The F#2.0 Language Specification

Note: This documentation is the specification of the 2.0 release of F# made by Microsoft Research and the
Microsoft Developer Division in April 2010.

Discrepancies may exist between this specification and the 2.0 implementation. Some of these are noted as
comments in this document. If you find further discrepancies please contact us and we will gladly address the
issue in future releases of this specification. The F# team is always very grateful for feedback on this
specification, and on both the design and implementation of F#. You can submit feedback by emailing
fsbugs@microsoft.com.

The latest version of this specification can be found at www.fsharp.net. Many thanks to the F# user community
for their helpful feedback on the document so far.

Certain parts of this specification refer to the C# 4.0, Unicode, and IEEE specifications.

Authors: Don Syme, with assistance from Anar Alimov,Keith Battocchi, Jomo Fisher, Michael Hale, Jack Hu,
Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel
Quirk, Chris Smith, Matteo Taveggia and others.

Notice

© 2005-2012 Microsoft Corporation. Made available under the Apache 2.0 License as part of F# 2.0 source code.

Microsoft, Windows, and Visual F# are either registered trademarks or trademarks of Microsoft Corporation in the
U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.
Document Updates:

Updated with glossary, index, and style corrections, August 2010

Updated with glossary, index, and style corrections, February 2011

Updated with grammar summary, December 2011

= = =4 =4

Updated with formatting changes, April 2012

Table of Contents

1. 1N IR0 51U Lo 1 [0] A T 11
L.l AT RSTPROGRAM.... ettt eiiite e ettt et et e ettt e e e e et e eee et eessaaaeeetanaeetanaesttnnaesesaaesansaesstnnaesssnnaaestnsaeennaesstnnaarsnnnnas 11
111 LIGNTWEIGNT SYNMEAXeeeeeiitiee ettt e e et e e e et e e e e s b et e e anb e et et e e e nnee 11

1.1.2 MaKING DAta SIMIPIE. .. ittt e e e e et et e e e e e bbbt e e e e e e e e sanbbeeeeeeeaanbbeeeeaeeeaannns
1.1.3 Making Types Simple.................

114 Functional Programming
1.15 Imperative Programming

116 .NET Interoperability and CLI FIA@IItY.........cooiuiiiiiiiiee et e e 14
1.1.7 Parallel and ASynchronous ProgramimMing..........coouuueeieeeaaniiiiieea e et e e e s s esieeeeee e e e e eebreeeeaeesaenes 15
1.1.8 Strong Typing for FlIoatiRBOINt COUE.........ccuiiiiiiiieiiieee e e s 15
1.1.9 ObjectOriented Programming and Code OrganizZation...............eeiieeiiiiiiiieieee e e e eeiiieeee e e 16

1.2 NOTATIONACONVENTIONS TRHISSPECIFICATION. t1uuueteruneetrtneeestetesssnesestnaessssaeeesstnesssseesssnaeesesneeeresaeesssneesssnnnes 17

mailto:fsbugs@microsoft.com
http://www.fsharp.net/
http://www.apache.org/licenses/LICENSE-2.0.html

2.

3.

PROGRAM STRUCTURE

LEXICAL ANALY SIS ..ottt ettt ettt ettt ettt e et e e b et e e b bt e e ama b e e sh b e e e embe e e sabe e e e bb e e e nneeeesebeeean
Bud VVHITESPACE . tttttttttteteteeteeeeeeeteeeeeeee e ettt ettt et e ettt eeeeae et ettt et e e e e e e e e e e e e e e e e e e eaaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaanan
3.2 COMMENTS
3.3 CONDITIONAGOMPILATION. .. uuuusuusueses s sssssaeaesssese et £ 85555t 5 5555555555555 555555555 e s e e e et e e e eeeeeeeenensnenenen
3.4 IDENTIFIERS AKBYWORDS.
3.5 STRINGS ANBHARACTERS. ¢ tttttttttteeetttetttettteteteeetttettettttttttateaaaaatetttteta et aaaaaaaaaaaaaeaataaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaes 23
3.6 SYMBOLIBEYWORDS. ... iuuttteteeeeeaiitte et et e e e e sttt e e e e e ettt e e e e e e o a bbb s et e e e oo a bbb e et e e e e e e a bbb e e e e e e e aanbben e e e e e e e e annnrreeeeeeaan
3.7 SrMBOLIOPERATORS.

3.8 INUMERIGUTERALSt ttteeiiitttttt e e e ettt e e e ettt e e oottt et e e 44 a sttt e e 44 a kbt e e et e e a4 e n kbbb et ee e e e abbeeeeeaeeesannneneeeeeeaan
3.8.1 Paost-filtering of Adjacent PrefiX TOKEIS.oovvii i 26
382 PostFAf GSNAY3I 2F LyGS3ISNRE..C2{.L246S5R..028..1.R2L0OSE
3.8.3 Reserved NUMENC LIteral FOMMS.oi ettt e e e e e e e e e e enees 26

I I 1= B [=l o 1V = OO P PP PP OPPPPPPPS 27

3.10 HIDDENTOKENS. ...ttt ettt ettt ettt ettt e e ee et et ettt e et et et et e e e e e e e e e e aae e e e e e eeeeaeaeaeaaaaaaaaeeaanaaaaaaaaaaaaaaanns 27

3.11 IDENTIFIEREPLACEMENITS ...t uttttttteet ettt ee e e e s sttt e et e e e e o abb e et e e e e e e e abbee e e e e e e an b b e et e e e e aesanbbeeeeeeeeaansbneeeeeeaaannnnns 27
BASIC GRAMMAR ELENMEBIN......ccittitiitiieititesimieeesteaessttesessseeesssesameassseeansseesssseesassesesssansessssssesnsssessssessnsseennnn 29

4.1 OPERATORAMES

.2 LONGIDENTIFIERS 1.ttt stttk 8555888861585t 5 555555555ttt s s e et st s et s st s e e e ennrn e

R B @ o 1N /Y N F PRSP PPRO

4.4 OPERATORSNDPRECEDENCE. ... tttttttttiitiiieetitreteseetteeeeeeetete ettt ettt e eee ettt et ettt et taaaaaaaaaeaaaaaattaaaaaaaaaaaaaaaaaaaaeaaaaaaaaaas
4.4.1 Categorization of SYmMbDOIC OPEIAtOIS.........cccueieiiiiiieiiitiie e iiee et stee et e et e st e sneeeeanareeeeene
4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs
TYPES AND TYPE COINITS iieeiiiiieitiieesitiietesteeestee e ettt e s aeee s stimte e e smteaessaeeeanteeesnnteessmasseeesnseeesnseeeanseeeans 35

B 1 CHECKINGY NTACTIEY PES. ..ttt bbbttt 5555545 e ettt 555 s e st e e et et et et e e e e eeanneeenenen 36
511 N F= g =T o B I L= PP PPT R OPPPPPPTNt
5.1.2 Variable Types
ST T U (o] (=T Y/ o 1= ST P PP OUPPP TR
LN N 4 = | 3/ 011 TP PP P PP PP PP P PPPPPPPPPPPPPPPIRE
B5.15 CONSAINEA TYPES. e ttiiiitiiieitii et ettt ettt ettt e sk e e e et e e s e e e s b et e e aab et e e mn et e e ab b e e e e anbn e e e nnnn e e s nneeeean 38

I 7= € o] NS 1 YN PR 39
5.2.1 Subtype Constraints
52.2 NUIINESS CONSIIAINTS ...t ee ettt ettt e e e e ettt e e e e s s bbb et e e e e e e s asnbbeeeeeesaanbbbeeeee e aanne
523 MEMBDET CONSITAINTS. ... ettt e e e e sttt e e e e e e s tbe e e e e e e aasntaeeeeeaessssssbeeeeeesaanssseeeeeessanned 40
5.2.4 Default Constructor CONSIIAINTS..........cciiiiiiiiiiiieee e e e e e e e sieneeee e e s eesseneeeeeeeee . 40
5.2.5 Value TYPE CONSIIAINTS ...couiiieiiiiie ittt ettt ss ek e e st e e e san e e e s amn e e e e anbe e e e nsrneeaasreeenans 40
5.2.6 Reference TYPE CONSIIAINLSo.uiiiiiie ettt e ettt e e e e s et e e e e e e s abb e et e e e e e e santbbneeaeeeannnnes 41
5.2.7 Enumeration CONSIIAINIS.........ciiiiiiiiiiiiieeees it ee e e s ssiieer e e e s s ssinereeeeeesssnnneesesssssnnnssseseesssnnsnsneeeessnn AL
5.2.8 [D=] [T o Fo L L O o Y = 1 o (PP PP OPUUPPPURY 41
5.2.9 Unmanaged CONSIIAINIS.uiiiiiiiieiiiiee sttt e st nne e e s e e e ssnneeesnneeesnnneeesnnnee B2
5.2.10 Equality and CompariSON CONSLIAINES.uueiiiaiiiiiiiieieeeeaiiitiee e e e ettt e e e e e e abbee e e e e s e snbreeeeeaeeasnnenes 42

5.3 TyPEPARAMETEREFINITIONS

5.4 LOGICAPROPERTIES DFPES.....cciiiiiiiiiieiei e e n e nnnnnnne s PO
5.4.1 Characteristics Of TYpe DefiNItiONS........coocuiiiiiiiie i 43
5.4.2 Expanding Abbreviations and Inference EqQUAatIQNS...........oouviiiiiiiiniiiieiee e 44
5.4.3 Type Variables and Definition SILES..........uiiiiiiiiiiiie e e e 45
5.4.4 S Y Y oL o] = T Y/ o 1T PO URPRSUOPRPRRR 45

Gode

545 INEErfaCES TYPES Of @ Ty . ettt e e e et e e e e e e e e e et e e e e e e e eannnnneeesd 46

5.4.6 TYPE EQUIVAIENCE........ouiiiiiiiiiciieieee ettt e e e e e e s et e e e e s s eesntrenseeesssnnnneeeesssennnnnee s 4O

S o 101 011 o1 T JE=1gTo W @7 o= oo | o PP PP PPPR 46

Lo T N U |1 1=t S PP 47

5.4.9

5.4.10

EXPRESSIONS ...ttt ittt et ettt sttt ettt et ettt b e e st e e bt e h bt e bt eh et e s E et 4R bt e ehe e eh bt e b et eab e e amat e bt e eheeenneenenas 51
6.1 SOMECHECKNG ANONFERENCEERMINOLOGY....eeetiiuutrteteeesauttsseeeeaessanustneeeeessantneseeaeeesaansseseeeesaaantbeeeeeaeessannnnneeeens 53

6.2 HE.ABORATION ANEDABORATEHEXPRESSIONS

6.3 DATAEKXPRESSIONS. ...ttt iuteiee ittt ettt sttt st h bt e ekt e e s et e e s b e e e e e s b e e e s kbt e e s eb b e e e et b e e e s b e n e e e sna e e e ar b e e e
6.3.1 SIMPle CONSIANT EXPrESSIONS. .. .ciiiriiiireieeiti e ettt e s e e st se e s e e e s e e e annn e e e nnnees 56
L A NV [o] (=3 ot o1 (=TI (o] o 1 TSP P PR 56
6.3.3 LISt EXDIESSIONS. ¢ttt ettt ekt e et e e e n e R e e et e ne e e e ean 57
6.3.4 Array Expressions.........

