a contract that an object may implement. Such a type definition 

containsonly abstract members. For example: 

type IPair<'T,'U> =  

    interface  

        abstract First: 'T  

        abstract Second: 'U  

    end 

 

type IThinker<'Thought> =  

    abstract Think: ('Thought - > unit) - > unit  

    abstract StopThinking: (unit - > unit)  

Note: The interface /end  tokens can be omitted when lightweight syntax is used, in which case 

Type Kind Inference (§8.2) is used to determine the kind of the type. The presence of any non-

abstract members or constructors means a type is not an interface type. 

By convention, interface type names start with I, as in IEvent. However, this convention is not 

followed as strictly in F# as in other CLI languages. 

Interface types may be arranged hierarchically by specifying inherit  declarations. For example: 

type IA =  

    abstract One: int - > int  

 

type IB =  

    abstract Two: int - > int  

 

type IC =  

    inherit IA  

    inherit IB  

    abstract Three: int - > int  

Each inherit  declaration must itself be an interface type. Circular references are not allowed among inherit  

declarations. F# uses  the named types of the inherited interface types to determine whether references are 

circular.  

8.8 Struct Type  Definition s 
A struct type definition is a type definition whose instances are stored inline inside the stack frame or object of 

which they are a part. The type is represented as a CLI struct type, also called a value type. For example: 

type Complex =  

    struct  

        val real: float;  

        val imaginary: float  

        member x.R = x.real  

        member x.I = x.imaginary  

    end 

Note: The struct/end  tokens can be omitted when lightweight syntax is used, in which case Type 

Kind Inference (§8.2) is used to determine the kind of the type.  

 



124 
 

Becaues structs undergo type kind inference (§8.2), the following is valid: 

[<Struct>]  

type Complex(r:float, i:float) =  

    member x.R = r  

    member x.I = i  

Structs may have primary constructors: 

[<Struct>]  

type Complex(r  :  float, I :  float) =  

    member x.R = r  

    member x.I = i  

Structs that have primary constructors must accept at least one argument. 

Structs may have additional constructors. For example: 

[<Struct>]  

type Complex(r  :  float, I :  float) =  

    member x.R = r  

    member x.I = i  

    new(r  :  float) = new Complex(r,  0.0)  

The fields in a struct may be mutable only if the struct does not have a primary constructor. For example: 

[<Struct>]  

type MutableComplex =  

    val mutable real  : float;  

    val mutable imaginary  : float  

    member x.R = x.real  

    member x.I = x.imaginary  

    member x.Change(r,  i) = x.real < -  r; x.imaginary < -  i  

    new (r, i) = { real = r; imaginary = i }  

Struct types may declare members, overrides, and interface implementations. As for all types that declare 

overrides and interface implementations, struct types are subject to Dispatch Slot Checking (§14.8). 

Structs may not have inherit  declarations. 

Structs may not have ñletò or ñdoò statements unless they are static. For example, the following is not valid: 

[<Struct>]  

type BadStruct1 ( def : int) =  

    do System.Console.WriteLine("Structs cannot use 'do'!")  

Structs may have static ñletò or ñdoò statements. For example, the following is valid: 

[<Struct>]  

type GoodStruct1  (def : int) =  

    static do System.Console.WriteLine("Structs can us e 'static do'")  

A struct type must be valid according to the CLI rules for structs; in particular, recursively constructed structs are 

not permitted. For example, the following type definition is not permitted, because the size of BadStruct2  would 

be infinite:  

[<Struct>]  

type BadStruct 2 =  

    val data  : float;  

    val rest  : BadStruct 2 

    new (data, rest) = { data = data; rest = rest }  

Likewise, the implied size of the following struct would be infinite: 

[<Struct>]  

type BadStruct 3 (data  : float, re st  : BadStruct 3) =  



125 
 

    member s.Data = data  

    member s.Rest = rest  

If the types of all the fields in a struct type permit default initialization, the struct type has an implicit default 

constructor,which initializes all the fields to the default value. For example, the Complex type defined earlier in 

this section permits default initialization. 

[<Struct>]  

type Complex(r : float, I : float) =  

    member x.R = r  

    member x.I = i  

    new(r : float) = new Complex(r, 0.0)  

 

let zero = Complex()  

Note: The existence of the implicit default constructor for structs is not recorded in CLI metadata 

and is an artifact of the CLI specification and implementation itself. A CLI implementation permits 

default constructors for all struct types, although F# does not permit their direct use for F# struct 

types unless all field types admit default initialization. This is similar to the way that F# considers 

some types to have null as an abnormal value. 

Public struct types for use from other CLI languages should be designed with the existence of the 

default zero-initializing constructor in mind. 

8.9 Enum Type Definitions  
Occasionally the need arises to represent a type that compiles as a CLI enumeration type. An enum type 

definition has values that are represented by integer constants and has a CLI enumeration as its compiled form. 

Enum type definitions are declared by specifying integer constants in a format that is syntactically similar to a 

union type definition. For example: 

type Color =  

   | Red = 0  

   | Green = 1  

   | Blue = 2  

 

let rgb = (Color.Red, Color.Green, Color.Blue)  

 

let show(colorScheme) =  

     match colorScheme wi th  

     | (Color.Red, Color.Green, Color.Blue) - > printfn "RGB in use"  

     | _ - > printfn "Unknown color scheme in use"  

 

The example defines the enum type Color, which has the values Red, Green, and Blue, mapped to the constants 

0, 1, and 2 respectively. The values are accessed by their qualified names: Color.Red, Color.Green, and 

Color.Blue. 

Each case must be given a constant value of the same type. The constant values dictate the underlying type of 

the enum, and must be one of the following types: 

¶ sbyte , int16 , int32 , int 64, byte , uint16 , uint32 , uint64 , char  

The declaration of an enumeration type in an implementation file has the following effects on the typing 

environment: 

¶ Brings a named type into scope. 

¶ Adds the named type to the inferred signature of the containing namespace or module. 

 



126 
 

Enum types coerce to System.Enum and satisfy the enum<underlying - type > constraint for their underlying 

type. 

Each enum type declaration is implicitly annotated with the RequiresQualifiedAccess  attribute and does not 

add the tags of the enumeration to the name environment.  

type Color =  

    | R ed = 0  

    | Green = 1  

    | Blue = 2  

 

let red = Red // not accepted, must use Color.Red  

Unlike unions, enumeration types are fundamentally ñincomplete,ò because CLI enumerations can be converted 

to and from their underlying primitive type representation. For example, a Color  value that is not in the above 

enumeration can be generated by using the enum function from the F# library: 

let unknownColor : Colo r = enum<Color>(7)  

This statement adds the value named unknownColor, equal to the constant 7, to the Color enumeration. 

8.10 Delegate Type Definition s 
Occasionally the need arises to represent a type that compiles as a CLI delegate type. A delegate type definition 

has as its values functions that are represented as CLI delegate values. A delegate type definition is declared by 

using the delegate  keyword with a member signature. For example: 

type Handler<'T> = delegate of obj * 'T - > unit  

Delegates are often used when using Platform Invoke (P/Invoke) to interface with CLI libraries, as in the following 

example: 

type ControlEventHandler = delegate  of int - > bool  

 

[<DllImport("kernel32.dll")>]  

extern void SetConsoleCtrlHandler(ControlEventHandler callback, bool add)  

8.11 Exception Definitions  
An exception definition defines a new way of constructing values of type exn (a type abbreviation for 

System.Exception ). Exception definitions have the form: 

exception ident  of typ e1 ǉ ƛ ǉ typ en  

An exception definition has the following effect: 

¶ The identifier ident  can be used to generate values of type exn. 

¶ The identifier ide nt  can be used to pattern match on values of type exn. 

¶ The definition generates a type with name ident  that derives from exn. 

 
For example: 

exception Error of int * string  

 

raise (Error (3, "well that didn't work did it"))  

 

try  



127 
 

    raise (Error (3, "well that didn't work did it"))  

with  

    | Error(sev, msg) - > printfn "severity = %d, message = %s" sev msg  

 

The type that corresponds to the exception definition can be used as a type in F# code. For example: 

let exn = Error (3, "well that didn't work did it")  

let checkException() =  

    if (exn :? Error) then printfn "It is of type Error"  

    if (exn.GetType() = typeof<Error>) then printfn "Yes, it really is of type Error"  

Exception abbreviations may abbreviate existing exception constructors. For example: 

exception ThatWentBadlyWrong of string * int  

exception ThatWentWrongBadly = ThatWentBadlyWrong  

 

let checkForBadDay() =  

    if System.DateTime.Today.DayOfWeek = System.Day OfWeek.Monday then  

        raise (ThatWentWrongBadly("yes indeed",123))  

Exception values may also be generated by defining and using classes that extend System.Exception .  

8.12 Type Extensions  
A type extension associates additional members with an existing type. For example, the following associates the 

additional member IsLong  with the existing type System.String : 

type System.String with  
    member x.IsLong = (x.Length > 1000)  

Type extensions may be applied to any accessible type definition except those defined by type abbreviations. A 

type can have any number of extensions. 

If the type extension is in the same module or namespace declaration group as the original type definition, it is 

called an intrinsic extension. Members that are defined in intrinsic extensions follow the same name resolution 

and other language rules as members that are defined as part of the original type definition.  

If the type extension is not intrinsic, it must be in a module, and it is called an extension member. Opening a 

module that contains an extension member extends the name resolution of the dot syntax for the extended type. 

That is, extension members are accessible only if the module that contains the extension is open.  

Name resolution for members that are defined in type extensions behaves as follows: 

¶ In method application resolution (see §14.4), regular members (that is, members that are part of the original 

definition of a type, plus intrinsic extensions) are preferred to extension members. 

¶ Extension members that are in scope and have the correct name are included in the group of members 

considered for method application resolution (see §14.4). 

¶ An intrinsic member is always preferred to an extension member. If an extension member has the same 

name and type signature as a member in the original type definition or an inherited member, then it will be 

inaccessible. 

 
The following illustrates the definition of one intrinsic and one extension member for the same type: 

namespace Numbers 

  type Complex(r  :  float,  i :  float) =  

      member x.R = r  

      member x.I = i  

 



128 
 

  // intrinsic extension  

  type Complex with  

      static member Create(a,  b) = new Complex (a,  b)  

      member x.RealPart = x.R  

      member x.ImaginaryPart = x.I  

 

namespace Numbers 

 

  module ComplexExtensions =  

 

      // extension member  

      type Numbers.Complex with  

          member x.Magnitude = ...  

          member x.Phase = ...  

 
Extensions may define both instance members and static members. 

Extensions are checked as follows: 

¶ Checking applies to the member definitions in an extension together with the members and other definitions 

in the group of type definitions of which the extension is a part. 

¶ Two intrinsic extensions may not contain conflicting members because intrinsic extensions are considered 

part of the definition of the type. 

¶ Extensions may not define fields, interfaces, abstract slots, inherit declarations, or dispatch slot (interface 

and override) implementations. 

¶ Extension members must be in modules. 

¶ Extension members are compiled as CLI static members with encoded names. 

¶ The elaborated form of an application of a static extension member C. M(arg 1ƗƛƗarg n)  is a call to this 

static member with arguments arg 1ƗƛƗarg n.. 

¶ The elaborated form of an application of an instance extension member obj . M(arg 1ƗƛƗarg n)  is an 

invocation of the static instance member where the object parameter is supplied as the first argument to 

the extension member followed by arguments arg 1 ƛ arg n. 

8.12.1 Imported CLI C# Extensions Members 

The CLI C# language defines an ñextension member,ò which commonly occurs in CLI libraries, along with some 

other CLI languages. C# limits extension members to instance methods. 

C#-defined extension members are made available to F# code in environments where the C#-authored assembly 

is referenced and an open declaration of the corresponding namespace is in effect. However, some notable 

limitations apply: 

¶ C# extension members whose ñthisò parameter is a variable type are not available to F# code in F# 2.0. 

¶ C# extension members whose ñthisò parameter is an array type are not available to F# code in F# 2.0. 

The encoding of compiled names for F# extension members is not compatible with C# encodings of C# extension 

members. However, for instance extension methods, the naming can be made compatible. For example: 

[<System.Runtime.Com pilerServices.Extension >]  

module EnumerableExtensions =  

    [<CompiledName("OutputAll")>]  

    [<System.Runtime.Com pilerServices.Extensio n>]  

    type System.Collections.Generic.IEnumerable<'T> with  

        member x.OutputAll (this:seq<'T>) =  

            for x in this do  

                System.Console.WriteLine (box x)  



129 
 

8.13 Members  
Member definitions describe functions that are associated with type definitions and/or values of particular types. 

Member definitions can be used in type definitions. Members can be classified as follows: 

¶ Property members 

¶ Method members 

 
A static member is prefixed by static  and is associated with the type, rather than with any particular object. 

Here are some examples of static members: 

type MyClass() =  

    static let mutable adjustableStaticValue = "3"  

    static let staticArray = [| "A"; "B" |]  

    static let staticArray2 = [|[| "A"; "B" |]; [| "A"; "B" |] |]  

 

    static member StaticMethod(y:int) = 3 + 4 + y  

 

    static member StaticProperty = 3 + staticArray.Length  

 

    static member StaticProperty2  

        with get() = 3 + staticArray.Length  

 

    static member MutableStaticProperty  

        with get()         = adjustableStaticValue  

        and  set(v:string) = adjustableStaticValue < -  v 

 

    static member StaticIndexer  

        with get(idx) = static Array.[idx]  

 

    static member StaticIndexer2  

        with get(idx1,idx2) = staticArray2.[idx1].[idx2]  

 

    static member MutableStaticIndexer  

        with get (idx1) = staticArray.[idx1]  

        and  set (idx1) (v:string) = staticArray.[idx1] < -  v 

An instance member is a member without static . Here are some examples of instance members: 

type MyClass() =  

    let mutable adjustableInstanceValue = "3"  

    let instanceArray = [| "A"; "B" |]  

    let instanceArray2 = [|  [| "A"; "B" |]; [| "A"; "B" |] |]  

 

    member x.InstanceMethod(y:int) = 3 + y + instanceArray.Length  

 

    member x.InstanceProperty = 3 + instanceArray.Length  

 

    member x.InstanceProperty2  

        with get () = 3 + instanceArray.Length  

 

    member x.InstanceIndexer  

        with get (idx) = instanceArray.[idx]  

 

    member x.InstanceIndexer2  

        with get (idx1,idx2) = instanceArray2.[idx1].[idx2]  

 

    member x.MutableInstanceProperty  

        with get ()         = adjustableInstanceValue  

        and  set (v:string) = adjustableInstanceValue < -  v 



130 
 

 

    member x.MutableInstanceIndexer  

        with get (idx1) = instanceArray.[idx1]  

        and  set (idx1) (v:string) = instanceArray.[idx1] < -  v 

Members from a set of mutually recursive type definitions are checked as a single mutually recursive group. As 

with collections of recursive functions, recursive calls to potentially-generic methods may result in inconsistent 

type constraints:  

type Test() =  

   static member Id x = x  

   member t.M1 (x: int) = Test.Id(x)  

   member t.M2 (x: string) = Test.Id(x) // error, x has type 'string' not 'int'  

A target method that has a full type annotation is eligible for early generalization (§14.6.7). 

type Test() =  

   static member Id<'T> (x:'T) : 'T = x  

   member t.M1 (x: int) = Test.Id(x)  

   member t.M2 (x: string) = Test.Id(x)  

8.13.1 Property Members  

A property member is a method- or - prop - defn  in one of the following forms: 

static opt  member ident . opt  ident  = expr   

static opt  member ident . opt  ident  with get pat  = expr  

static opt  member ident . opt  ident  with set pat opt  pat = expr  

static opt  member ident . opt  ident  with get pat  = expr and set pat opt  pat  = expr   

static opt  member ident . opt  ident  with set pat opt  pat  = expr and get pat  = expr   

A property member in the form 

static opt  member ident . opt  ident  with get pat 1 = expr 1 and set pat 2a pat 2b opt  = expr 2 

is equivalent to two property members of the form: 

static opt  member ident . opt  ident  with get pat 1 = expr 1  

static opt  member ident . opt  ident  with set pat 2a pat 2b opt  = expr 2 

Furthermore, the following two members are equivalent: 

static opt  member ident . opt  ident  = expr   

static opt  member ident . opt  ident  with get () = expr  

These two are also equivalent: 

static opt  member ident . opt  ident  with set pat = expr 2 

static opt  member ident . opt  ident  with set () pat  = expr  

Thus, property members may be reduced to the following two forms: 

static opt  member ident . opt  ident  with get pat idx  = expr   

static opt  member ident . opt  ident  with set pat idx  pat  = expr  

The ident . opt  must be present if and only if the property member is an instance member. When evaluated, the 

identifier ident  is bound to the ñthisò or ñselfò object parameter that is associated with the object within the 

expression expr . 

A property member is an indexer property if pat idx  is not the unit pattern () . Indexer properties called Item  are 

special in the sense that they are accessible via the .[]  notation. An Item  property that takes one argument is 

accessed by using x.[i] ; with two arguments by x.[i,j] , and so on. Setter properties must return type unit . 

Property members may be declared abstract . If a property has both a getter and a setter, then both must be 

abstract or neither must be abstract. 



131 
 

Each property member has an implied property type. The property type is the type of the value that the getter 

property returns or the setter property accepts. If a property member has both a getter and a setter, and neither is 

an indexer property, the signatures of both the getter and the setter must imply the same property type.  

Static and instance property members are evaluated every time the member is invoked. For example, in the 

following, the body of the member is evaluated each time C.Time is evaluated: 

type C () =  

    static member Time = System.DateTime.Now  

Note: A static property member may also be written with an explicit get  method: 

    static member ComputerName  
        with get() = System.Environment.GetEnvironmentVariable("COMPUTERNAME")  

8.13.2 Method Members  

A method member is of the form: 

static opt  member ident . opt  ident  pat 1 ... pat n = expr   

The ident . opt  can be present if and only if the property member is an instance member. In this case, the 

identifier ident  corresponds to the ñthisò (or ñselfò) variable associated with the object on which the member is 

being invoked. 

Arity analysis (§14.10) applies to method members. This is because F# members must compile to CLI methods, 

which accept only a single fixed collection of arguments. 

8.13.3 Curried Method Members  

Methods that take multiple arguments may be written in iterated (ñcurriedò) form. For example: 

static member StaticMethod2 s1 s2 =  

    sprintf "In StaticMethod(%s,%s)" s1 s2  

The rules of arity analysis (§14.10) determine the compiled form of these members. 

The following limitations apply to curried method members: 

¶ Additional argument groups may not include optional or byref parameters. 

¶ When the member is called, additional argument groups may not use named arguments(§8.13.4). 

¶ Curried members may not be overloaded. 

 
The compiled representation of a curried method member is a .NET method in which the arguments are 

concatenated into a single argument group. 

Note: It is recommended that curried argument members do not appear in the public API of an F# 

assembly that is designed for use from other .NET languages. Information about the currying order 

is not visible to these languages.  

8.13.4 Named Arguments to Method Members  

Calls to methodsðbut not to let-bound functions or function valuesðmay use named arguments. For example: 

System.Console.WriteLine(format  = "Hello {0}",  arg0  = "World")  

System.Console.WriteLine("Hello {0}",  arg0  = "World")  

System.Console.WriteLine(arg0  = "World",  format  = "Hello {0}")  

The argument names that are associated with a method declaration are derived from the names that appear in 

the first pattern of a member definition, or from the names used in the signature for a method member. For 

example: 



132 
 

type C() =  
    member x.Swap(first,  second) = (second,  first)  
 
let c = C()  
c.Swap(first  = 1,second  = 2)  // result is '(2,1)'  
c.Swap(second  = 1,first  = 2)  // result is '(1,2)'  

Named arguments may be used only with the arguments that correspond to the arity of the member. That is, 

because members have an arity only up to the first set of tupled arguments, named arguments may not be used 

with subsequent curried arguments of the member. 

The resolution of calls that use named arguments is specified in Method Application Resolution (see §14.4). The 

rules in that section describe how resolution matches a named argument with either a formal parameter of the 

same name or a ñsettableò return property of the same name. For example, the following code resolves the 

named argument to a settable property: 

System.Windows.Forms.Form(Text  = "Hello World")  

If an ambiguity exists, assigning the named argument is assigned to a formal parameter rather than to a settable 

return property. 

The Method Application Resolution (§14.4) rules ensure that: 

¶ Named arguments must appear after all other arguments, including optional arguments that are 

matched by position. 

 
After named arguments have been assigned, the remaining required arguments are called the required unnamed 

arguments. The required unnamed arguments must precede the named arguments in the argument list. The n 

unnamed arguments are matched to the first n formal parameters; the subsequent named arguments must 

include only the remaining formal parameters. In addition, the arguments must appear in the correct sequence.  