6.3.5 Record Expressions

6.3.6 Copyandupdate RECOId EXPrESSIONS.cciiuiieiitiieeeiiiieeeteeeesteeeesnteeessseeeesntaeeessseeeesnneeeeaasseeeennes 59
6.3.7 FUNCHON EXPrESSIONS. ... e utetieiitete ettt et ettt e ke ettt e s st e et e e e esb e e sk e e e s anb e e s nn e e e aabr e e e anbne e e nnnes 60
6.3.8 ODJECE EXPIESSIONSeeeeeiiiieeeieie e sttt et e e sttt e ettt e e s st e e sbeeeessteeeesnteeeesaneeeeessneeesnnseeesnnseeesnsreeeensd 60
6.3.9 Delayed Expressions

6.3.10 COMPULALION EXPrESSIONS.....eiiiiueireiiiieeiititeeeatieeeaieeeesteeessteeesasteeeesaseeeesnseeesteeasssnsseessnneeessseeessnsd 62
6.3.11 SEQUENCE EXPrESSIQNS ... eeeiiitiieiiiiteisstee e et ee e st e st e e s ase et e s s be e e e ass e e e s abb e e e sane e e e snreeeabbeeeanneeeennnnes 66
6.3.12 RANGE EXPrESSIONS ... utitieiutiieiiitieeeatiieesatteeesteeeestreeesaataeeessseeesasteeesanseeessaseeeesnsseeesasseessnnseessnsreeeess) 66
6.3.13 LiStS Via SEQUENCE EXPIrESSIONS....c..viiiiiiiiiiitiie ettt et e et e e s e e s b eeeabree e e 67
6.3.14 ArrayS SEQUENCE EXPIrESSIONS. ...ccuuiiiiiiieeiiieeeeeiete e steee e sttt e e s ssteeasanseeeeateeeesteeeesnneeaesanteeeeanseeesanneas 67
B.3.15 NUII EXPIESSIONS. .. .eiiiiiiieeiiii ettt ettt ettt e e e et e st e e st e e aabr e e e e s b e e e s b e e e et bt e e nnneeesannneeean 68
(S 0 ST o] 1101l] 10 F= LS S PO PTPT PP 68

6.4 APPLICATIOEXPRESSIONSuuuttteiteetiaitteeeeeeessastsreete e e sttt eeeae s e ene et e e e e s e s ne s e eeeeeaa s snnneeeeeeeansnnneeeeeesaasnnnneeees 69
6.4.1 Basic AppliCation EXPIrESSIONS......ccciiiiiiiiiiie ittt e st 69
6.4.2 Object CONSIIUCLION EXPrE@SSIQNS.uuuiiiiiiiiiiiiieeee ettt e e e e ettt e e e e e et e et e e e s saiabreeeeeeseaanebneeeeeeaann 70
6.4.3 (O] o 1] ol (o g =N o] (=] (o PP PU PP PUPP PRSP 71
6.4.4 Dynamic Operator EXPreSSIONS.couiiuiiiiiie ittt e ettt e et e e s eitre e e e e s sssnnneeeeeesennneneee L 2
6.4.5 The AddreSSOFf OPEIALALS......cciuutieiiiiieitieee et ee ettt ee et e e st e e e s e e e e abr e e e e sabeeeesnneeeeasnreenanes 73
6.4.6 LOOKUD EXPIESSIONS.etieieeei ittt e e ettt ettt e e e e ettt e e e e s ab b et e e e e e e e et bbb e e e e e e e aanbbeeeeeeeennnnnnneas 73
6.47 SlCE EXPrESSIONS ...eiiutiieiitite ettt e e ettt ettt e st e sttt e e st e e s st e s snbeeessbreeesansneeesnneessnnneesnnnneessnnneeesnesd Db
6.4.8 Member Constraint INVOCAtION EXPreSSIQIIScoiiiuiiiiiieiiaaiiiiee e ettt e e e e e e sriaeeeeae e e aaene 74
6.4.9 ASSIGNMENT EXPIrESSIQMISiiiiiiiiiiitiee ittt sie ettt sbere et e st s e e snreeeesbneeennnreesnnee e s D

6.5 CONTROELOWEXPRESSIONS.cciiiiiiiutiiiiieiiiiitiiit e sttt ie e ias e e s s s srne e e s e s s aansee s e s s s s ssnnanssesssssnnnnnssesssid O
6.5.1 Parenthesized and BIOCK EXPreSSIONS..........cuveiiiiiiiieiiiiee ettt e st e st sneeeessnnnee e e [O
6.5.2 Sequential EXECULION EXPIrESSIONS.ciuttiiiiee ittt e ettt e e e e st e e e e e e aibba e e e e e e e anbbeeeeeeeeeannnees 77
6.5.3 CoNAitioNal EXPreSSIONS.ciiiuiieiiiriie ettt e riieeesitee e st e e sieeeessbeeesssbreessnneeessnneeessnsneeesnnneesssnneessnine i {
6.5.4 Shortcut Operator EXPrESSIOMS.cuia e iuiiiieeaeeeaaaitieeeaeeeaaireeeeaesssseinseeeeessssnssseeesessasnnssseessssssssnneed [
6.5.5 Pattern-Matching EXpressions and FUNCHONS.oociviiiieeeiiiiiiiiee ettt e e e e e s e e e e e snevaaeeae e 18
6.5.6 Sequence Iteration EXPreSSIONS.ccuuuiiiiii ittt e stiere e e e s st e e e e e s s sneaeeeeaeeessnnneeeeee s L O
6.5.7 SIMPIE fOrLO0P EXPIrESSIONS.viiiiiiiieiiete ettt s bt e b e e et e e sne e e e snr e e e anbneeenaes 79
6.5.8 WHhIIE EXPIrESSIONS.eeiiiiiiiiitiiii ettt e ettt e ettt e e e e e sttt e e e e s easnnnsneeeeeesesnnnneeeeessansnsneeeeeessd O
6.5.9 Ty WILN EXPIESSIONS..... .ttt ettt e e e s b e e e anbe e e e nnne e e s nnee e 80
6.5.10 REIAISE EXPIESSIQNISueeiiiiieiitiiietaeeeaa ettt e e e e e atabeeeeeeaaaaasaeaeeaaeeaabbeeeeaeeaaaasnabeeeaeaeanbaeeeaaeesannnnneeed 80
6.5.11 TryHfiNaAllY EXPIrESSIONSeiiiiiiiiiiiiie ittt e st e st a bt e e s b e e s st b e e e et e e nb e e e e nnneee s 80

6.5.12 ASSEITION EXPIESSIOIIS.eeiiieiiiitiiieee e e e ettt ee e e e e e tteeteaa e e e s aneeeeaaeeaasbeeeeaaeaaanntanneeeaeeeaansaeeeaaeeeansnnnees 81

6.6 DEFINITIOBEXPRESSIONS ...ceeiiutiieiiitiiissiretes sttt s e sa s st e s st e e s st e e e s s b e e e sk b e s e s be e e s s sb e e e s abb et e s aan e e e s b b e e e saabn e e e sanneas 81
6.6.1 Value DefiNition EXPrESSIQINScoiiiiiiiiiiiiee it ie et e st s e e b e e e st e e snne e e snreeeannneeeanes
6.6.2 Function Definition EXPreSSIQNS.........vvuiiii i et e s e e e e e s s e e e e e st e e e e e e e e e aneraeaeeeaan
6.6.3 Recursive Definition Expressions
6.6.4 Deterministic DiSPOSal EXPIrESSIONS.......ciciuuiiiii e e ittt e e e e s ettt e e e s st baae e e e e e s satae e e e e e e s ssaereseeeeesesnsnes 83

6.7 TYPERELATEBXPRESSIONSceiiuutttieeieesittureeeeeesssetseeeeeesasasns e ereeeeesses e e e eeesesns e eeeeeesssansnneeeeesassnnnneeeeeeeannnnes 84
(ST A% R Y/ o1 YA\ To) = L= Te l o d o] (=111 (o] o 1= T PP 84
6.7.2 Static COEICION EXPrESSIONSc.uviieiiiiieiieiee st ee et e et e e e st e e st e e e s e e e st e e e sasreeennneeesnneeeas 84
6.7.3 DYNamiC TYPE St EXPIrESSIONS.....ccciuvreiieeeeiiiiitteee e e e e siiiet e e e e e s sttt reeeaesasatbeeeeeesastataaeeeaesseanrreeeeeesan 84
6.7.4 DynamicC COEICION EXPIrESSIONS.vviiitiieeitteee ettt stee et e et e et e et e e e st e e e snne e e s snneeearne e e e 84

6.8 QUOTEIEXPRESSIONS. et tttttetetttetetttasateeeasaesssasssssssasa s raasss s asasasasseseses b e s aaassss st s s st s e s sttt st s e e s et ee s et seensnnnnne 85
6.8.1 Strongly Typed QUOLEd EXPreSSIONS........uceiiriieiriiiieriiieee ittt e st e s e e s e e s s e s snee e s e e e s e snneeennes 86
6.8.2 Weakly Typed QUOLEA EXPrESSIONS.cceiueieiiitieeeiittieeeaieeeesatteeeastteeesataeeesneeaeateeeeasseeesnnseeessseeeens 86
6.8.3 EXPrESSION SPHCES . ..ottt ettt et e e n e 86