For example, the following code is invalid: 

// error: unnamed args after named  

System.Console.WriteLine(arg0  = "World",  "Hello {0}")  

Similarly, the following code is invalid: 

type Foo() =  

    static member M  (arg1, arg2, arg3) = 1  

// error: arg1, arg3 not a prefix of the argument list  

Foo.M(1, 2, arg2  = 3)  

The following code is valid: 

type Foo() =  

    static member M  (arg1, arg2, arg3) = 1  

 

Foo.M (1, 2, arg 3 = 3)  

The names of arguments to members may be listed in member signatures. For example, in a signature file: 

type C =  

    static member ThreeArgs : arg1:int * arg2:int * arg3:int - > int  

    abstract TwoArgs : arg1:int * arg2:int - > int  

8.13.5 Optional Arguments to Method Members  

Method membersðbut not functions definitionsðmay have optional arguments. Optional arguments must appear 

at the end of the argument list. An optional argument is marked with a ? before its name in the method 

declaration. Inside the member, the argument has type option< argType >.  



133 
 

The following example declares a method member that has two optional arguments: 

let defaultArg x y = match x with None - > y | Some v - > v  

 

type T() =  

    static member OneNormalTwoOptional (arg1, ?arg2, ?arg3) =  

        let arg2 = defaultArg arg2 3  

        let arg3 = defaultArg arg3 10  

        arg1 + arg2 + arg3  

Optional arguments may be used in interface and abstract members. In a signature, optional arguments appear 

as follows: 

static member OneNormalTwoOptional : arg1:int * ?arg2:int * ?arg3:int - > int  

Callers may specify values for optional arguments in the following ways: 

¶ By name, such as arg2  = 1.   

¶ By propagating an existing optional value by name, such as ?arg2=None or ?arg2=Some(3)  or ?arg2=arg2 . 

This can be useful when building a method that passes optional arguments on to another method. 

¶ By using normal, unnamed arguments that are matched by position. 

  
For example: 

T.OneNormalTwoOptional(3)  

T.OneNormalTwoOptional(3,  2)  

T.OneNormalTwoOptional(arg1  = 3)  

T.OneNormalTwoOptional(arg1  = 3,  arg2  = 1)  

T.OneNormalTwoOptional(arg2  = 3,  arg1  = 0)  

T.OneNormalTwoOptional(arg2  = 3,  arg1  = 0,  arg3  = 11)  

T.OneNormalTwoOptional(0,  3,  11)  

T.OneNormalTwoOptional(0,  3,  arg3  = 11)  

T.OneNormalTwoOptional(arg1  = 3,  ?arg2  = Some 1)  

T.OneNormalTwoOptional(arg2  = 3,  arg1  = 0,  arg3  = 11)  

T.OneNormalTwoOptional(?arg2  = Some 3,  arg1  = 0,  arg3  = 11)  

T.OneNormalTwoOptional(0,  3,  ?arg3  = Some 11)  

The resolution of calls that use optional arguments is specified in Method Application Resolution (see §14.4). 

Optional arguments may not be used in member constraints.  

Note: Imported CLI metadata may specify arguments as optional and may additionally specify a 

default value for the argument. These are treated as F# optional arguments. CLI optional 

arguments can propagate an existing optional value by name; for example, ?ValueTitle = Some 

ƽƛƾ. 

For example, here is a fragment of a call to a Microsoft Excel COM automation API that uses 

named and optional arguments. 

chartobject.Chart.ChartWizard(Source = range5,  
                              Gallery = XlChartType.xl3DColumn,  
                              PlotBy = XlRowCol.xlRows,  
                              HasLegend = true,  
                              Title = "Sample Chart",  
                              CategoryTitle = "Sample Category Type",  
                              ValueTitle = "Sample Value Type")   



134 
 

CLI optional arguments are not passed as values of type Option<_> . If the optional argument is 

present, its value is passed. If the optional argument is omitted, the default value from the CLI 

metadata is supplied instead. The value System.Reflection.Missing.Value  is supplied for any 

CLI optional arguments of type System.Object  that do not have a corresponding CLI default value, 

and the default (zero-bit pattern) value is supplied for other CLI optional arguments of other types 

that have no default value. 

The compiled representation of members varies as additional optional arguments are added. The addition of 

optional arguments to a member signature results in a compiled form that is not binary-compatible with the 

previous compiled form. 

Marking an argument as optional is equivalent to adding the Microsoft.FSharp.Core.OptionalArgument  

attribute (§16.1) to a required argument. This attribute is added implicitly for optional arguments. Adding the 

[<OptionalArgument>] attribute to a parameter of type 'a option  in a virtual method signature is equivalent 

to using the (?x:'a)  syntax in a method definition. If the attribute is applied to an argument of a method, it 

should also be applied to all subsequent arguments of the method. Otherwise, it has no effect and callers must 

provide all of the arguments. 

8.13.6 Type-directed Conversions at Member I nvocations  

As described in Method Application Resolution (see §14.4), two type-directed conversions  are applied at method 

invocations. 

The first type-directed conversion converts anonymous function expressions and other function-valued 

arguments to delegate types. Given: 

¶ A formal parameter of delegate type D 

¶ An actual argument farg  of known type ty 1 - > ... - > ty n - > rty  

¶ Precisely n arguments to the Invoke  method of delegate type D  

 
Then: 

¶ The parameter is interpreted as if it were written:  

new D(fun arg 1 ... arg n - > farg  arg 1 ... arg n)  

 
If the type of the formal parameter is a variable type, then F# uses the known inferred type of the argument 

including instantiations to determine whether a formal parameter has delegate type. For example, if an explicit 

type instantiation is given that instantiates a generic type parameter to a delegate type, the following conversion 

can apply: 

type GenericClass<'T>() =  

    static member M(arg: 'T) = ()  

 

GenericClass<System.Action>.M(fun () - > ())  // allowed  

The second type-directed conversion enables an F# reference cell to be passed where a byref< ty > is expected. 

Given:  

¶ A formal out parameter of type byref< t y> 

¶ An actual argument that is not a byref type 

 
Then:  

¶ The actual parameter is interpreted as if it had type re f< ty >.  

 
For example: 

type C() =  

    static member M1(arg: System.Action) = ()  



135 
 

    static member M2(arg: byref<int>) = ()  

 

C.M1(fun () - > ())                  // allowed  

let f = (fun () - > ()) in C.M1(f)   // not allowed  

 

let result = ref 0  

C.M2(result)   // allowed  

Note: These type-directed conversions are primarily for interoperability with existing member-based 

.NET libraries and do not apply at invocations of functions defined in modules or bound locally in 

expressions. 

A value of type ref <ty>  may be passed to a function that accepts a byref parameter. The interior address of the 

heap-allocated cell that is associated with such a parameter is passed as the pointer argument. 

For example, consider the following C# code: 

public class C  

{  

    static public void IntegerOutParam(out int x) { x = 3; }  

}  

publi c class D  

{  

    virtual public void IntegerOutParam(out int x) { x = 3; }  

}  

 
This C# code can be called by the following F# code: 

let res1 = ref 0  

C.IntegerOutParam(res 1)  

// res1.contents now equals 3  

 
Likewise, the abstract signature can be implemented as follows: 

let x = {new D() with IntegerOutParam(res : byref <int> ) = res < -  4}  

let res2 = ref 0  

x.IntegerOutParam(res2);  

// res2.contents now equals 4  

8.13.7 Overloading of Methods   

Multiple methods that have the same name may appear in the same type definition or extension. For example: 

type MyForm() =  

    inherit System.Windows.Forms.Form()  

 

    member x.ChangeText(text: string) =  

        x.Text < -  text  

 

    member x.ChangeText(text: string, reason: string) =  

        x.Text < -  text  

        System.Windows.Forms.MessageBox.Show ("changing text due to " + reason)  

Methods must be distinct based on their name and fully inferred types, after erasure of type abbreviations and 

unit-of-measure annotations.  

Methods that take curried arguments may not be overloaded. 



136 
 

8.13.8 Naming Restrictions for Members  

A member in a record type may not have the same name as a record field in that type. 

A member may not have the same name and signature as another method in the type. This check ignores return 

types except for members that are named op_Implicit  or op_Explicit . 

8.13.9 Members Represented as Events 

Events are the CLI notion of a ñlistening pointòðthat is, a configurable object that holds a set of callbacks, which 

can be triggered, often by some external action such as a mouse click or timer tick. 

In F#, events are first-class values; that is, they are objects that mediate the addition and removal of listeners 

from a backing list of listeners. The F# library supports the type Microsoft.FSharp.Control.IEvent<_,_>  and 

the module Microsoft.FSharp.Control.Event , which contains operations to map, fold, create, and compose 

events. The type is defined as follows: 

type IDelegateEvent<'del when 'del :> System.Delegate > =  
    abstract AddHandler  : 'del - > unit  
    abstract RemoveHandler  : 'del - > unit  
 
type IEvent<'Del,'T when 'Del : delegate<'T,unit> and ' del :> System.Delegate > =  
    abstract Add  : event  :  ('T - > unit) - > unit  
    inherit IDelegateEvent<'del>  
 
type Handler<'T> =  delegate of sender  :  obj * 'T - > unit  
 
type IEvent<'T> = IEvent<Handler<'T>, 'T>  

The following shows a sample use of events: 

open System.Windows.Forms  

 

type MyCanvas() =  

    inherit F orm()  

    let event = new Event <PaintEventArgs>()  

    member x.Redraw = event.Publish  

    override x.OnPaint(args) = event.Trigger(args)  

 

let form = new MyCanvas()  

form.Redraw.Add(fun a rgs - > printf n "OnRedraw")  

form.Activate()  

Application.Run(form)  

Events from CLI languages are revealed as object properties of type 

Microsoft.FSharp.Control.IEvent< ty delegate ,  ty args >. The F# compiler determines the type arguments, 

which are derived from the CLI delegate type that is associated with the event. 

Event declarations are not built into the F# language, and event  is not a keyword. However, property members 

that are marked with the CLIEvent  attribute and whose type coerces to 

Microsoft.FSharp.Control. IDelegateEvent <ty delegate > are compiled to include extra CLI metadata and 

methods that mark the property name as a CLI event. For example, in the following code, the ChannelChanged 

property is currently compiled as a CLI event: 

type ChannelChangedHandler = delegate of obj * int - > unit  

 

type C() =  

    let channelChanged = new Event<ChannelChangedHandler,_>()  

    [<CLIEvent>]  

    member self.ChannelChanged = channelChanged.Publish  



137 
 

Similarly, the following shows the definition and implementation of an abstract event: 

type I =   

    [<CLIEvent >]     

    abstract ChannelChanged : IEvent<ChannelChanged,int>  

 

type ImplI() =  

    let channelChanged = new Event<ChannelChanged,_>()  

    inter face I with  

        [<CLIEvent>]  

        member self.ChannelChanged = channelChanged.Publish  

8.13.10  Members Represented as Static Members  

Most members are represented as their corresponding CLI method or property. However, in certain situations an 

instance member may be compiled as a static method. This happens when either of the following is true:  

¶ The type definition uses null  as a representation by placing the 

CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)  attribute on 

the type that declares the member. 

¶ The member is an extension member. 

 
Compilation of an instance member as a static method can affect the view of the type when seen from other 

languages or from System.Reflection.  A member that might otherwise have a static representation can be 

reverted to an instance member representation by placing the attribute 

CompilationRepresentation(CompilationRepresentationFlags.Instance)  on the member. 

For example, consider the following type: 

[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>]  

type option<'T> =  

    | None  

    | Some of 'T  

 

    member x.IsNone = match x with None - > true | _ - > false  

    member x.IsSome = match x with Some _ - > true | _ - > fa lse  

 

    [<CompilationRepresentation(CompilationRepresentationFlags.Instance)>]  

    member x.Item =  

        match x with  

        | Some x - > x  

        | None - > failwith "Option.Item"  

The IsNone  and IsSome properties are represented as CLI static methods. The Item  property is represented as 

an instance property. 

8.14 Abstract Members and Interface Implementations  
Abstract member definitions and interface declarations in a type definition represent promises that an object will 

provide an implementation for a corresponding contract.  



138 
 

8.14.1 Abstract Members  

An abstract member definition in a type definition represents a promise that an object will provide an 

implementation for a dispatch slot. For example: 

type IX =  

    abstract M : int - > int  

The abstract member M indicates that an object of type IX  will implement a displatch slot for a member that 

returns an int .  

A class definition may contain abstract member definitions, but the definition must be labeled with the 

AbstractClass  attribute: 

[<AbstractClass>]  

type X() =  

    abstract M : int - > int  

An abstract member definition has the form  

abstract access opt  member- sig   

where a member signature has one of the following forms 

ident typar - defns opt  : curried - sig  

ident typar - defns opt  : curried - sig with get  

ident typar - defns opt  : curried - sig with set  

ident typar - defns opt  : curried - sig with get,  set  

ident typar - defns opt  : curried - sig with set,  get  

and the curried signature has the form 

args - spec1 - > ... - > args - specn - > type   

If n Ó 2, then args - spec2 é args - specn must all be patterns without attribute or optional argument 

specifications.  

If get  or set  is specified, the abstract member is a property member. If both get  and set  are specified, the 

abstract member is equivalent to two abstract members, one with get  and one with set . 

8.14.2 Members that Implement Abstract Members  

An implementation member has the form: 

override ident . ident  pat 1 ... pat n = expr   

default ident . ident  pat 1 ... pat n = expr   

Implementation members implement dispatch slots. For example: 

[<AbstractClass>]  

type BaseClass()  = 

    abstract AbstractMethod : int - > int  

 

type SubClass(x: int) =  

    inherit BaseClass()  

    override obj .AbstractMethod n = n + x  

 

let v1  = BaseClass()              // not allowed Ƶ BaseClass is abstract  

let v2  = (SubClass(7) :> BaseClass)   

 

v2.AbstractMethod 6  / / evaluates to 13  

In this example, BaseClass()  declares the abstract slot AbstractMethod  and the SubClass  type supplies an 

implementation member obj.AbstractMethod , which takes an argument n and returns the sum of n and the 



139 
 

argument that was passed in the instantiation of SubClass . The v2 object instantiates SubClass  with the value 7, 

so v2.AbstractMethod  6 evaluates to 13. 

The combination of an abstract slot declaration and a default implementation of that slot create the F# equivalent 

of a ñvirtualò method in some other languagesðthat is, an abstract member that is guaranteed to have an 

implementation. For example: 

type BaseClass() =  

    abstract AbstractMethodWithDefaultImplementation  : int - > int  

    default obj .AbstractMeth odWithDefaultImplementation n = n  

 

type SubClass1(x: int) =  

    inherit BaseClass()  

    override obj .AbstractMethodWithDefaultImplementation n = n + x  

 

type SubClass2() =  

    inherit BaseClass()  

 

let v1  = BaseClass()    // allowed --  BaseClass contains a default implementation  

let v2  = (SubClass1(7) :> BaseClass)   

let v3  = (SubClass2() :> BaseClass)   

 

v1. AbstractMethodWithDefaultImplementation  6  // evaluates to 6  

v2. AbstractMethodWithDefaultImplementation  6  // evaluates to 13  

v3. AbstractMethodWithDefaultImplementation  6  // evaluates to 6  

Here, the BaseClass  type contains a default implementation, so F# allows the instantiation of v1. The 

instantiation of v2 is the same as in the previous example. The instantiation of v3 is similar to that of v1, because 

SubClass2  inherits directly from BaseClass  and does not override the default  method.  

Note: The keywords override  and default  are synonyms. However, it is recommended that 

default  be used only when the implementation is in the same class as the corresponding 

abstract  definition; override  should be used in other cases. This records the intended role of the 

member implementation.  

Implementations may override methods from System.Object : 

type BaseClass() =  

    override  obj .ToString() =  "I'm an instance of BaseClass"  

 

type SubClass(x: int) =  

    inherit BaseClass()  

    override obj .ToString() = "I'm an instance of SubClass"  

In this example, BaseClass  inherits from System.Object  and overrides the ToString  method from that class. 

The SubClass , in turn, inherits from BaseClass  and overrides its version of the ToString  method.  

Implementations may include abstract property members: 

[<AbstractClass>]  

type BaseClass() =  

    let mutable data1 = 0  

    let mutable data2 = 0  

    abstract AbstractPr operty : int  

    abstract AbstractSettableProperty : int  with get,  set  

 

    abstract AbstractPropertyWithDefaultImplementation : int  

    default obj .AbstractPropertyWithDefaultImplementation = 3  

 

    abstract AbstractSettablePropertyWithDefaultImplementation : int  with get,  set  

    default  obj .AbstractSettablePropertyWithDefaultImplementation  

        with get() = data2  



140 
 

        and set v = data2 < -  v 

 

type SubClass ( x: int ) =  

    inherit BaseClass()  

    let mutable data1b = 0  

    let mutable data2b = 0  

    override obj .AbstractProperty = 3 + x  

    override  obj .AbstractSettableProperty   

        with get() = data1b  + x  

        and set v = data1b < -  v -  x 

    override obj .AbstractPropertyWithDefaultImp lementation = 6 + x  

    override obj .AbstractSettablePropertyWithDefaultImplementation   

        with get() = data2b  + x  

        and set v = data2b < -  v -  x 

The same rules apply to both property members and method members. In the preceding example, BaseClass  

includes abstract properties named AbstractProperty , AbstractSettableProperty , 

AbstractPropertyWithDefaultImplementation , and 

AbstractSettablePropertyWithDefaultImplementation  and provides default implementations for the latter 

two. SubClass  provides implementations for AbstractProperty  and AbstractSettableProperty , and 

overrides the default implementations for AbstractPropertyWithDefaultImplementation  and 

AbstractSettablePropertyWithDefaultImplementation . 

Implementation members may also implement CLI events (§8.13.9). In this case, the member should be marked 

with the CLIEvent  attribute. For example: 

type ChannelChangedHa ndler = delegate of obj * int - > unit  

 

[<AbstractClass>]  

type BaseClass () =  

    [<CLIEvent>]  

    abstract ChannelChanged : IEvent<ChannelChangedHandler,  int>  

 

type SubClass() =  

    inherit BaseClass()  

    let mutable channel = 7  

    let channelChanged = new Event<ChannelChangedHandler,  int>()  

 

    [<CLIEvent>]  

    override self.ChannelChanged = channelChanged.Publish  

    member self.Channel  

        with get () = channel  

        and set v = channel < -  v; channelChanged.Trigger(se lf,  channel)  

BaseClass  implements the CLI event IEvent , so the abstract member ChannelChanged is marked with 

[<CLIEvent>]  as described earlier in §8.13.9. SubClass  provides an implementation of the abstract member, so 

the [<CLIEvent>]  attribute must also precede the override  declaration in SubClass .  

8.14.3 Interface Implementations  

An interface implementation specifies how objects of a given type support a particular interface. An interface in a 

type definition indicates that objects of the defined type support the interface. For example: 

type IIncrement =  

    abstract M : int - > int  

 

type IDecreme nt =  

    abstract M : int - > int  

 



141 
 

type C() =  

    interface IIncrement with  

        member x.M(n) = n  + 1 

    interface IDecrement with  

        member x.M(n) = n  -  1 

The first two definitions in the example are implementations of the interfaces IIncrement  and IDecrement . In 

the last definition,the type C supports these two interfaces. 

No type may implement multiple different instantiations of a generic interface, either directly or through 

inheritance. For example, the following is not permitted: 

// This type definition is not permitted because it implements two instantiations  

// of the same generic interface  

type ClassThatTriesToImplemenTwoInstantiations() =  

    interface System.IComparable<int> with  

        member x.CompareTo(n :  int) = 0  

    interface System.IComparable<string> with  

        member x.CompareTo(n :  string) = 1  

Each member of an interface implementation is checked as follows: 

¶ The member must be an instance member definition. 

¶ Dispatch Slot Inference (§14.7) is applied. 

¶ The member is checked under the assumption that the ñthisò variable has the enclosing type. 

 
In the following example, the value x has type C. 

type C() =  

    interface IIncrement with  

        member x.M(n) = n  + 1 

    interface IDecrement with  

        member x.M(n) = n  -  1 

All interface implementations are made explicit. In its first implementation, every interface must be completely 

implemented, even in an abstract class. However, interface implementations may be inherited from a base class. 