6.9 EVALUATION QELABORATEEDRMS.ciiuteiiiireiesaititesssteeesssseeesatnesessneeesssanee s s tn e e e anne e e sne e e e s amn s e e e e snn e e e saneeesseneeens 87
6.9.1 Values and EXECULION CONTEXL...........utiiiiiiiiiiieee st e sttt e et e e s st e e st eesanbeeessnnreeeatreeenae 87
6.9.2 Parallel Execution and Memory MOGEL..........ooiiuiiiiiiiiee et 38
B.9.3 ZEIO VAIUES.....cei ettt e et e et e et e et e e e e e n 89
6.9.4 Taking the Address of an Elaborated EXPreSSIQn.........cccuuiiiuiieiiiiieeeiiiieeiieee s siieeesssieeeesnneeeesneeeea 89
6.9.5 Evaluating Value REEIENCES.........vi ittt Q0
6.9.6 Evaluating FUNCION APPHCALIONS.......coiuuiiiiiiiee ittt e et e et a e s sneee e snneeas 90
6.9.7 Evaluating Method APPlICALIONS..........veeiiiiieiiiie ettt ettt s s e e s nnreee e 90
6.9.8 EVvAluating UnION CaASES......ccoiuiieiiiiiieeiiiee e iieee sttt e e eiteee s st teaeataeeesteeeesnteeesanteeaeeanteeesssaeeeaaneeeesnnees 91
6.9.9 Evaluating Field LOOKUPDScoiieieiiiiite ettt et e e et e e s st e e e s e e e e snreeenan a1
6.9.10 Evaluating Array EXPrESSIONS.......coii ittt eee ittt ettt e e ettt e e e e e e e e e e e nnereee s 91
6.9.11 Evaluating RECOII EXPIrESSIONS.tiiiiiiiiiiieeeeiti ettt ettt et e e s e e s e e e e e e nanees 91
6.9.12 Evaluating FUNCION EXPrESSIQNS........vvtiiiiiiiiiiieee ettt e et e st e e s e saneee s 91
6.9.13 Evaluating ODjJECt EXPrESSIONS.ueiiieiiiiiiieieee e e ettt e e e ettt e e s e s s atbee e e e e e s abbbe e e e e e e asasbnneeeeeeaanres 91
6.9.14 Evaluating Definition EXPreSSIONS.c.uutiiiiiiieiiieie e iieee ettt ee st e e e e st e e s e neneees 92
6.9.15 Evaluating INteger FOIr LOOPS.uuiiiiiiiiiiiiee e ettt ettt e e e e et et e e e e e nb e e e e e e e e nneeeeeas 92
6.9.16 EVvaluating WHhiIlE LOOPSetiiiieieiitiie ettt e ekttt et e e e e e s b e e e e nn e e nanees 92
6.9.17 Evaluating Static COErcion EXPreSSIONS.coiuuiiiiii ettt e e e nneeeeeas 92
6.9.18 Evaluating Dynamic TYPEESt EXPIrESSIONS.ccouuiiiiiiieiriiiie ettt e e e et e e es 92
6.9.19 Evaluating Dynamic COErcion EXPrESSIONS......c.cciiiuuuuiiieiaaeiiiiiiieeeeeeaitteeeae e s s sesiereeeee e s abneeeeeeesaanes 93
6.9.20 Evaluating Sequential EXECULION EXPIreSSIONS.coiiviiiiiiiieeeriii et 93
6.9.21 Evaluating Trimwith EXPreSSIONS..........uiiiiiieiiiiii ettt e e e e e e e reeeeeeean 93
6.9.22 Evaluating Trfinally EXPrESSIONS.cccuiiiiiiiieiiiiie ettt ettt s s e s 94
6.9.23 Evaluating AddreSSOf EXPIrESSIONS.uuiiiaiiiiitieieeae e ettt e e e e et e e e e e e e s aatbee e e e e s e anbbeeeaeeeaaaasbeeeaeens 94
6.9.24 Values with Underspecified Object Identity and Type Identity..........ccoccvveirmeereiniiieeiniiie e 94
PATTERNS ...ttt etttk a bt mb ekt e a bt bt e 4Rt e bt ek e e ema b4 e s bt e bt e ek b e et e e ket e n b et Rt be e R bt e b e nnr e 97

7.1 SMPLECONSTANPATTERNS ... uutttttttetsittreeteees et aasree e e e e s s ast e et e e e s aa s st s e e et e e s e asne b ettt e e s aaanne b e et e e e e aasnnneeeeeesnsnnnnneeeas 98

7.2 NAMEDPATTERNS. ... ctttiiiee ittt e e e e e s et e e e e s et e e e oo e s e s e e e e e e e e s s aan e e e e e e s s e an s b e e e e e e e s snnae e e e e s s s s mmnne e e e e e e e e nnnnneeas 98

7.2.1 Union Case Patterns
7.2.2 Literal Patterns
7.2.3 Active Patterns
A T o Q= 20 i = SRR

T4 VVILDCARBPATTERNS 1. ttttuttteetttetttiu s seseeeesti s e e eeeseeesesa s s aaeeees b s e e e e eee e s taa s e ee et ee bbb e e e e e eeeesenn s e aeeensnbnnneeas

7.5 DISIUNCTIMBAT TERN S ... ittt ettt ettt e eeeaeeesttaaeeetaeesetasasesaaasesanaeesansassssnnaassanaasssnsaessnnaessnnassstnaarnnnaaeesnnnns

7.6 CONIUNCTIMBATTERNS. ..ttuuuteeeeteettttteneeeseesssssneaeeessssssssanaseessssssanaaeeessssssssnsseeesssssssnnaseeesesssssnnnreeeesssssnnnns
.7 ST ATTERNS ... ettt eeiit e ettt e e e et ee et e e e ettt eee e et eeseaaeee st e ssta e ssanaasstaaeesanasesanessssnnaessnnsaesnnseesssnnaarsnnnaanes
7.8 TYPEANNOTATEBATTERNS. ...etttttuiieteettttttttuaereeeeesttttaaeeeesessstannerasessstttanaaeeesssssttnnsaesssssssanaereeessssssnnnreessee

7.9 DyNAMICTYPETESTPATTERNS.

7.10 RECORBPATTERNS. ...ttt ettt e e e e ettt e e e ettt e e e ok e b e et e e e e 2 s bbb et e e e 4o sk b e e e et e e a4 e sk bbbt e e e e e nnbb e e eeeeeeennsnenes
7.11 ARRAYPATTERNS. ... e et ettt et et e et e et e e et e e oo oo oo oo et e e oo oot et et e e e e e e e e e e o e o e e e e e e e s aaaea b ae bt bbbt st bsmnsbsbnbne bt bt e e
7.12 NULLPATTERNS. 1.1ttt ettt ettt e e e e ettt e e e ek b ettt e 22 e e e as e e et e e o4 aa kbbb et e e e e e e bbb e e e e e e e e anbbne e e e e e e s amnnnneeeeeeenantns
7.13 GUARDEBPATTERIRULES. ... et ettt ettt ettt ettt e e e oot e oo ettt sttt s s s s ssnnenn e
TYPE DEFINITIONS. ...ttt ettt sttt ettt set e e e e s et e e an bt e e s ab et e an bt e sabe e e e nbeeeeabbeeenseneeeanbeeennnes 107
8.1 TYPEDEFINITIOKBROUFCHECKING ANBLABORATION ... uuuuusunnnsstuassassesesesesssbsesesssssssssesese e sesssessssssssssmnnsnen 110
8.2 TYPEKINDINFERENCEcuttttietie ettt et e e e e ettt e e e e ettt et e e e e e e kbbb e et e e e 2 e ah bbbt e e e e e e e an b b e et e e e e e nnbb e e e e eaeeeanbbneeeeens 112
8.3 TYPEABBREVIATIONS. ¢ ctttttttttetetetetttetetetetetetttttetttetetetaeaeaeaaatete e et et e e e e aaaaaaeeaaeeaans 113
8.4 RECORDIYPEDEFINITIONS..uutttteeeeesiuttteteaaeaaatttteeeaeaaaautbeeeeeaaaaaantbeeeeeeeaasnebeeeeeesaaasnbbeeeeee s e snebeeeeeeesnnnnseeeas 114
8.4.1 MEMDETS IN RECOIT TYPES .. iitieiiite ettt et e e e ekt e s b e e e st b e e e st e e e snneeeannneeeanes 114
8.4.2 Name Resolution and Record Field Lahels...........ccoooiiiiiiiiiieiieie e e 114
8.4.3 Structural Hashing, Equality, and Comparison for ReCOrd TYPES......cccovverrireeriiireeiiiee e 115

8.4.4 With/End in Record Type Definitians
8.5 UNIONTYPEDEFINITIONS

8.5.1 MeMDEIS iN UNION TYPES...cuiiiiiitiiie ittt ettt ettt st e e ettt e e st e e snbe e e e asbeeeeanteee s sabeeeeeanaeeesnteeesnneas
8.5.2 Structural Hashing, Equality, and Comparison for Union TYPES......ccceevvvieeiiieiieiiiiee e 116
8.5.3 With/End in Union Type DefiNItIONS.uiiiiiiieiiiieie ettt ettt e e s seeee s 116
8.5.4 Compikd Form of Union Types for Use from Other CLI Languages.........cccccveeevreiiiviereeeseiieieen. 116
8.6 LASTYPEDEFINITIONS ..cuutttteeeeesautteeeeeeeesaausteeeeeeaeaabbeeeeeaaeeaaas bbb e e e e e e e abbb et e e e e e e aanbabseeeeeeaanbbeseeeeeeeaannnnneeeas 117
8.6.1 Primary CONSIIUCLOrS iN CIASSEScciuieeiiiiii ettt e et e st e e e s e e nereees 117
8.6.2 MEIMDEIS IN CIASSES.eeiiiiiiitiie ettt ettt e e e e ettt e e e e e abe et e e e e e e sanbbeeeeeeeeannebeees 120
8.6.3 Additional Object CONSIIUCLOrS iN CIASSES .. .cccuuiiiiiiieeiiiee ettt et e e 120
8.6.4 Additional FIelds iN CIaSSESuuiiiiiiiiiiiiiie e ee et e st e e e e st e e e e e e s s aasb e e e e e e e e annsaeeeas 122
8.7 INTERFACEYPEDEFINITIONS ... utttttttttssssssesssssssssssesesesssssssesseseeeseesesassesee e eeeee et e eeererer et aaetenenereteaaeeaaaaaaaaaeeeaaaeeenss 123
8.8 STRUCTTYPEDEFINITIONStutututttttututttstasssesesesesses et e e s et s 5555455545555 5 5555555 e et e 55 s 55 e st e e e e e et e e e e eeeeneeannneennnees 123
8.9 ENUM T TYPEDEFINITIONS. ..ttt ittt ittt sttt sttt e s e e e et e e e et e e e e e eeesnneeneees 125
8.10 DELEGATEYPEDEFINITIONS. e ettt e ettt ettt et e e e e et eae s e e e e e s e e s s ekttt bttt s et e nernen 126
8.11 X CEP TIORIEFINITIONS. ...ttt s s s e e e e e e e e e e e eeeeeeeeaennenee 126
8.12 Y PEEXTENSIONS. .ttt 5555555ttt e et e et ettt et et e e e e e e e eneeeeeeeeeeeeees 127
8.12.1 Imported CLI C# EXtensions MEMDELS........ccooiiiiiiiiiiia e 128
8.13 I EIMBER S ..kttt £ £ttt 555ttt s e ettt £ttt sttt e et e e e e e e e e 129
8.13.1 Property MEIMDEIS.....cooi ittt e bttt e e e e sttt e e e e e e e bbb et e e e e e e nnrneeeaeeean 130
8.13.2 MEthOU MEIMDEIS.......uiiiiiie ittt e ettt e e e e e et e e e e e et e e e e e e s e aasbaeeeeee e e nstbaeeeeeeensanrreees 131
8.13.3 Curried MethOd MEMDIEES.......co. ittt e e et e e e e e st et e e e e e e e s anbbeeeeaeeeannnees 131
8.13.4 Named Arguments to0 Method MEMDEES.........cooiiiiiiiiii e 131
8.13.5 Optional Arguments t0 Method MEMDELS........ccoiiiiiiiiiee e 132
8.13.6 Typedirected Conversions at Member INVOCALIONS.coiuiiiiiiieeiiie e 134
8.13.7 Overloading Of MENOAS...........ueiiiiie ettt e et e e e e e et e e e e e e annaeeeeeas

8.13.8 Naming Restrictions for Members

8.13.9 Members Represented as Events

8.13.10 Members Represented as Static MEMDELS.........ccviviiiie et e e e 137
8.14 ABSTRAAVIEMBERS ANDNTERFAQMIPLEMENTATIONS. 1..uueetttuneeeetieesetiaeestneesetneesssnnaaeesnnaeennneesssnnaasssnneeeesnnss 137
T I A AN o 1S3 = Vot AV 1T 0 o 1= T 138