In particular, if a class C implements interface I , and a base class of C implements interface I , then C is not 

required to implement all the methods of I ;it can implement all, some, or none of the methods instead. For 

example: 

type I1 =  

    abstract V1 : string  

    abstract V2 : string  

     

type I2 =  

    inherit I1  

    abstract V3 : string  

     

type C1() =  

    interface I1 with  

        member this.V1 = "C1"  

        member this.V2 = "C2"  

 

// This is OK  

type C2() =  

    inherit C1()  

 

// This is also OK ;  C3 implements I2 but not I1 .  

type C3() =  

    inherit C1()  

    interface I2 with  



142 
 

        member this.V 3 = "C3"  

 

// This is also OK ;  C4 implements one method in I1 .  

type C4() =  

    inherit C1()  

    interface I1 with  

        member this.V2 = "C2b"  

8.15  Equality, Hashing , and Comparison  
Functional programming in F# frequently involves the use of structural equality, structural hashing, and structural 

comparison. For example, the following expression evaluates to true , because tuple types support structural 

equality: 

(1,  1 + 1) = (1,  2)  

Likewise, these two function calls return identical values: 

hash (1,  1 +1 )  
hash (1,2)  

Similarly, an ordering on constituent parts of a tuple induces an ordering on tuples themselves, so all the 

following evaluate to true : 

(1,  2) < (1,  3)  
(1,  2) < (2,  3)  
(1,  2) < (2,  1)  
(1,  2) > (1,  0)  

The same applies to lists, options, arrays, and user-defined record, union, and struct types whose constituent 

field types permit structural equality, hashing, and comparison. For example, given: 

type R = R of int * int  

then all of the following also evaluate to true : 

R (1, 1  + 1) = R (1, 2)  

 

R (1, 3) <> R (1, 2)  

 

hash (R (1, 1  + 1)) = hash (R (1, 2))  

 

R (1, 2) < R (1, 3)  

R (1, 2) < R (2, 3)  

R (1, 2) < R (2, 1)  

R (1, 2) > R (1, 0)  

To facilitate this, by default, record, union, struct, and exception type definitions, called structural types, implicitly 

include compiler-generated declarations for structural equality, hashing, and comparison. These implicit 

declarations consist of the following for structural equality and hashing: 

override x.GetHashCode() = ...  
override x.Equals(y:obj) = ...  
interface System.Collections.IStructuralEquatable with  
    member x.Equals(yobj: obj, comparer: System.Collections.IEqualityComparer) = ...  
    member x.GetHashCode(comparer: System.IEqualityComparer) = ...  

The following declarations enable structural comparison: 

interface System.IComparable with    
    member x.CompareTo(y:obj) = ...  
interface System.Collections.IStructuralComparable with  
    member x.CompareTo(yobj: obj, comparer: System.Collections.IComparer) = ...  



143 
 

Implicit declarations are never generated for interface, delegate, class, or enum types. Enum types implicitly 

derive support for equality, hashing, and comparison through their underlying representation as integers. 

8.15.1 Equality Attributes  

Several attributes affect the equality behavior of types:  

Microsoft.FSharp.Core.NoEquality  

Microsoft.FSharp.Core.ReferenceEquality  

Microsoft.FSharp.Core.StructuralEquality  

Microsoft.FSharp.Core.CustomEquality  

The following table lists the effects of each attribute on a type:  

Attrribute Effect 

NoEquality  Á No equality or hashing is generated for the type. 

Á The type does not satisfy the ty  : equality  constraint. 

ReferenceEquality  Á No equality or hashing is generated for the type.  

Á The defaults for System.Object  will implicitly be used. 

StructuralEquality  Á The type must be a structural type. 

Á All structural field types ty  must satisfy ty  : equality . 

CustomEquality  Á The type must have an explicit implementation of 
override Equals(obj: obj)  

None Á For a non-structural type, the default is ReferenceEquality . 

Á For a structural type: 
The default is NoEquality  if any structural field type F fails F : equality .  

The default is StructuralEquality  if all structural field types F satisfy 

F : equality . 
 
Equality inference also determines the constraint dependencies of a generic structural type. That is:  

¶ If a structural type has a generic parameter 'T  and T : equality  is necessary to make the type default to 

StructuralEquality , then the EqualityConditionalOn  constraint dependency is inferred for 'T . 

8.15.2 Comparison Attributes  

The comparison behavior of types can be affected by the following attributes:  

Microsoft.FSharp.Core.NoComparison  

Microsoft.FSharp.Core.StructuralComparison  

Microsoft.FSharp.Core.CustomComparison  

The following table lists the effects of each attribute on a type. 

Attribute Effect 

NoComparison Á No comparisons are generated for the type. 

Á The type does not satisfy the ty  : comparison  constraint. 

StructuralComparison  Á The type must be a structural type other than an exception type. 

Á All structural field types must ty  satisfy ty  : comparison . 

Á An exception type may not have the StructuralComparison  attribute. 

CustomComparison Á The type must have an explicit implementation of one or both of the following: 
interface System.IComparable  
interface System.Collections.IStructuralComparable  

Á A structural type that has an explicit implementation of one or both of these 
contracts must specify the CustomComparison attribute. 

None Á For a non-structural or exception type, the default is NoComparison. 

Á For any other structural type: 

The default is NoComparison if any structural field type F fails F :  comparison .  

The default is StructuralComparison  if all structural field types F satisfy 

F : comparison . 
 



144 
 

This check also determines the constraint dependencies of a generic structural type. That is:  

¶ If a structural type has a generic parameter 'T  and T : comparison  is necessary to make the type default 

to StructuralComparison , then the ComparisonConditionalOn  constraint dependency is inferred for 'T . 

 
For example: 

[<StructuralEquality; StructuralComparison>]  

type X = X of (int - > int)  

results in the following message: 

The struct, record or union type 'X' has the 'StructuralEquality' attribute  

but the component type '(int - > int)' does not satisfy the 'equality' constraint  

For example, given 

t ype R1 =  

    { myData : int }  

    static member Create() = { myData = 0 }  

 

[<ReferenceEquality>]  

type R2 =  

    { mutable myState : int }  

    static member Fresh( ) = { myState = 0 }  

 

[<StructuralEquality; NoComparison >]  

type R3 =  

    { someType : System.Type }  

    static member  Make() = { someType = typeof<int> }  

then the following expressions all evaluate to true : 

R1.Create() = R1.Create()  

not (R2.Fresh() = R2.Fresh())  

R3.Make() = R3.Make()  

Combinations of equality and comparion attributes are restricted. If any of the following attributes are present, 

they may be used only in the following combinations: 

¶ No attributes 

¶ [<NoComparison>]  on any type 

¶ [<NoEquality ; NoComparison>]  on any type 

¶ [<CustomEquality; NoComparison>]  on a structural type 

¶ [<ReferenceEquality>]  on a non-struct structural type 

¶ [<ReferenceEquality; NoComparison>]  on a non-struct structural type 

¶ [<StructuralEquality; NoComparison>]  on a structural type 

¶ [<CustomEquality; CustomComparison>]  on a structural type 

¶ [<StructuralEquality; CustomComparison>]  on a structural type 

¶ [<StructuralEquality; StructuralComparison>]  on a structural type 

8.15.3 Behavior of the Generated Object.Equals Implemen tation  

For a type definition T, the behavior of the generated override x.Equals(y:obj) = ...  implementation is as 

follows.  



145 
 

1. If the interface System.IComparab le  has an explicit implementation, then just call 

System.IComparable.CompareTo : 

override x.Equals(y  :  obj) =  

     ((x :> System.IComparable).CompareTo(y) = 0)  

2. Otherwise:  

¶ Convert the y argument to type T. If the conversion fails, return false . 

¶ Return false  if T is a reference type and y is null. 

¶ If T is a struct or record type, invoke Microsoft.FSharp.Core.Operators.(=)  on each corresponding 

pair of fields of x and y in declaration order. This method stops at the first false  result and returns 

false . 

¶ If T is a union type, invoke Microsoft.FSharp.Core. Operators.(=)  first on the index of the union 

cases for the two values, then on each corresponding field pair of x and y for the data carried by the 

union case. This method stops at the first false  result and returns false .  

¶ If T is an exception type, invoke Microsoft.FSharp.Core.Operators.(=)  on the index of the tags for 

the two values, then on each corresponding field pair for the data carried by the exception. This method 

stops at the first false  result and returns false . 

8.15.4 Behavior of the Generated CompareTo Implementations  

For a type T, the behavior of the generated System.IComparable.CompareTo  implementation is as follows: 

¶ Convert the y argument to type T . If the conversion fails, raise the InvalidCastException . 

¶ If T is a reference type and y is null, return 1. 

¶ If T is a struct or record type, invoke Microsoft.FSharp.Core.Operators.compare  on each corresponding 

pair of fields of x and y in declaration order, and return the first non-zero result. 

¶ If T is a union type, invoke Microsoft.FSharp.Core.Operators.compare  first on the index of the union 

cases for the two values, and then on each corresponding field pair of x and y for the data carried by the 

union case. Return the first non-zero result. 

 
The first few lines of this code can be written: 

i nterface System.IComparable with  

    member x.CompareTo(y:obj) =  

        let y = (obj  :?> T) in  

        match obj  with  

        | null - > 1  

        | _ - > ...  

8.15.5 Behavior of the Generated  GetHashCode Implementations  

For a type T, the generated System. Object. GetHashCode()  override implementd a combination hash of the 

structural elements of a structural type. 

8.15.6 Behavior of Hash, =, and Compare  

The generated equality, hashing, and comparison declarations that are described in sections 8.15.3, 8.15.4, and 

8.15.5 use the hash, = and compare functions from the F# library. The behavior of these library functions is 

defined by the pseudocode later in this section. This code ensures: 

¶ Ordinal comparison for strings 



146 
 

¶ Structural comparison for arrays 

¶ Natural ordering for native integers (which do not support System.IComparable )  



147 
 

8.15.6.1 Pseudocode for Microsoft.FSharp.Core.Operators.compare  

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to (=) , compare, 

and hash for all base types, and faster paths are used for comparing most arrays. 

open System   

 

/// Pseudo code for code implementation of generic comparison.  

let rec compare x y =  

    let xobj = box x  

    let yobj = box y  

    match xobj, yobj  with  

    | null,  null - > 0  

    | null,  _ - > - 1 

    | _,  null - > 1  

 

    // Use Ordinal comparison for strings  

    | (:? string as x),(:? string as y) - >  

        String.CompareOrdinal(x, y)  

 

    // Special types not supporting IComparable  

    |  (:? Array as arr1), (:? Array as arr2) - > 

        ... compare the arrays by rank, lengths and elements ...  

    | (:? nativeint as x),(:? nativeint as y) - >  

        ... compare the native integers x and y....  

    | (:? unativeint as x),(:? unativeint as y) - >  

        ... compare the unsigned integers x and y....  

 

    // Check for IComparable  

    | (:? IComparable as x),_ - > x.CompareTo(yobj)  

    | _,(:? IComparable a s yc) - > - (sign(yc.CompareTo(xobj)))  

 

    // Otherwise raise a runtime error  

    | _ - > raise (new ArgumentException(...))  

 

8.15.6.2 Pseudo code for Microsoft.FSharp.Core.Operators.(=)  

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to (=) , compare, 

and hash for all base types, and faster paths are used for comparing most arrays  

open System  

 

/// Pseudo code for core implementation of generic equality.  

let rec (=) x y =  

      let xobj = box x  

      let yobj = box y  

      match xobj,yobj with  

       | null,null - > true  

       | null,_ - > false  

       | _,null - > false  

 

       // Special types not supporting IComparable  

       | (:? Array as arr1), (:? Array as arr2) - >  

            ... compare the arrays by rank, lengths and elements ...  