8.14.2 Members that Implement ADStract MEMDETIS.cooooi i

8.14.3 Interface IMPIEMENTALIONS..........ooiiiiiiiiii e e e e s e r e e e e e e ennraeeeas
8.15 EQUALITYHASHINGANDCGOMPARISON. ... ccittueeetieeeetteeestaeeetteeeeataaesstaaesannesestaeesstnaaeesnnaessraneessnnaeersnnaees
8.15.1 EQUANILY ALTIDULESeeiii ittt e e e e e e e s e e e e e e e e e et e e e e e e aanrraraaaaaan
8.15.2 CompariSON ANDULEScoiiiii e
8.15.3 Behavior of the Generated Object.Equals Implementation
8.15.4 Behavior of the Generated CompareTo Implementations.............cccveireeeiriieniieee e 145
8.15.5 Behavior of the Generated GetHashCode Implementations.............c.cccooevciiiiieee e, 145
8.15.6 Behavior of Hash, =, and COMPAIE........coiiiuiiiiiia et e et e e e e e s eeneeeaeeans 145
9. UNITS OF MEASURE ...ttt ittt et ettt s bt e et e e ekt e e s sea bt e e sbe e e sabe e e asbeeesabetemeentbeeene
.1 IMIEASURES.....cceettittetette ettt ettt ettt ettt ettt ettt ettt et et e e e ettt e et et e e e e e e e e e et e e e e e e e et e aa e e e e e e e e e e e e e e e e e e aaaas
9.2 CONSTANTANNOTATED BMEASURES. ...t tiuuttttteeeeaautntteeteeeesaauntseeeeassaasstbeeeeeeeaaassbbe et e eeaaasntbeeeeaeeeeaanbbnneeeeeaannnree
0.3 RELATIONS OMEASURESuuuuuuututututututtttuasatatateeaeeeesese st sese e s s et et e 5555555555555 55555 £t e 55525 s s e e e e e e et eeeeeaeeeeeeaeneneneees

9.3.1 Constraint Solving
9.3.2 Generalizatiorof Measure Variables

9.4 MEASURBEFINITIONSttttttteeiiittteteeeaesaattteeeeeeeaaataee et eeeeaaasnea e et e e e e e sab e ee e e e e s aaanbb e e e e e e e aasbbbeeeeee s e snnnbneeeeeenane

9.5 MEASURBARAMETEBREFINITIONS.ceiiiitieiteitiseseseseae s e e e s e e e s s sttt nennnnnee

9.6 MEASURBARAMETEBRRASUREcttttieiiuuttttteeeeaaaittteeeaeaaaatbeee e e e e e s asbe et e e e e e aaabbe et e e e e aanbnbeeeeeeeeeaanbbeeeeeeeesnnennnes

9.7 TYPEDEFINITIONS WITEASURES IN THEGORELBRARNY ...ttt sestbe bt sanssesestsest st sesesennnnees 153
10. NAMESPACES AND MOBBL ...ttt ettt et e e e e b e e e e e e s m et e e s asne e e e e e e annenes 155

10.1 NAMESPACBECLARATIOBROUPScttttttttttteteteteettteaeeetteeetetettttttettatttataaatttttttttttaaaataaaaaaaaaaaaraeaaeaaaeaeaeaeaaaans

10.2 IVIODULEDEFINITIONS ... et ttutttteeeeesasttebeeteeeeaaastbeee e e e e s aassee et e e e e e s e anbe et e e e e aansabaeeeeaeeaasbbbeeeeeeaasnbneeaeaaeeaannnnes

10.2.1 Function and Value Definitions in Modules
10.2.2 Literal Definitions iN MOGUIES.........cocuuiiiiiiiee ettt s e e ee e e snbae e e e e e e nnneee s
10.2.3 Type Function Definitions in MOAUIES...........ceiiiiiiiieiei et
10.2.4 Active Pattern Definitions in MOGUIES...........ooiiuiiiiiii e
1025 aR2é a0GF GSYSYGa. . AY...a2RAZE.S&. e
10.3 IMPORTDECLARATIONS. ...ttt ettt ee ettt s sebsneeee
104 IMODULBABBREVIATIONS. ..t eeetettetet et et eeeesae e s e e s e s s e s s s s s s e s s bbbkt s bbb s b e s s s s sennnn e

10.5 ACCESSIBILIANMNOTATIONS. ... ceettueeertneeestieeraaeeresueessstaeesstnesesneesstaeesstaseesssnreesssanesssnneessstaeesssaneeernrens

11. NAMESPACE AND MODBIENATURES.......c oottt e et er e e e e e e e e e e e et e e e e e e e smraaannas
11.1 SGNATURELEMENTS.....cccvveeeeiinn,
11.1.1 Value Signatures

11.1.2 Type Definition and Member SIGNALUIES.c.uviiiiiieeiiieee ettt seneeees
11.2 SGNATUREONFORMANCE. .11tk 88kttt st st s e s s sssnennen
11.2.1 Signature Conformance for FUNCtONS and ValUES.............ociiiiiiiiiiiee e
11.2.2 Signature Conformance fOr MEMDELS..........oo i 169
12. PROGRAM STRUCTURB AXECUTION.ciititiiiiiiii ettt et e e s et e e e e e e e e e e e e e e e as s s s snbntbnn s nsnsnene 171
12.1 IMPLEMENTATICRLES.
12.2 SONATUREILES ...ttt ettt ettt ettt ettt et et e e et e e e e ettt e et e e e e e e e e e e e e e e e e e e e aaaeeeaaaaaeaeaeaaeeeaeaaasaaaaaeaaaeaaanananas
12.3 SCRIPALES ..o
12.4 GCOMPILE®IRECTIVES
12.5 PROGRANEXECUTION ..ttt seseee e e ettt et et et et e e et e e ee et e ee e e et e e eeeaeaeaaeeeeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanans 175
12.51 Execution Of StatiC INIIAIZEIS.......ccoiuiiiiiiie e 175
12.5.2 EXPHCIE ENLIY POIML ...ttt ettt e ettt e e e ettt e e e e e e s e nbbe e e e e e e e asbaneeaaeaesannns 177
13. CUSTOM ATTRIBUTEDAREFLECTIQN. . .citiiiiiiiiiie ittt esre et e e e e e e e e e e e e e e s s s anme e s e e s e 179

13.1 ST OMATTRIBUTES. .. etttuteeittueetttiaee et eeeetaeesetaaaestanaaeeanaessaaaasssnnaeesanasessnsasstnneessnnsaeestnaeessnnaarnnaeersnns
13.1.1 Custom Attributes and Signatures.
13.2 REFLECTHEDRMS OBDECLARATIAN EMENTS,

14. INFERENCE PROCEDURES...........ccoccoiiiimic

14.1 INAMERESOLUTION. ...ttt ettt ettt ettt ettt ettt ettt ettt et e e e ettt ettt et e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaeaans

14.1.1 NAME ENVIFONMENES. .. eiiiiiiiiiiiiiee e eiiiee ettt et e sttt e sttt e e sntb e e e aabe e e e sabeeeeeasbeeeeanbeeesanbeeessenenens 183
14.1.2 Name Resolution in Module and Namespace Paths...........coocviirieeeiiiiie e
14.1.3 Opening Modules and Namespace Declaration Groups
14.1.4 Name Resolution in Expressions..........
14.1.5 Name Resolution FOr MEMDEIS.......cooiiiiiiiiiie ittt et e e s e e nnneas
14.1.6 Name ReSOIUtION iN PatlOIMIS.....cooi ittt e e e s e e e e e e e s neere e e e e e e e e anneaeeeas
14.1.7 NamMe RESOIULION fOr TYPES. . iiiiiiiiiiiiit e ettt e e e e e et e e e e e et e e e e e s setbrreereeeesansseaeeaeeaaan
14.1.8 Name Resolution for Type Variables...........ccooiiiiieiii e e
14.1.9 Field Label Resolution.............

14.2 RESOLVINBPPLICATIOEXPRESSIONS. ...cttttttttitieeeeeeeeeeteeeeteeeeaeaeeeeeaeaasasasaaaaaeaaaaasaaaaaasaaaasaaaa s naae s s s s s s aaannnnnen
I R U 1 o T8 = 1 1= o N I o] (U« N SR 190
14.2.2 tem-QUAIIfIEA LOOKURD. .. .cciiiiiiiiiie ittt et a e e e s
14.2.3 EXpressiorQUAlified LOOKUP........coiiiiieiiiiie ittt ettt e e ettt e e et e e sssae e e sneeeeaeeeeennes

14.3 FUNCTIOMPPLICATIORESOLUTION.........

14.4 METHODAPPLICATIORESOLUTION. ..t ttititieeeeeeeeee et e s e s e e e e s e e e s e a e n e a e a e e e s
14.4.1 Conditional Compilation of MemMber CallS..........cccviiiiiiiiiii e

14.4.2 Implicit Insertion of Flexibility for Uses of Functions and Members
14.5 CONSTRAINBOILVING. .+ttt sttt 5 55555555555t ee 555555 e s e e et e e et e e e e e e ananeeeneeeen

14.5.1 Solving EQUAtiONal CONSIIAINLS.cceiitiiiiitiie ettt e et et e ettt e e st e et eeessteeessneeeeatbeeeeeseeeeannees
14.5.2 SOIVING SUDLYPE CONSIIAINIS.....cciiiiiiiiiiieeiiree ettt e et e e st e e s rne e e snreeeabneeeanee
14.5.3 Solving Nullness, Struct, a@dherSimple CONSIIAINTS.........cooiiiiiiiie e
14.5.4 SoIVINGg MeMDEr CONSIIAINIS......cciitiiiiiiiiieiieee ettt et e st e e s e e e snr e e e st e e e e
14.5.5 Overconstrained User TYPe ANNOLALIONSueiiiiiiieiiiiee ettt ee e seneeens
14.6 CHECKING ANB.ABORATINBUNCTIONVALUEANDMEMBEMDEFINITIONSevtuiittirteerneeenesseersnersneesseesneesneesnrens
14.6.1 Ambiguities in Function and Value DefinitiQns............cccoiiiiiiiiiiiie e
14.6.2 Mutable Value DefiNitioNS...........coiiiiiiiiiieie e e e e
14.6.3 Processing Value DefiNItIQNScuiiiiiiiiiiiiee i e e e
14.6.4 Processing FUNCHON DefiNitiQNSoouiiiiiiiiiiee et e e e e e e
14.6.5 Processing Recursive Groups of DefiNitionS..........coveviiiiiiiiiiiie s 205
14.6.6 RECUISIVE SAfELY ANGIYSIS. .. .ottt e e e e e et e e e e e e e sbare b e e e e e e e anbbeeeeeeeaa 206
T A 1T o 1= - 1 [1.4= L1] T PP SPPRRRRN 208
14.6.8 Condensation Of GeNEraliZed TYPES.......uuiiiiiiiiiiiiieei ettt e e e et e e e e s ibrreeeeaeeeeanenes 210
14.7 DISPATCELOTINFERENCE.utttette e e ettt et e e e e e ettt et e e e e bt e e e e e e e e bt et e e e e aaa b e s et e e e e e e e snnneeeeeesannnneeeeeaenannn 211
14.8 DISPATCELOTOHECKING. 1tttk skttt st s s s s s s e e s nnnnn e 212
14.9 BY REAFETYANALY SIS -ttt tttitttttete e e sttt e e et e e s sttt e e e e e s st e et e e e e e e s s b b ettt e e e e aaaE e et e e e e e e nant b e et e e e e e s ntreeeeeeenannnree 213
14,10 ARITYNFERENCE .. e it iiitiete i et e et e e et e e e e e e e e e e e e e e s e e s o e s s e s oo s b ks b e ket sk ks etttk s sttt s s e s sen s e enesennnne 214
14.11 ADDITIONACONSTRAINTS EBLIMETHODS.....ceiiiiuitieiiee e et iee e e e ettt e e st e e e e e et e e e e e e s e enn e e e e eeenennnnee 215
15, LEXICAL FILTERING .. .oii ittt ettt ettt e e s mnn e e s e e e b e e e e nn e e nnn e e e e e e nane e 217
15.1 LI GHTWEIGHBYNTAX ¢ttt ettt e e e ettt e e e e ettt e e e ekt e et e e e e e e et et e e e e e s b e s et e e e e e a e sne s e e e e e e s asneneeeeeeeeeannnnes 217
15.1.1 Basic Lightweight Syntax Rules by EXample........c..ueioiiiii e 217
15.1.2 INSEIEA TOKENS. .. .utiieiiiiee ittt ettt ettt ettt e sttt e et et e e bt e e ea ke e e e ambe e e e enbe e e e ebb e e e s nbreeeennneas 218
15.13 Grammar Rules Including INSerted TOKEMS...........ciiiiiiiiiiieiiie ettt e 218
TN A O 57 To [N T O PO PUPRPI 219

15.1.5 ThE PrePaArSE STACK.......ccoii ittt e e e e e ettt e e e e e e e e eeaaee e e e e eeeataa e eeeseeessaaanaaaeeees 220

15.1.6 FUll List Of OffSIHE CONTEXIS ...ceiituiieiiiiieiiiieeesieie et tee et e ettt e st e e st e s sbe e e e snbeeeaesbeeessnteeesnnneeean 220
15.1.7 BalanCiNg RUIES.........uviieiiii ettt e e b e e s e e s annnee s 221
15.18 Offside Tokens, Token Insertions, and ClOSING CONTEXES........cccceiiiiiiiiireeeriiiiiiie e e eeiiie e e e e e e e sienns 222
15.1.9 Exceptions t0 the OffSIde RULES..........c.cviiiiiiiiieiee e 223
15.1.10 Permitted UNAENTALIONS.........ocuiiiiiiie ettt ettt e e st e e et e e s naneas 224
15.2 HIGHPRECEDENGIPPLICATION. ...ttttttttttttttestseseseeetssssesesess s s e e e e e et e e e e e e eeee e e ee e e e et et et e e eeeeeaeaeaneeeeeeaeeaenaaaeaeaaaaeens 225
15.3 LEXICAANALYSIS OF PEAPPLICATIONS. ...ttt eeetiittiteeeeesasstseeaeessasssseeaeeaaaasbseeseeeesaansbseeeeeeaaannbbeeeeeeeseanntneeeas 226

16. SPECIAL ATTRIBUTEBAYPES

16.1 QUSTOMATTRIBUTHRECOGNIZED B .eeiiiiieiiiitie et eee ettt e ettt e e st e e e e e et e e e e e e nnnne e e e e e e nanens 227
16.2 QUSTONATTRIBUTHEMITTED BIFF. ... e 234
16.3 QUSTOMATTRIBUTHSOTRECOGNIZED BH......cciiiiiiiiiiiii e ettt e e e et e e e e s niereneeeee e 234
16.4 EXCEPTIONBAROWN BIFELANGUAGIPRIMITIVES.....cetieititieieiiieeieeeeeeeeieeeeeeeeeeeeteaeeeaeaeasaeteeeeeeeataeaaaaaaaaaaaaaaaaaes 235
17. THE F# LIBRARY FSPUERDRE.DLL......ccitiiiiiitieiit ettt ettt ee et 237
171 BASICTYPESMICROSOFF SIARPOOREttt utteeeiteieeriteee e sttt e sttt e st e e e s abb e e e st bt e e sane e e e sabe e e s anbr e e e nsnneeennneee s 237
17.1.1 BasSiC TYPe ADDIEVIALIONS.cooiiiiiiiiiie ettt e e s et e e s neeeesneeeea 237
17.1.2 Basic Types that Accept Unit of Measure ANNOLALIONS..........cvvveririeeiriiieeire e 238
17.1.3 The NatiVEPII<_ > TYPE. . iii i eiiieeeiiiee et rttee et e st e e s raee e e et e e e eneeas
17.2 BASICOPERATORS ARDNCTIONEMICROSOHF $IARPCOREOPERATORS
17.2.1 BasSiC ArithmMetiC OPEIALOLS.ccciuuiieieiiieitiiee ettt et ettt e ettt e s sttt e e st e e e ste e e e snbeeeassteeesanseeesnnneeenn 238
17.2.2 Generic Equality and CompariSON OPEratOIS..........ccuueeiirreerriireierireeesireesaireessseeeessreeesssreee s
R B = 1 AL @] o 1T = (o £ SRR UTRPP
17.2.4 Math OPeratorS.......ccocvieiiirieiiiiee e
17.2.5 Function Pipelining and Composition Operatars
17.2.6 Object Transformation OPEIALOIS..........ccuuiiiiirieiiieiee ettt e st snene e e sneee s
i G - 1| g O o<1 = Lo £ PP PP PPPPPRRPIN
17.2.8 EXCEPUON OPEIALOESeeiiiiiieiittiteaittrteeatteee sttt e e st e e sb b aee e sabe e e e e be e e e aabe e e e sabeeeeeasbreeeanbneeesnneeesanneeens 241
17.2.9 Input/Output Handles
17.2.10 Overloaded ConVersion FUNCHOMS.uuiiiiaiiieiei et e e e e e 242
17.3 CHECKEBRITHMETIOPERATORS. .11t 1tt ettt ettas e s s s s s s sba s sttt sttt 5455t s et e e sttt s b st e s e s s eeeeeeee e 243
17.4 ST AN P TIONTY PES. ...tttk e et et s s e s e e e e e ee e e e e e e e eeeeeeeeneeee 244
o R N o T S Y o = PO PP PR PPPRPI 244
R S B (T O o] (o] o Iy o= PO PTP T OPPPUPPRPPN 244
175 LAZYCOMPUTATIONGAZY ...ttt eeteee ettt e ettt e sttt e sttt e e et e e et e e ess et e e aa et e e eabe e e e s a b e e e e aasb et e nnbeeesnnreeeanbneeenan 244
17.6 ASYNCHRONODIMPUTATIONGASYNE. ... etttteee et eitttteeeeeeee sttt e e e e s atbbe e e e e e e s s snbb e e e e e e s asneseeeeeesaaannnnneeeeesanen 244
17.7 AGENTEMAILBORROCESSPR.eeevtvteeitriesiutteas sttt e sttt e e ssseeeeaabe e e e s aste e e e sane e e e as b e e e aaabe e e e e snneeesabbeeesnneeennnnes 244
17.8 YN N 2T = PO P PR PP POPPPPPPPPPPPPPIRE 245
17.9 IMMUTABLECOLLECTIORYPESIMAR, SET) ...ttt ettt e ittt ettt e e bt e e et enann e e e snne e 245
17.00 TEXTFORMATTINGPRINTE. ..t tttteeteittieteee e e ettt et e e e e e bt e et e e e e e e nbteeeeeeaeaaaanbbeeeaeeaasbb b e e eeaeeeaannbbeeeaaeeaannsbeeaaaaeas 245
L17.11 REFLECTION ettt ittt ettt bbb bbb bbb e bt bbb e e e s s s ga e bbb bbb e b e b e s e e e e e rnes 245
0t 1 © § o 7.y 1 NSRS 245
17.13 NATIVEPOINTERDPERATIONS. ... ctteetiuttteettesssastnneseeseesaassssseeeeesaassssame e e aesaaasts e et e e e s asbereeeeeeesesntnneeeeesennnnneeees 245
17.13.1 Y=ol QAN [o Tox- 11T o TP PPT R ORTPPPPPPN 246
18. FEATURES FOR ML COBIIBILITY..uutttitttitititiataeee ettt it e e sttt et entse e e e teeaeaaaeaeeaeaesssasssnessesessnnenenenes 247
18.1 CONDITIONAGOMPILATION FARL COMPATIBILITY ..ccteeeeeeeeeeeeeeeeee e e e et e s s e e e e e e e e e e e aen e a e a e 247
18.2 EXTRASYNTACTIBORMS FORIL COMPATIBILITY. ...cttteiiiutrieeteeseitmnneeeeeessestnree e e e s s neneeeeeeesasntneeeeeeneinrnereeeeens 247
18.3 X TRADPERATORStttk ettt sttt et e et s 5ttt et e e et e e e e e e et e e e e e et et e e e e e e eeeaneeeeeeeeeeees 248

18.4 FHLEEXTENSIONS ANBXICAIN ATTERS. .. . ciitteeeitieeeeitee e e et e e ettt e e ettt eee st eesean e eettaessstnaeesnnesernnaessnnaaarennaaes 248

APPENDIX A: F# GRAMR SUMMARY......oiiiiiiiiiiii it simree ettt sere e snee s 249
REFERENGCES.......c oottt et et e ettt e e e et emr et e e e e s e et e e e e s st e e e e e e m e e e e e e e ennn e e e e e e ennnneee e 269
GLOSSARY. ..ottt E e E e et E et e et 270
IN D X ettt ettt e oo e e e — e e e e e e et ene e e e e e R R R e et e e e e R e e e e et e nan et e e e e e s a e e e e e e tnner e e e e s e s 281

1. Introduction

F# is a scalable, succinct, type-safe, type-inferred, efficiently executing functional/imperative/object-oriented
programming language. It aims to be the premier typed functional programming language for the .NET framework
and other implementations of the Ecma 335 Common Language Infrastructure (CLI) specification. F# was partly
inspired by the OCaml language and shares some common core constructs with it.

1.1 A First Program

Over the next few sections, we will look at some small F# programs, describing some important aspects of F#
along the way. As an introduction to F#, consider the following program:

let numbers = 1..10]
let square X = X * X
let squares = List.map square numbers

printfn "N~2 = %A" squares

To explore this program, you can:

1 Compile it as a project in a development environment such as Visual Studio.
1 Manually invoke the F# command line compiler fsc.exe.