 

       // Ensure NaN semantics on recursive calls  

       | (:? float as f1), (:? float as f2) - >  

            ... IEEE equality on f1 and f2...  

       | (:? float32 as f1), (:? float32 as f2) - >  



148 
 

            .. . IEEE equality on f1 and f2...  

 

       // Otherwise use Object.Equals. This is reference equality  

       // for reference types unless an override is provided (implicitly  

       // or explicitly).  

       | _ - > xobj.Equals(yobj)



 Units Of Measure 
F# supports static checking of units of measure. Units of measure, or measures for short, are like types in that 

they can appear as parameters to other types and values (as in float<kg> , vector<m/s> , add<m>), can contain 

variables (as in float<'U> ), and are checked for consistency by the type-checker.  

However, measures differ from types in several important ways: 

¶ Measures play no role at runtime; in fact, they are erased.  

¶ Measures obey special rules of equivalence, so that N m can be interchanged with m N. 

¶ Measures are supported by special syntax. 

 
The syntax of constants (§4.3) is extended to support numeric constants with units of measure. The syntax of 

types is extended with measure type annotations. 

measure- literal - atom :=  
    long - ident  --  named measure e.g. kg  
    ( measure- literal - simp  )  --  parenthesized measure , such as  (N m)  
 
measure- literal - power :=  
    measure- literal - atom 
    measure- literal - atom ^ int32  --  power of measure , such as  m^3 
 
measure- literal - seq :=   
    measure- literal - power 
    measure- literal - power measure - literal - seq 
 
measure- literal - simp :=  
    measure- literal - seq  --  implicit product , such as  m s^- 2 
    measure- literal - simp * measure- literal - simp --  product , such as  m * s^3  
    measure- literal - simp / measure- literal - simp --  quotien t, such as  m/s^2 
    / measure- literal - simp --  reciprocal , such as  /s  
    1 --  dimensionless  
 
measure- literal :=  
    _ --  anonymous measure 
    measure- literal - simp  --  simple measure , such as  N m 
 
const  :=  
    ...  
    sbyte < measure- literal  > --  8- bit integer constant  
    int16 < measure- literal  > --  16- bit integer constant  
    int32 < measure- literal  > --  32- bit integer constant  
    int64 < measure- literal  > --  64- bit integer constant  
    ieee32 < measure- literal  > --  single - precision float32 con stant  
    ieee64 < measure- literal  > --  double - precision float constant  
    decimal < measure- literal > --  decimal constant  
 
measure- atom :=  
    typar    --  variable measur e, such as  'U  
    long - ident    --  named measure, such as  kg  
    ( measure- simp )   --  parenthesized measure , such as  (N m)  
 
measure- power :=  
    measure- atom 
    measure- atom ^ int32   --  power of measure , such as  m^3 
 
measure- seq :=  
    measure- power 
    measure- power measure - seq 



150 
 

 
measure- simp  :=  
    measure- seq   --  implicit product , such  as 'U 'V^3  
    measure- simp  * measure- simp --  product , such as  'U * 'V  
    measure- simp / measure- simp  --  quotient , such as  'U / 'V  
    / measure- simp  --  reciprocal , such as  /'U  
    1 --  dimensionless measure (no units)  
 
measure :=  
    _   --  anonymous measure 
    measure- simp --  simple measure , such as  'U 'V  

Measure definitions use the special  Measur e attribute on type definitions. Measure parameters use the syntax of 

generic parameters with the same special Measure attribute to parameterize types and members by units of 

measure. The primitive types sbyte , int16 , int32 , int64 , float , float32 , and decimal  have non-

parameterized (dimensionless) and parameterized versions.  

Here is a simple example: 

[< Measure>] type m    // base measure: meters  
[<Measure>] type s    // base measure: seconds  
[<Measure>] type sqm = m^2   // derived measure: square meters  
let areaOfTriangle (baseLength:float<m>, height:float<m>) : float<sqm> =  
    baseLength*height/2.0  
 
let distanceTravelled (speed:float<m/s>, time:float<s>) : float<m> = speed*time  

As with ordinary types, F# can infer that functions are generic in their units. For example, consider the following 

function definitions: 

let sqr (x:float<_>) = x*x  
 
let sumOfSquar es x y = sqr x + sqr y  

The inferred types are: 

val sqr : float<' u> - > float<' u ^ 2>  
 
val sumOfSquares : float<' u> - > float<' u> - > float<' u ^ 2>  
 

Measures are type-like annotations such as kg or m/s or m^2. Their special syntax includes the use of *  and /  for 

product and quotient of measures, juxtaposition as shorthand for product, and ^ for integer powers.  

9.1 Measures 
Measures are built from:  

¶ Atomic measures from long identifiers such as SI.kg  or MyUnits.feet . 

¶ Product measures, which are written measure measure (juxtaposition ) or measure *  measure. 

¶ Quotient measures, which are written measure /  measure. 

¶ Integer powers of measures, which are written measure ^ int .  

¶ Dimensionless measures, which are written 1.  

¶ Variable measures, which are written 'u or 'U . Variable measures  can include anonymous measures _, 

which indicates that the compiler can infer the measure from the context. 

Dimensionless measures indicate ñwithout units,ò but are rarely needed, because non-parameterized types such 

as float  are aliases for the parameterized type with 1 as parameter, that is, float = float<1> . 



151 
 

The precedence of operations involving measure is similar to that for floating-point expressions:  

¶ Products and quotients (*  and / ) have the same precedence, and associate to the left, but juxtaposition has 

higher syntactic precedence than both *  and / . 

¶ Integer powers (^) have higher precedence than juxtaposition.  

¶ The / symbol can also be used as a unary reciprocal operator.  

9.2 Constants Annotated by Measures  
A floating-point constant can be annotated with its measure by specifying a literal measure in angle brackets 

following the constant.  

Measure annotations on constants may not include measure variables. 

Here are some examples of annotated constants: 

let earthGravity = 9.81f<m/s^2>  

let atmosphere = 101325.0<N m^ - 2> 

let zero = 0.0f<_>  

Constants that are annotated with units of measure are assigned a corresponding numeric type with the measure 

parameter that is specified in the annotation. In the example above, earthGravity  is assigned the type 

float32<m/s^2> , atmosphere  is assigned the type float<N/m^2>  and zero  is assigned the type float<'U> . 

9.3 Relations on Measures  
After measers are parsed and checked, they are maintained in the following normalized form: 

measure- int  := 1 | long - ident  | measure- par  | measure- int  measure- int  | / measure- int  

Powers of measures are expanded. For example, kg^3  is equivalent to kg kg kg . 

Two measures are indistinguishable if they can be made equivalent by repeated application of the following rules: 

¶ Commutativity. measure- int 1 measure- int 2 is equivalent to measure- int 2 measure- int 1. 

¶ Associativity. It does not matter what grouping is used for juxtaposition (product) of measures, so 

parentheses are not required. For example, kg m s  can be split as the product of kg m and s, or as the 

product of kg and m s. 

¶ Identity. 1 measure- int  is equivalent to measure- int . 

¶ Inverses. measure - int / measure- int  is equivalent to 1. 

¶ Abbreviation. long - ident is equivalent to measure if  a measure abbreviation of the form [<Measure>] 

type long - ident  = measure is currently in scope. 

 
Note that these are the laws of Abelian groups together with expansion of abbreviations. 

For example, kg m / s^2  is the same as m kg / s^2 .  

For presentation purposes (for example, in error messages), measures are presented in the normalized form that 

appears at the beginning of this section, but with the following restrictions: 

¶ Powers are positive and greater than 1. This splits the measure into positive powers and negative powers, 

separated by / . 



152 
 

¶ Atomic measures are ordered as follows: measure parameters first, ordered alphabetically, followed by 

measure identifiers, ordered alphabetically. 

 
For example, the measure expression m^1 kg s^ - 1 would be normalized to kg m / s . 

This normalized form provides a convenient way to check the equality of measures: given two measure 

expressions measure- int 1 and measure- int 2, reduce each to normalized form by using the rules of 

commutativity, associativity, identity, inverses and abbreviation, and then compare the syntax. 

9.3.1 Constraint Solving  

The mechanism described in §14.5 is extended to support equational constraints between measure expressions. 

Such expressions arise from equations between parameterized typesðthat is, when type <tyarg 11,...,  

tyarg 1n> = type <tyarg 21,...,  tyarg 2n> is reduced to a series of constraints tyarg 1i  = tyarg 2i . For the 

arguments that are measures, rather than types, the rules listed in §9.3 are applied to obtain primitive equations 

of the form 'U = measure- int where 'U  is a measure variable and measure- int  is a measure expression in 

internal form. The variable 'U  is then replaced by measure- int  wherever else it occurs. For example, the 

equation float<m^2/s^2> = float<'U^2>  would be reduced to the constraint m^2/s^2 = 'U^2 , which would 

be further reduced to the primitive equation 'U = m/s .  

If constraints cannot be solved, a type error occurs. For example, the following expression 

fun (x  :  float<m^2>,  y :  float<s>) - > x  + y 

would eventually)result in the constraint m^2 = s , which cannot be solved, indicating a type error. 

9.3.2 Generalization  of Measure Variable s 

Analogous to the process of generalization of type variables described in §14.6.7, a generalization procedure 

produces measure variables over which a value, function, or member can be generalized.  

9.4 Measure Definitions  
Measure definitions define new named units of measure by using the same syntax as for type definitions, with the 

addition of the Measure attribute. For example: 

[<Measure>] type kg  

[<Measure>] type m  

[<Measure>] type s  

[<Measure>] type N = kg / m s^2  

A primitive measure abbreviation defines a fresh, named measure that is distinct from other measures. Measure 

abbreviations, like type abbreviations, define new names for existing measures. Also like type abbreviations, 

repeatedly eliminating measure abbreviations in favor of their equivalent measures must not result in infinite 

measure expressions. For example, the following is not a valid measure definition because it results in the infinite 

squaring of X: 

[<Measure>] type X = X^2  

Measure definitions and abbreviations may not have type or measure parameters. 



153 
 

9.5 Measure Paramete r Definitions  
Measure parameter definitions can appear wherever ordinary type parameter definitions can (see §5.2.9). If an 

explicit parameter definition is used, the parameter name is prefixed by the special Measure attribute. For 

example: 

val sqr<[<Measure>] 'U> : float<'U> - > float<'U^2>  

 

type  Vector<[<Measure>] 'U> =  

    { X: float<'U>;  

      Y: float<'U>;  

      Z: float<'U>}  

 

type Sphere<[<Measure>] 'U> =  

    { Center:Vector<'U>;  

      Radius:float<'U> }  

 

type Disc<[<Measure>] 'U> =  

    { Center:Vector<'U>;  

      Radius:float<'U>;  

      Norm:Vector<1> }  

 

type SceneObject<[<Measure>] 'U> =  

    | Sphere of Sphere<'U>  

    | Disc of Disc<'U>  

Internally, the type checker distinguishes between type parameters and measure parameters by assigning one of 

two sorts (Type or Measure) to each parameter. This technique is used to check the actual arguments to types 

and other parameterized definitions. The type checker rejects ill-formed types such as float<int>  and 

IEnumerable<m/s> . 