1 Use F# Interactive, the dynamic compiler that is part of the F# distribution.

1.1.1 Lightweight Syntax

The F# language uses simplified, indentation-aware syntactic constructs known as lightweight syntax. The lines
of the sample program in the previous section form a sequence of declarations and are aligned on the same
column. For example, the two lines in the following code are two separate declarations:

let squares = List.map square numbers

printfn "N~2 = %A" squares

Lightweight syntax applies to all the major constructs of the F# syntax. In the next example, the code is
incorrectly aligned. The declaration starts in the first line and continues to the second and subsequent lines, so
those lines must be indented to the same column under the first line:

let computeDeri vative f x =
let p1 =1 (x - 0.05)
let p2 =f (x + 0.05)
(P2 - p1)/0.1

The following shows the correct alignment:

let computeDeri vative f x =

let p1 =f(x - 0.05)
letp2=f(x+0 .05)
(P2 - p1)/0.1

The use of lightweight syntax is the default for all F# code in files with the extension .fs , .fsx , .fsi , or
fsscript

1.1.2 Making Data Simple

The first line in our sample simply declares a list of numbers from one through ten.

let numbers =[1 .. 10]

An F# list is an immutable linked list, which is a type of data used extensively in functional programming. Some
operators that are related to lists include :: to add an item to the front of a list and @to concatenate two lists. If
we try these operators in F# Interactive, we see the following results:

> let vowels =['e'; 'i'; '0"; 'U';;
val vowels: char list =['e" 'l 0" 'u

>['a"] @vowels;;
val it: char list = ['a'; 'e'; 'i'; '0"; 'u’]

> vowels @ ['y'];

val it: char list =['e; 'i'; '0"; 'u"; 'y
Note that double semicolons delimit lines in F# Interactive, and that F# Interactive prefaces the result with val to
indicate that the result is an immutable value, rather than a variable.

F# supports several other highly effective techniques to simplify the process of modeling and manipulating data
such as tuples, options, records, unions, and sequence expressions. A tuple is an ordered collection of values
that is treated as an atomic unit. In many languages, if you want to pass around a group of related values as a
single entity, you need to create a named type, such as a class or record, to store these values. A tuple allows
you to keep things organized by grouping related values together, without introducing a new type.

To define a tuple, you separate the individual components with commas.

> let tuple = (1, false, "text");;
val tuple : int * bool * string = (1, false, "text")

> let getNumberinfo (x : int) = (x, x.ToString(), X * x);;
val getNumberinfo : int ->int* string * int

> getNumberinfo 42;;

val it : int * string * int = (42, "42", 1764)
A key concept in F# is immutability. Tuples and lists are some of the many types in F# that are immutable, and
indeed most things in F# are immutable by default. Immutability means that once a value is created and given a
name, the value associated with the name cannot be changed. Immutability has several benefits. Most notably, it
prevents many classes of bugs, and immutable data is inherently thread-safe, which makes the process of
parallelizing code simpler.

1.1.3 Making Types Simple
The next line of the sample program defines a function called square , which squares its input.
let square x = x * X
Most statically-typed languages require that you specify type information for a function declaration. However, F#

typically infers this type information for you. This process is referred to as type inference.

From the function signature, F# knows that square takes a single parameter named x and that the function
returns x * x . The last thing evaluated in an F# function body is the return value; hence there is no freturno
keyword here. Many primitive types support the multiplication (*) operator (such as byte , uint64 , and double) ;
however, for arithmetic operations, F# infers the type int (a signed 32-bit integer) by default.

12

Although F# can typically infer types on your behalf, occasionally you must provide explicit type annotations in F#
code. For example, the following code uses a type annotation for one of the parameters to tell the compiler the
type of the input.

> let concat (x : string) y = x +;;

val concat : string ->string -> string
Because x is stated to be of type string , and the only version of the + operator that accepts a left-hand
argument of type string also takes a string as the right-hand argument, the F# compiler infers that the
parameter y must also be a string. Thus, the result of x +y is the concatenation of the strings. Without the type
annotation, the F# compiler would not have known which version of the + operator was intended and would have
assumed int data by default.

The process of type inference also applies automatic generalization to declarations. This automatically makes
code generic when possible, which means the code can be used on many types of data. For example, the
following code defines a function that returns a new tuple in which the two values are swapped:

> let swap (X, = X
valswap:'a*'b ->'b*'a

>swap (1, 2);;
val it :int*int = (2, 1)

> swap ("you", true);;

val it : bool * string = (true,"you")
Here the function swapis generic, and 'a and 'b represent type variables, which are placeholders for types in
generic code. Type inference and automatic generalization greatly simplify the process of writing reusable code
fragments.

1.1.4 Functional Programming

Continuing with the sample, we have a list of integers named numbers, and the square function, and we want to
create a new list in which each item is the result of a call to our function. This is called mapping our function over
each item in the list. The F# library function List.map does just that:

| et squares = List.map square numbers
Consider another example:

> List.map (fun x ->Xx%2=0)[1..5];

val it : bool list

= [false; true; false; true; false]
The code (funx ->x% 2 =0) defines an anonymous function, called a function expression, that takes a
single parameter x and returns the result x % 2 =0 , which is a Boolean value that indicates whether x is even.
The - > symbol separates the argument list (x) from the function body (x % 2 =0).

Both of these examples pass a function as a parameter to another functiond the first parameter to List. map is
itself another function. Using functions as function values is a hallmark of functional programming.

Another tool for data transformation and analysis is pattern matching. This powerful switch construct allows you
to branch control flow and to bind new values. For example, we can match an F# list against a sequence of list
elements.

let checkList alist =
match alist with
Il ->0
[[a] ->1
| [&; b] ->2

13

| [&; b; c] ->3

| _ ->failwith "List is too big!"
In this example, alist is compared with each potentially matching pattern of elements. When alist matches a
pattern, the result expression is evaluated and is returned as the value of the match expression. Here,
the - > operator separates a pattern from the result that a match returns.

Pattern matching can also be used as a control constructd for example, by using a pattern that performs a
dynamic type test:

let get Type (x : obj) =
match x with

| :? string -> "X is a string"
| :?int ->"xis an int"
| :? System.Exception -> "X is an exception”

The :? operator returns true if the value matches the specified type, so if x is a string, getType returns
fik is a string 0.

Function values can also be combined with the pipeline operator, |> . For example, given these functions:

let square x =X*X
let toStr (x : int) = x.ToString()
let reverse (x : string) = new System. String(Array.rev (x.ToCharArray()))

We can use the functions as values in a pipeline:

> let result = 32 |> square |> toStr |> reverse 5
val it : string = "4201"

Pipelining demonstrates one way in which F# supports compositionality, a key concept in functional
programming. The pipeline operator simplifies the process of writing compositional code where the result of one
function is passed into the next.

1.1.5 Imperative Programming
The next line of the sample program prints text in the console window.
printfn "N~2 = %A" squares

The F# library function printf is a simple and type-safe way to print text in the console window. Consider this
example, which prints an integer, a floating-point number, and a string:

> printfn "%d * %f = %s" 50 .75 ((5.0 * 0.75).TosString());;
5*0.750000 = 3.75
val it : unit = ()

The format specifiers %q %f, and %sare placeholders for integers, floats, and strings. The %/Aformat can be used
to print arbitrary data types (including lists).

The printfn function is an example of imperative programming, which means calling functions for their side
effects. Other commonly used imperative programming techniques include arrays and dictionaries (also called
hash tables). F# programs typically use a mixture of functional and imperative techniques.

1.1.6 .NET Interoperability and CLI Fidelity

The last line in the sample program calls the common language infrastructure (CLI) function
System.Console.ReadKey to pause the program before the console window closes.

System.Console.ReadKey(true)

Because F# is built on top of CLI implementations, you can call any CLI library from F#. Furthermore, other CLI
languages can easily use any F# components.

14

1.1.7 Parallel and Asynchronous Programming

F# is both a parallel and a reactive language. During execution, F# programs can have multiple parallel active
evaluations and multiple pending reactions, such as callbacks and agents that wait to react to events and
messages.

One way to write parallel and reactive F# programs is to use F# async expressions. For example, the code below
is similar to the original program in 81.1 except that it computes the Fibonacci function (using a technique that will
take some time) and schedules the computation of the numbers in parallel:

let rec fib x = if x <= 2 then 1 else fib (x-1) +fib(x -2)
let fibs =
Async.Parallel [foriin 0..40 ->async { return fib(i) }]

|> Async.RunSynchronously
printfn "N~2 = %A" fibs

System.Console.ReadKey(true)

The preceding code sample shows multiple, parallel, CPU-bound computations.

F# is also a reactive language. The following example requests multiple web pages in parallel, reacts to the
responses for each request, and finally returns the collected results.

open System
open System.lO
open System.Net

let http url =
async { let req = WebRequest.Create(Uri url)
use! resp = req.AsyncGetResponse()
use stream = resp.GetResponseStream()
use reader = new StreamReader(stream)
let contents = reader.ReadToEnd()
return contents }

let sites = ["http://www.bing.com"; "http://www.google.co m";
"http://lwww.yahoo.com"; "http://www.search.com"”]

let htmlOfSites =
Async.Parallel [for site in sites - > http site]
|> Async.RunSynchronously

By using asynchronous workflows together with other CLI libraries, F# programs can implement parallel tasks,
parallel /O operations, and message-receiving agents.

1.1.8 Strong Typing for Floating -Point Code

F# applies type checking and type inference to floating-point-intensive domains through units of measure
inference and checking. This feature allows you to type-check programs that manipulate floating-point numbers
that represent physical and abstract quantities in a stronger way than other typed languages, without losing any
performance in your compiled code. You can think of this feature as providing a type system for floating-point
code.

Consider the following example:

[<Measure>] type kg
[<Measure>] type m
[<Measure>] type s

15

let gravityOnEarth = 9.81<m/s"2>
let heightOfTowerOfPisa = 55.86<m>
let speedOflmpact = sqrt(2.0 * gravityOnEarth * heightOfTowerOfPisa)

The Measure attribute tells F# that kg, s, and mare not really types in the usual sense of the word, but are used

to build units of measure. Here speedOflmpact is inferred to have type float<m/s>

1.1.9 Object-Oriented Programming and Code Organization

The sample program shown at the start of this chapter is a script. Although scripts are excellent for rapid
prototyping, they are not suitable for larger software components. F# supports the transition from scripting to

structured code through several techniques.

The most important of these is object-oriented programming through the use of class type definitions, interface
type definitions, and object expressions. Object-oriented programming is a primary application programming
interface (API) design technique for controlling the complexity of large software projects. For example, here is a

class definition for an encoder/decoder object.

open System

/Il Build an encoder/decoder object that maps characters to an
/Il encoding and back. The encoding is specified by a sequence
/Il of character pairs, for example, [(‘@','2); ('z')a")]
type CharMapEncoder(symbols: seq<char*char>) =
let swap (X, y) = (Y, X)

/Il An immutable tree map for the encoding
let fwd = symbols |> Map.of Seq

/Il An immutable tree map for the decoding
let bwd = symbols |> Seq.map swap |> Map.of Seq

let encode (s:string) =

String [| forcin's - > if fwd.ContainsKey(c) then fwd.[c] else c []
let decode (s:string) =
String [| forcins - > if bwd.ContainsKey(c) then bwd.[c] else ¢ []

/Il Encode the input string
member x.Encode(s) = encode s

/Il Decode the given string
member x.Decode(s) = decode s

You can instantiate an object of this type as follows:

let rotl3 (c:char) =

char(int 'a' + ((int ¢ - int'a' + 13) % 26))
let encoder =
CharMapEncoder([for cin 'a'"..'z' ->(c, rotl3 c)])

And use the object as follows:

> "F# is fun!" |> encoder.Encode ;;
val it : string = "F# vf sha!"

> "F# is fun!" |> encoder.Encode |> encoder.Decode ;;
val it : String = "F# is fun!"