9.6 Measure Parameter Erasure  
In contrast to type parameters on generic types, measure parameters are not exposed in the metadata that the 

runtime interprets; instead, measures are erased. Erasure has several consequences: 

¶ Casting is with respect to erased types. 

¶ Method application resolution (see §14.4) is with respect to erased types. 

¶ Reflection is with respect to erased types. 

9.7 Type Definitions with Measures in the F# Core Library  
The F# core library defines the following types: 

type float<[<Measure>] 'U>  

type float32<[<Measure>] 'U>  

type decimal<[<Measure>] 'U>  

type int<[<Measure>] 'U>  

type sbyte<[<Measure>] 'U>  

type int16<[<Measu re>] 'U>  

type int64<[<Measure>] 'U>  



154 
 

Note: These definitions are called measure-annotated base types and are marked with the 

MeasureAnnotatedAbbreviation  attribute in the implementation of the library. The 

MeasureAnnotatedAbbreviation  attribute is not for use in user code and in future revisions of the 

language may result in a warning or error. 

These type definitions have the following special properties: 

¶ They extend System.ValueType . 

¶ They explicitly implement System.IFormattable , System.IComparable , System.IConvertible , and 

corresponding generic interfaces, instantiated at the given typeðfor example, 

System.IComparable< float<'u>>  and System.IEquatable<float<'u>>  (so that you can invoke, for 

example, CompareTo after an explicit upcast). 

¶ As a result of erasure, their compiled form is the corresponding primitive type. 

¶ For the purposes of constraint solving and other logical operations on types, a type equivalence holds 

between the unparameterized primitive type and the corresponding measured type definition that is 

instantiated at <1>: 

sbyte = sbyte<1>  

int16 = int16<1>  

int32 = int32<1>  

int64 = int64<1>  

float = float<1>  

float32 = float32<1>  

decimal = decimal<1>  

¶ The measured type definitions sbyte , int16 , int32 , int64 , float32 , float , and decimal  are assumed to 

have additional static members that have the measure types that are listed in the table. Note that N is any of 

these types, and F is either float32  or float . 

Member Measure Type 

Sqrt   F<'U^2> - > F<'U>  

Atan2   F<'U> - > F<'U> - > F<1>  

op_Addition  

op_Subtraction  

op_Modulus  

N<'U> - > N<'U> - > N<'U>  

op_Multiply  N<'U> - > N<'V> - > N<'U 'V>  

op_Division  N<'U> - > N<'V> - > N<'U/'V>  

Abs  

op_UnaryNegation   

op_UnaryPlus  

N<'U> - > N<'U>  

Sign  N<'U> - > int  

 
This mechanism is used to support units of measure in the following math functions of the F# library:  
(+) ,( - ) , (*) , (/) ,(%) ,(~+) ,(~ - ) ,abs, sign , atan2  and sqrt .



 Namespaces and Modules  
F# is primarily an expression-based language. However, F# source code units are made up of declarations, 

some of which can contain further declarations. Declarations are grouped using namespace declaration groups, 

type definitions, and module definitions. These also have corresponding forms in signatures. For example, a file 

may contain multiple namespace declaration groups, each of which defines types and modules, and the types 

and modules may contain member, function, and value definitions, which contain expressions. 

Declaration elements are processed in the context of an environment. The definition of the elements of an 

environment is found in §14.1. 

namespace- decl - group  :=  
    namespace long - ident  module- elems  --  elements within a namespace  
    namespace global module- elems   --  elements within no namespace  
 
module- defn  :=  
    attributes opt  module access opt  ident  = module- defn - body 
 
module- defn - body :=  
    begin module- elemsopt  end  
 
module- elem :=  
    module- function - or - value - defn    --  function or value definitions  
    type - defns      --  type definitions  
    exception - defn       --  exception definitions  
    module- defn             --  module definitions  
    module- abbrev    --  module abbreviations  
    import - decl    --  import declarations  
    compiler - directive - decl   --  compiler directives  
 
module- function - or - value - defn  :=  
    attributes opt  let function - defn    
    attributes opt  let value - defn    
    attributes opt  let rec opt  function - or - value - defns   
    attributes opt  do expr      
 
import - decl  := open long - ident   
 
module- abbrev  := module ident  = long - ident  
 
compiler - directive - decl  := # ident  string  ... string   
 
module- elems := module- elem ... module- elem 
 
access  :=  
    private  
    internal  
    public  

10.1 Namespace Declaration Groups  
Modules and types in an F# program are organized into namespaces, which encompass the identifiers that are 

defined in the modules and types. New components may contribute entities to existing namespaces. Each such 

contribution to a namespace is called a namespace declaration group.  



156 
 

In the following example, the MyCompany.MyLibrary  namespace contains Values  and x: 

namespace MyCompany.MyLibrary  

 

    module Values1 =  

        let x = 1  

A namespace declaration group is the basic declaration unit within an F# implementation file and is of the form 

namespace long - ident  

 

    module- elems  

The long - ident  must be fully qualified. Each such group contains a series of module and type definitions that 

contribute to the indicated namespace. An implementation file may contain multiple namespace declaration 

groups, as in this example: 

namespace MyCompany.MyOtherLibrary  

 

    type MyType() =  

      let x = 1  

        member v.P = x  + 2 

 

    module MyInnerModule =  

        let myValue = 1  

 

namespace MyCompany.MyOtherLibrary.Collections  

 

    type MyCollection(x  :  int) =  

      member v.P = x  

Namespace declaration groups may not be nested. 

A namespace declaration group can contain type and module definitions, but not function or value definitions. For 

example: 

namespace MyCompany.MyLibrary  

 

   // A type definition in a namespace 

   type MyType() =         

      let x = 1  

       member v.P = x+2  

 

   // A module definition in a namespace  

   module MyInnerModule =  

        let myValue = 1  

 

   // The following is not allowed: value  definitions  are not allowed in namespaces  

   let addOne x = x + 1    

When a namespace declaration group N is checked in an environment env, the individual declarations are 

checked in order and an overall namespace declaration group signature Nsig  is inferred for the module. An entry 

for N is then added to the ModulesAndNamespaces table in the environment env (see §14.1.3). 

Like module declarations, namespace declaration groups are processed sequentially rather than simultaneously, 

so that later namespace declaration groups are not in scope when earlier ones are processed. This prevents 

invalid recursive definitions. In the following example, the declaration of x in Module1 generates an error because 

the Utilities.Part2  namespace is not in scope:  



157 
 

namespace Utilities.Part1  

 

    module Module1 =  

        let x = Utilities.Part2.Module2.x + 1  // error (Part2 not yet declared)  

 

namespace Utilities.Part2  

 

    module Module2 =  

        let x = Utilities.Part1.Module1.x + 2  

Within a namespace declaration group, the namespace itself is implicitly opened if any preceding namespace 

declaration groups or referenced assemblies contribute to it. For example:  

namespace MyCompany.MyLibrary  

 

   module Values1 =  

      let x = 1  

 

namespace MyCompany.MyLibrary  

 

   // Here, the i mplicit open of MyCompany.MyLibrary brings  Values1 into scope  

 

   module Values2 =  

      let x = Values1.x  

10.2 Module Definitions  
A module definition is a named collection of declarations such as values, types, and function values. Grouping 

code in modules helps keep related code together and helps avoid name conflicts in your program. For example: 

module MyModule =  

    let x = 1  

    type Foo = A | B  

    module MyNestedModule =  

        let f y = y + 1  

        type Bar = C | D  

When a module definition M is checked in an environment env0, the individual declarations are checked in order 

and an overall module signature Msig  is inferred for the module. An entry for M is then added to the 

ModulesAndNamespaces table to environment env0 to form the new environment used for checking subsequent 

modules. 

Like namespace declaration groups, module definitions are processed sequentially rather than simultaneously, 

so that later modules are not in scope when earlier ones are processed.  

module Part1 =  

 

   let x = Part2.StorageCache()  // error (Part2 not yet declared)  

 

module Part2 =  

 

   type StorageCache() =  

      member cache.Clear() = ()  

No two types or modules may have identical names in the same namespace. The  

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]  attribute adds the 

suffix Module to the name of a module to distinguish the module name from a type of a similar name.  



158 
 

For example, this is frequently used when defining a type and a set of functions and values to manipulate values 

of this type.  

type Cat(kind: string) =  

   member x.Meow() = printfn "meow"  

   member x.Purr() = printfn "purr"  

   member x.Kind = kind  

 

[< CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]  

module Cat = 

 

   let tabby = Cat "Tabby"  

   let purr (c:Cat) = c.Purr()  

   let purrTwice (c:Cat) = purr(); purr()  

 

Cat.tabby |> Cat.purr |> Cat.purrTwice  

10.2.1 Function and Value Definitio ns in Modules  

Function and value definitionsin modules  introduce named values and functions.  

  let rec opt  function - or - value - defn 1 and ... and function - or - value - defn n  

The following example defines value x and functions id  and fib : 

module M =  

    let x = 1  

    let id x = x  

    let rec fib x = if x <= 2 then 1 else fib (n  -  1) + fib (n  -  2)  

Function and value definitions in modules may declare explicit type variables and type constraints: 

    let pair<'T>(x  :  'T) = (x, x)  

    let dispose<'T when 'T :> System.IDisposable>(x  :  'T) = x.Dispose()  

    let convert<'T, 'U>(x) = unbox<'U>(box<'T>(x))  

A value definition that has explicit type variables is called a type function (§10.2.3). 

Function and value definitions may specify attributes:  

    // A value definition with the System.Obsolete attribute  

    [<System.Obsolete("Don't use this")>]  

    let oneTwoPair = ( 1, 2)  

 

    // A function definition with an attribute  

    [<System.Obsolete("Don't use this  either ")>]  

    let pear v = ( v, v)  

By the use of pattern matching, a value definition can define more than one value . In such cases, the attributes 

apply to each value. 