An interface type can encapsulate a family of object types:

open System

16

type IEncoding =
abstract Encode : string - > string
abstract Decode : string - > string

In this example, IEncoding is an interface type that includes both Encode and Decode object types.

Both object expressions and type definitions can implement interface types. For example, here is an object
expression that implements the IEncoding interface type:

let nullEncoder =
{ new IEncoding with
member x.Encode(s) = s
member x.Decode(s) = s

}

Modules are a simple way to encapsulate code during rapid prototyping when you do not want to spend the time
to design a strict object-oriented type hierarchy. In the following example, we place a portion of our original script
in a module.

module ApplicationLogic =
let numbers n =[1 .. n]
let square x = x * X
let squares n = numbers n |> List. map square

printfn "Squares up to 5 = %A" (ApplicationLogic.squares 5)
printfn "Squares up to 10 = %A" (ApplicationLogic.squares 10)
System.Console.ReadKey(tr ue)

Modules are also used in the F# library design to associate extra functionality with types. For example, List. map
is a function in a module.

Other devices aimed at supporting software engineering include signatures, which can be used to give explicit
types to components, and namespaces, which serve as a way of organizing the name hierarchies for larger APIs.

1.2 Notational Conventions in This Specification

This specification describes the F# language by using a mixture of informal and semiformal techniques. All
examples in this specification use lightweight syntax, unless otherwise specified.

Regular expressions are given in the usual notation, as shown in the table:

Notation Meaning

regexp+ One or more occurrences

regexp* Zero or more occurrences

regexp? Zero or one occurrences

[char - char] Range of ASCII characters

[~char - char] Any characters except those in the range

Unicode character classes are referred to by their abbreviationd for example, \ Lu refers to any uppercase letter.
The following characters are referred to using the indicated notation:

Character Name Notation
\'b backspace = ASCII/UTF-8/UTF-16/UTF-32 code 08
\n newline ASCII/UTF-8/UTF-16/UTF-32 code 10

17

Character Name Notation

\r return ASCII/UTF-8/UTF-16/UTF-32 code 13

\'t tab ASCII/UTF-8/UTF-16/UTF-32 code 09

Strings of characters that are clearly not a regular expression are written verbatim. Therefore, the following string
abstract
matches precisely the characters abstract

Where appropriate, apostrophes and quotation marks enclose symbols that are used in the specification of the
grammar itself, such as '<' and'|' . For example, the following regular expression matches (+) or (-):

CE-)Y

This regular expression matches precisely the characters #if :
“#i

Regular expressions are typically used to specify tokens.
token token -name = regexp

In the grammar rules, the notation element - namey: indicates an optional element. The notation ... indicates

repetition of the preceding non-terminal construct and the separator token. For example, expr ', ...,
expr means a sequence of one or more expr elements separated by commas.

18

2. Program Structure

The inputs to the F# compiler or the F# Interactive dynamic compiler consist of:

il

1
1

Source code files, with extensions .fs , .fsi , .fsx , or .fsscript

1 Files with extension .fs must conform to grammar element implementation -file in 812.1.
71 Files with extension .fsi must conform to grammar element signature -file in 812.2.
1 Files with extension .fsx or .fsscript ~ must conform to grammar element script - file in §12.3.

Script fragments (for F# Interactive). These must conform to grammar element script - fragment . Script
fragments can be separated by ;; tokens.

Assembly references that are specified by command line arguments or interactive directives.
Compilation parameters that are specified by command line arguments or interactive directives.

Compiler directives such as #time .

The COMPILELCcompilation symbol is defined for input that the F# compiler has processed. The INTERACTIVE
compilation symbol is defined for input that F# Interactive has processed.

Processing the source code portions of these inputs consists of the following steps:

1.

Decoding. Each file and source code fragment is decoded into a stream of Unicode characters, as
described in the C# specification, sections 2.3 and 2.4. The command-line options may specify a code page
for this process.

Tokenization. The stream of Unicode characters is broken into a token stream by the lexical analysis
described in 8§3.

Lexical Filtering. The token stream is filtered by a state machine that implements the rules described
in 815. Those rules describe how additional (artificial) tokens are inserted into the token stream and how
some existing tokens are replaced with others to create an augmented token stream.

Parsing. The augmented token stream is parsed according to the grammar specification in this document.

Importing. The imported assembly references are resolved to F# or CLI assembly specifications, which are
then imported. From the F# perspective, this results in the pre-definition of numerous namespace declaration
groups (812.1) and types. The namespace declaration groups are then combined to form an initial name
resolution environment (§14.1).

Checking. The results of parsing are checked one by one. Checking involves such procedures as Name
Resolution (§14.1), Constraint Solving (814.5), and Generalization (814.6.7), as well as the application of
other rules described in this specification.

Type inference uses variables to represent unknowns in the type inference problem. The various checking
processes maintain tables of context information including a name resolution environment and a set of
current inference constraints. After the processing of a file or program fragment is complete, all such
variables have been either generalized or resolved and the type inference environment is discarded.

Elaboration. One result of checking is an elaborated program fragment that contains elaborated
declarations, expressions, and types. For most constructs, such as constants, control flow, and data
expressions, the elaborated form is simple. Elaborated forms are used for evaluation, CLI reflection, and the
F# expression trees that are returned by quoted expressions (§6.8).

8. Execution. Elaborated program fragments that are successfully checked are added to a collection of
available program fragments. Each fragment has a static initializer. Static initializers are executed as
described in (812.5).

20

3. Lexical Analysis

Lexical analysis converts an input stream of Unicode characters into a stream of tokens by iteratively processing
the stream. If more than one token can match a sequence of characters in the source file, lexical processing
always forms the longest possible lexical element. Some tokens, such as block - comment start , are discarded
after processing as described later in this section.

3.1 Whitespace

Whitespace consists of spaces and newline characters.

regexp whitespace ='' +
regexp newline ="\n"|'" \r'' \n'
token whitespace -or-newline = whitespace | newline

Whitespace tokens whitespace - or - newline are discarded from the returned token stream.

3.2 Comments

Block comments are delimited by (* and *) and may be nested. Single-line comments begin with / and extend
to the end of the line.

token block - comment start ="(*"
token block - commeh-end ="*)"
token end- of - line - comment ="//" [

\n'"" \r*

When the input stream matches a block - comment start token, the subsequent text is tokenized recursively
against the tokens that are described in 83 until a block - comment end token is found. The intermediate tokens

are discarded.

For example, comments can be nested, and strings that are embedded within comments are tokenized by the
rules for string and verbatim - string . In particular, strings that are embedded in comments are tokenized in
their entirety, without considering closing *) marks. As a result of this rule, the following is a valid comment:

(* Here's a code snippet: let s = "*)" *)

For the purposes of this specification, comment tokens are discarded from the returned lexical stream. In
practice, XML documentation tokens are end- of - line - commentsthat begin with ///. The delimiters are retained
and are associated with the remaining elements to generate XML documentation.

3.3 Conditional Compilation

ident /#else/#endif
following describes the grammar for such sections:

The lexical preprocessing directives #if delimit conditional compilation sections. The

token if -directive ="#if" whitespace ident -text
token else - directive = "#else"
token endif -directive = "#endif"

A preprocessing directive always occupies a separate line of source code and always begins with a # character
followed immediately by a preprocessing directive name, with no intervening whitespace. However, whitespace

can appear before the # character. A source line that contains the #if , #else , or #endif directive can end with
whitespace and a single-line comment. Multiple-line comments are not permitted on source lines that contain
preprocessing directives.

If anif -directive token is matched during tokenization, text is recursively tokenized until a corresponding
else - directive or endif -directive . If the compilation environment defines the associated ident -text (for
example, by using the command line option Zdefine), the token stream includes the tokens between the if -
directive and the corresponding else - directive or endif -directive . Otherwise, the tokens are discarded.
The converse applies to the text between any corresponding else - directive and the endif - directive

1 Inskipped text, #if ident /#else/#endif sections can be nested.

M Strings and comments are not treated as special

3.4 Identifiers and Keywords

Identifiers follow the specification below. Any sequence of characters that is enclosed in double-backtick marks
("), excluding newlines, tabs, and double-backtick pairs themselves, is treated as an identifier.

regexp digit -char =[0 -9]

regexp letter -char = "'\Lu'|" \LI'|' \Lt'|" \Lm'|" \Lo'|" \NI
regexp connecting -char ="' \Pc

regexp combining -char ="' \Mn'|"' \Mc'

regexp formatting -char ='\Cf

regexp ident -start -char =
| letter -char

regexp ident -char =
| letter -char
| digit -char
| connecting -char
| combining - char
| formatting -char
|
|

regexp ident -text = ident -start -char ident -char*
token ident =
| ident -text For example, myNamel
| BN 1 W W A I T A U U WAL & |
For example, ° value .with odd#name™

All input files are currently assumed to be encoded as UTF-8. See the C# specification for a list of the Unicode
characters that are accepted for the Unicode character classes \Lu, \Li, \Lt, \Lm, \Lo, \NI, \Pc, \Mn, \Mc, and \Cf.

The following identifiers are treated as keywords of the F# language:

token ident -keyword =
abstract and as assert base begin class default delegate do done
downcast downto elif else end exception extern false finally for
fun function global if in inherit inline interface internal lazy let
match member module mutable namespace new null of open or
override private public rec return sig static struct then to
true try type upcast use val void when while with yield

The following identifiers are reserved for future use:

token reserved -ident -keyword =
atomic break checked component const constraint constructor

22

continue eager fixed fori functor include
measure method mixin object parallel params process protected
recursive sealed tailcall trait virtual volatile

pure

A future revision of the F# language may promote any of these identifiers to be full keywords.

The following token forms are reserved, except when they are part of a symbolic keyword (83.6).

token reserved -ident -formats
| ident -text (""|'#)

In the remainder of this specification, we refer to the token that is generated for a keyword simply by using the
text of the keyword itself.

3.5 Strings and Characters

String literals may be specified for two types:

1 Unicode strings, type string = System.String

1 Unsigned byte arrays, type byte[] = bytearray

Literals may also be specified by using C#-like verbatim forms that interpret \ as a literal character rather than an
escape sequence. In a UTF-8-encoded file, you can directly embed the following in a string in the same way as in
C#:

§ Unicode characters, such as fi u0041bco
1 Identifiers, as described in the previous section, s u cdwncoas i
9 Trigraph specifications of Unicode characters, s u c\@670a swhfii ch r@pr esent s i
regexp escape-char ="' \'[" \'ntbr]
regexp non-escape-chars ="' \'[" \'ntbr]
regexp simple -char-char =
| (any char except SAW B S SRR A o N W
regexp unicodegraph -short ='\' 'u' hexdigit hexdigit hexdigit hexdigit
regexp unicodegraph -long ="' \' 'U" hexdigit hexdigit hexdigit hexdig it
hexdigit hexdigit hexdigit hexdigit
regexp trigraph ="' \'" digit -char digit -char digit -char
regexp char-char =
| simple -char - char
| escape-char
| trigraph
| unicodegraph - short
regexp string -char =
| simple -string -char
| escape-char
| non-escape- chars
| trigraph
| unicodegraph - short
| unicodegraph -long
| newline
regexp string -elem =
| string -char
|" \" newline whitespace * string -elem
token char = char -char '
token string = string -char*"

23

regexp verbatim -string -char =
| simple -string -char

non- escape- chars

newline

\

token verbatim - string @" verbatim -string -char*"

token bytechar ' simple - or-escape-char 'B

token bytearray " string -char*"B

token verbatim - bytearray @" verbatim -string -char*"B

token simple - or- escape-char = escape-char | simple -char

token simple - char = any char except newline,return,tab,backspace S\

To translate a string token to a string value, the F# parser concatenates all the Unicode characters for the

string - char elements within the string. Strings may include \ n as a newline character. However, if a line ends
with \ , the newline character and any leading whitespace elements on the subsequent line are ignored. Thus, the
following gives s the value "abcdef" :

lets="abc \
def"

Without the backslash, the resulting string includes the newline and whitespace characters. For example:

let s = "abc
def"

In this case, s has the value "abc\ 010 def" where \ 010 is the embedded control character for \ n, which
has Unicode UTF-16 value 10.