    // A value definition that defines  two values, each with an attribute  

    [<System.Obsolete(" Don't use this")>]  

    let (a, b) = (1, 2)  

Values may be declared mutable: 

    // A value definition that defines  a mutable value  

    let mutable count = 1  

    let f reshName() = (count < -  count + 1; count)  

Function and value definitions in modules are processed in the same way as function and value definitions in 

expressions (§14.6), with the following adjustments:  



159 
 

¶ Each defined value may have an accessibility annotation (§10.5). By default, the accessibility annotation of a 

function or value definition in a module is public. 

¶ Each defined value is externally accessible if its accessibility annotation is public  and it is not hidden by an 

explicit signature. Externally accessible values are guaranteed to have compiled CLI representations in 

compiled CLI binaries. 

¶ Each defined value can be used to satisfy the requirements of any signature for the module (§11.2). 

¶ Each defined value is subject to arity analysis (§14.10). 

¶ Values may have attributes, including the ThreadStatic  or ContextStatic  attribute. 

10.2.2 Literal  Definitions in Modules  

Value definitions in modules may have the Literal  attribute. This attribute causes the value to be compiled as a 

constant. For example:  

[<Literal>]  

let PI = 3.141592654  

Literal values may be used in custom attributes and pattern matching. For example: 

[<Literal>]  

let StartOfWeek = System.DayOfWeek.Monday  

 

[ <MyAttribute(StartOfWeek) >]  

let feeling(day) =  

    match day with  

    | StartOfWeek - > "rough"  

    | _ - > "great"  

 

A value that has the Literal  attribute is subject to the following restrictions: 

¶ It may not be marked mutable  or inline .  

¶ It may not also have the ThreadStatic  or ContextStatic  attributes. 

¶ The right-hand side expression must be a literal constant expression that is made up of either: 

¶ A simple constant expression, with the exception of (), native integer literals, unsigned native integer 

literals, byte array literals, BigInteger literals, and user-defined numeric literals. 

ðORð 

¶ A reference to another literal. 

10.2.3 Type Function  Definitions in Modules  

Value definitions within modules may have explicit generic parameters. For example, ƥ4 is a generic parameter 

to the value empty: 

let empty<'T> : (list<'T> * Set<'T>) = ([], Set.empty)  

A value that has explicit generic parameters but has arity []  (that is, no explicit function parameters) is called a 

type function. The following are some example type functions from the F# library: 

val typeof<'T> : System.Type  

val sizeof<'T> : int  

module Set =  

    val empty<'T> : Set<'T>  

module Map =  

    val empty<'Key,'Value> : Map<'Key,'Value>  



160 
 

Type functions are rarely used in F# programming, although they are convenient in certain situations. Type 

functions are typically used for: 

¶ Pure functions that compute type-specific information based on the supplied type arguments. 

¶ Pure functions whose result is independent of inferred type arguments, such as empty sets and maps. 

 
Type functions receive special treatment during generalization (§14.6.7) and signature conformance (§11.2). 

They typically have either the RequiresExplicitTypeArguments  attribute or the GeneralizableValue  

attribute. Type functions may not be defined inside types, expressions, or computation expressions. 

In general, type functions should be used only for computations that do not have observable side effects. 

However, type functions may still perform computations. In this example, r  is a type function that calculates the 

number of times it has been called 

    let mutable count = 1  

    let r<'T> = (count < -  count + 1); ref ([] : 'T list);;  

    // count = 1  

    let x1 = r<int>  

    // count = 2  

    let x2 = r<int>  

    // count = 3  

    let z0 =  x1  

    // count = 3  

The elaborated form of a type function is that of a function definition that takes one argument of type unit . That 

is, the elaborated form of 

let ident  typar - defns   = expr  

is the same as the compiled form for the following declaration: 

let ident  typar - defns  () = expr  

References to type functions are elaborated to invocations of such a function. 

10.2.4 Active Pattern Definitions in Modules  

A value definition within a module that has an active - pattern - op- name  introduces pattern-matching tags into 

the environment when the module is accessed or opened. For example,  

let (|A|B |C|) x = if x < 0 then A elif x = 0 then B else C  

introduces pattern tags A, B, and C into the PatItems table in the name resolution environment. 

10.2.5 ȰÄÏȱ ÓÔÁÔÅÍÅÎÔÓ in Modules  

A ñdoò statement within a module has the following form: 

do expr  

The expression expr  is checked with an arbitrary initial type ty . After checking expr , ty  is asserted to be equal 

to unit . If the assertion fails, a warning rather than an error is reported. This warning is suppressed for plain 

expressions without do in script files (that is, .fsx  and .fsscript  files). 

A ñdoò statement may have attributes. In this example, the STAThread attribute specifies that main uses the 

single-threaded apartment (STA) threading model of COM: 

let main() =  

    let form = new System.Windows.Forms.Form()  

    System.Windows.Forms.Application.Run(form)  

 



161 
 

[<STAThread>]  

do main()  

10.3 Import Declarations  
Namespace declaration groups and module definitions can include import declarations in the following form: 

open long - ident  

Import declarations make elements of other namespace declaration groups and modules accessible by the use of 

unqualified names. For example: 

open Microsoft.FSharp.Collections  

open System  

Import declarations can be used in: 

¶ Module definitions and their signatures. 

¶ Namespace declaration groups and their signatures. 

 
An import declaration is processed by first resolving the long - ident  to one or more namespace declaration 

groups and/or modules [F1, ..., Fn] by Name Resolution in Module and Namespace Paths (§14.1.2). For example, 

System.Collections.Generic  may resolve to one or more namespace declaration groupsðone for each 

assembly that contributes a namespace declaration group in the current environment. Next, each Fi  is added to 

the environment successively by using the technique specified in §14.1.3. An error occurs if any Fi  is a module 

that has the RequireQualifiedAccess  attribute. 

10.4 Module Abbreviations  
A module abbreviation defines a local name for a module long identifier, as follows:  

module ident  = long - ident  

For example: 

module Ops = Microsoft.FSharp.Core.Operators  

Module abbreviations can be used in: 

¶ Module definitions and their signatures. 

¶ Namespace declaration groups and their signatures. 

 
Module abbreviations are implicitly private to the module or namespace declaration group in which they appear. 

A module abbreviation is processed by first resolving the long - ident  to a list of modules by Name Resolution in 

Module and Namespace Paths (see §14.1). The list is then appended to the set of names that are associated 

with ident  in the ModulesAndNamespaces table. 

Module abbreviations may not be used to abbreviate namespaces. 

10.5 Accessibility Annotations  
Accessibilities may be specified on declaration elements in namespace declaration groups and modules, and on 

members in types. The table lists the accessibilities that can appear in user code: 



162 
 

Accessibility Description 

publi c No restrictions on access. 

private  Access is permitted only from the enclosing type, module, or namespace 

declaration group. 

internal  Access is permitted only from within the enclosing assembly, or from assemblies 

whose name is listed using the InternalsVisibleTo  attribute in the current 

assembly. 

 
The default accessibilities are public. Specifically: 

¶ Function definitions, value definitions, type definitions, and exception definitions in modules are public. 

¶ Modules, type definitions, and exception definitions in namespaces are public. 

¶ Members in type definitions are public. 

 
Some function and value definitions may not be given an accessibility and, by their nature, have restricted lexical 

scope. In particular: 

¶ Function and value definitions in classes are lexically available only within the class being defined, and only 

from the point of their definition onward. 

¶ Module type abbreviations are lexically available only within the module or namespace declaration group 

being defined, and only from their point of their definition onward. 

 
Note that: 

¶ private  on a member means ñprivate to the enclosing type or module.ò 

¶ private  on a function or value definition in a module means ñprivate to the module or namespace 

declaration group.ò 

¶ private  on a type, module, or type representation in a module means ñprivate to the module.ò 

 
The CLI compiled form of all non-public entities is internal . 

Note: The family  and protected  specifications are not supported in this version of the F# 

language. 

Accessibility modifiers can appear only in the locations summarized in the following table.  

Component Location Example 

Function or value definition 

in module 

Precedes mutable  and inline  let private x = 1  

let private inline f x = 1  

let private mutable x = 1  

Module definition Precedes identifier module private M =  

    let x = 1  

Type definition  Precedes identifier type private C = A | B  

type private C< 'T> = A | B  

val  definition in a class Precedes identifier val private x : int  

Explicit constructor  Precedes identifier private new () = { inherit Base }  

Implicit constructor  Precedes identifier type C private() = ...  



163 
 

Component Location Example 

Member definition Precedes identifier, but cannot 

appear on: 

Á inherit  definitions  

Á interface  definitions  

Á abstract definitions  

Á Individual union cases 

 

Accessibility for inherit , 

interface , and abstract  

definitions is always the same as 

that of the enclosing class. 

member private x.X = 1  

Explicit property get or set 

in a class 

Precedes identifier member v.Item  

    with private get i = 1  

    and  private set i v = ()  

Type representation Precedes identifier type Cases =  

    private  

        | A  

        | B  





 Namespace and Module 
Signatures  

A signature file contains one or more namespace or module signatures, and specifies the functionality that is 

implemented by its corresponding implementation file. It also can hide functionality that the corresponding 

implementation file contains.  

namespace- decl - group - signature  :=  
    namespace long - ident  module- signature - elements    
 
module- signature  =  
    module ident  = module- signature - body  
 
module- signature - element  :=  
    val mutable opt  curried - sig  --  value signature  
    val value - defn   --  literal value signature  
    type type - signature s  --  type(s) signature  
    exception exception - signature  --  exception signature  
    module- signature   --  submodule signature  
    module- abbrev   --  local  alias for a module  
    import - decl   --  locally import contents of a module  
 
module- signature - elements  := module- signature - element  ... module- signature - element  
 
module- signature - body =  
    begin module- signature - elements  end  
 
type - signature  :=  
    abbrev - type - signature  
    record - type - signature  
    union - type - signature  
    anon- type - signature  
    class - type - signature  
    struct - type - signature  
    interface - type - signature  
    enum- type - signature  
    delegate - type - signature  
    type - extension - signature  
 
type - signature s := type - signature  ... and ... type - signature   
 
type - signature - element  :=  
    attributes opt  access opt  new : uncurried - sig  --  constructor signature  
    attributes opt  member  access opt  member- sig  --  member signature  
    attributes opt  abstract access opt  member- sig  --  member signature  
    attributes opt  override member- sig   --  member signature  
    attributes opt  default member- sig                  --  member signature  
    attributes opt  static member access opt  member- sig   --  static member signature  
    interface type     --  interface signature  
 
abbrev - type - signature  := type - name '=' type   
 
union - type - signature  := type - name '=' union - type - cases type - extension - elements -
signature opt  
 
record - type - signature  := type - name '='  '{' record - fields '}'  type - extension -
elements - signature opt   
 
anon- type - signature  := type - name '=' begin type - elements - signature  end 
 










































































































































































































