Verbatim strings may be specified by using the @symbol preceding the string as in C#. For example, the
following assigns the value "abc \ def" to s.

lets = @"abc \def"

String-like and character-like literals can also be specified for unsigned byte arrays (type byte[]). These tokens
cannot contain Unicode characters that have surrogate-pair UTF-16 encodings or UTF-16 encodings greater than
127.

3.6 Symbolic Keywords

The following symbolic or partially symbolic character sequences are treated as keywords:

token symbolic - keyword =
let! use! do! yield! return!

| -><- O N>T0{}

H?>?> ==

_?7?7() <@ @><@@ @@>

The following symbols are reserved for future use:

token reserved - symbolic - sequence =

24

3.7 Symbolic Operators

User-defined and library-defined symbolic operators are sequences of characters as shown below, except where
the sequence of characters is a symbolic keyword (83.6).

regexp first -op-char
regexp op- char

1%0&*+ - ./[<=>@"|~
first -op-char |?

token quote - op- left

| <@ <@@

token quote - op-right =
| @> @@>

token symbolic -op =
| ?
| 7< -
| first -op-char op-char*
| quote - op- left
| quote - op- right

For example, &&&and ||| are valid symbolic operators. Only the operators ? and ?<- may start with ?.
The quote - op- left and quote - op- right operators are used in quoted expressions (86.8).

For details about the associativity and precedence of symbolic operators in expression forms, see 84.4.

3.8 Numeric Literals

The lexical specification of numeric literals is as follows:

regexp digit =[0 -9]
regexp hexdigit =digit |[A -F]|[a -f]
regexp octaldigit =[0 -7]
regexp bitdigit =[0 -1]
regexp int =

| digit + For example, 34
regexp xint =

| int For example, 34

| 0 (X|X) hexdigit + For example, 0x22

| 0 (0]O) octaldigit + For example, 0042

| 0 (b|B) bitdigit + For example, 0b10010
token shyte = xint 'y' For example , 34y
token byte = xint' uy' For example , 34uy
token intl6 = xint' s For example ,34 s
token uint16 = xint' us' For example , 34us
token int32 = xint "I For example , 34l
token uint32 = xint' ul For example , 34ul

| xint' u' For example , 34u
token nativeint = xint' n' For example , 34n
token unativeint = xint' un' For example , 34un
token int64 = xint' L' For example , 34L
token uint64 = xint' UL For example , 34UL
| xint' ul' For example , 34uL

token ieee32 =

| float [Ff] For example , 3.0F or 3.0f

| xint If For example , 0x00000000If
token ieee64 =

| float For example, 3.0

25

| xint 'LF For example , 0x0000000000000000LF

token bignum =int (Q'| 'R'|'Z'|'T|'N "1'G)
For example , 34742626263193832612536171N

token decimal =(float |int)[Mm]
token float =

digit +. digit *
digit +(. digit *)? (e|E)(+] -)? digit +

3.8.1 Post-filtering of Adjacent Prefix Tokens
Negative integers are specified using the Z token; for example, - 3. The token steam is post-filtered according to
the following rules:

1 If the token stream contains the adjacent tokens Z token :

becomes the single token it 3a Otherwise, the tokens remain separate. However the ft 6token is marked as
an ADJACENT PREFIRPtoken.

terminating token from expression forms that have lower precedence than the grammar production
expr = MINUSexpr.

For example, the Z and_b tokens in the following sequence are not merged if all three tokens are adjacent:

1 Otherwise, the usual grammar rules apply to the uses of Z and +, with an addition for ADJACENT_PREFIX_OP

expr = expr MINUS expr
| MINUS expr
| ADJACENT_PREFIX_OP expr

3.8.2 Post-filtering of Integers Followed by AAEAAAT O 08846

Tokens of the form

|token intdotdot =int.. |

such as 34.. are post-filtered to two tokens: one int and one symbolic - keyword, i. a

This rule allows fi. 0to immediately follow an integer. This construction is used in expressions of the form [for x
inl.2 ->x+x] .Without this rule, the longest-match rule would consider this sequence to be a floating-

pointnumber fol loowed by a 0

3.8.3 Reserved Numeric Literal Forms

The following token forms are reserved for future numeric literal formats:

token reserved -literal -formats =

26

3.9 Line Directives

Line directives adjust the source code filenames and line numbers that are reported in error messages, recorded
in debugging symbols, and propagated to quoted expressions. F# supports the following line directives:

token line - directive =
int
int string
i ntverbatim - string
#line int
#line int string
#line int verbatim - string

A line directive applies to the line that immediately follows the directive. If no line directive is present, the first line
of a file is numbered 1.

3.10 Hidden Tokens

Some hidden tokens are inserted by lexical filtering (§15) or are used to replace existing tokens. See 8§15 for a
full specification and for the augmented grammar rules that take these into account.

3.11 Identifier Replacements

The following table lists identifiers that are automatically replaced by expressions.

Identifier Replacement

_ SOURCE_DIRECTORY A literal verbatim string that specifies the name of the directory that contains the
current file. For example:

C:\ source

The name of the current file is derived from the most recent line directive in the file. If
no line directive has appeared, the name is derived from the name that was
specificed to the command-line compiler in combination with
System.|0.Path.GetFullPath

In F# Interactive, the name stdin is used. When F# Interactive is used from tools
such as Visual Studio, a line directive is implicitly added before the interactive

execution of each script fragment.

_ SOURCE_FILE___ A literal verbatim string that contains the name of the current file. For example:
file.fs
_LINE__ A literal string that specifies the line number in the source file, after taking into

account adjustments from line directives.

27

4. Basic Grammar Elements

This section defines grammar elements that are used repeatedly in later sections.

4.1 Operator Names

Several places in the grammar refer to an ident - or - op rather than an ident :

ident -or-op :=
| ident
| (op-name)
| (*)
op- name :=

| symbolic -op

| range-op-name

| active -pattern -op-name

range - op- name :=
..
| ..

active -pattern -op-name :=
|| ident |...] ident |
[| ident |...| ident | _|

In operator definitions, the operator name is placed in parentheses. For example:
let (+++) xy = (X, y)

This example defines the binary operator +++. The text (+ ++) is an ident - or - op that acts as an identifier with
associated text +++. Likewise, for active pattern definitions (87), the active pattern case names are placed in
parentheses, as in the following example:

let (JA|B|C|) x = if x <0 then A elif x =0 then B else C

Because an ident - or - op acts as an identifier, such names can be used in expressions. For example:
List.map ((+) 1) [1, 2; 3]

The three character token (*) defines the * operator:
let () xy = (x +y)

To define other operators that begin with *, whitespace must follow the opening parenthesis; otherwise (* is
interpreted as the start of a comment:

let (*+*)xy = (x +y)

Symbolic operators and some symbolic keywords have a compiled name that is visible in the compiled form of F#
programs. The compiled names are shown below.

0 op_Nil

i op_ColonColon
+ op_Addition

- op_Subtraction
* op_Multiply

/ op_Division

b op_Exponentiation
@ op_Append

N op_Concatenate

% op_Modulus

&&& op_BitwiseAnd

Ml op_BitwiseOr

AMA - op_ExclusiveOr

<<< op_LeftShift

~~~ op_LogicalNot

>>>  op_RightShift

~+ op_UnaryPlus

~ op_UnaryNegation

= op_Equality

<> op_Inequality

<= op_LessThanOrEqual
>= op_GreaterThanOrEqual

< op_LessThan
> op_GreaterThan
? op_Dynamic

?<-  op_DynamicAssignment
[> op_PipeRight

[I> op_PipeRight2

[[I> op_PipeRight3

<| op_PipeLeft

< op_PipeLeft2

< op_PipelLeft3

! op_Dereference

>> op_ComposeRight

<< op_ComposeLeft

<@ @>»p_Quotation

<@@ @@> op_QuotationUntyped
~%  op_Splice

~%% op_SpliceUntyped

~& op_AddressOf

~&& op_IntegerAddressOf

Il op_BooleanOr

&&  op_BooleanAnd

+= op_AdditionAssignment

-= op_SubtractionAssignment

*= op_MultiplyAssignment

/= op_DivisionAssignment
op_Range

op_RangeStep

30



Compiled names for other symbolic operators are op_Ni...N , where N; to N, are the names for the characters as
shown in the table below. For example, the symbolic identifier <* has the compiled name op_LessMultiply

\%

Greater
Less
Plus
Minus
Multiply
Equals
Twiddle
% Percent
Dot
Amp
Bar

At
Hash
Hat
Bang
Qmark
Divide
Dot
Colon
LParen
Comma
RParen
LBrack
RBrack

+ A

ST >HQT R

e —— =~ s -

4.2 Long ldentifiers

Long identifiers long - ident  are sequences of identifiers that are separated by p t &nd optional whitespace.
Long identifiers long - ident - or-op are long identifiers that may terminate with an operator name.

long -ident := ident ident
long -ident -or-op =
| long -ident ' ident -or-op

| ident -or-op

4.3 Constants

The constants in the following table may be used in patterns and expressions. The individual lexical formats for
the different constants are defined in 83.

const =
| sbyte
| int16
| int32
| int64 - 8,16,32and 64 - hit signed integers
| byte
| uint 16
| uint32
| int -- 32- bit signed integer
| uint64 -- 8,16,32and 64 - bit unsigned integers
| ieee32 -- 32- bit number of type "float32"
| ieeeb4 -~ 64- bit number of type "float"
| bignum -- Useror library -defined integral literal type
| char Unicode character of type "char"
| string String of type "string" (System.String)
| verbatim - string String of type "string" (System.String)

31




| bytestring -- String of type "byte 0

| verbatim - bytearray -- String of type "byte[]"
| bytechar --  Char of type "byte"

| false | true -- Boolean constant of type "bool"

| O -~ unit constant of type "unit"

4.4 Operators and Precedence

4.4.1 Categorization of Symbolic Operators

The following symbolic - op tokens can be used to form prefix and infix expressions. The marker OPrepresents
all symbolic - op tokens that begin with the indicated prefix, except for tokens that appear elsewhere in the table.

infix -or-prefix -op =
+, -, o+, -, % & &&

prefix -op =
infix -or-prefix -op
e (and any repetitions of ~)
I0OP (except !=)

infix -op :=
infix - or-prefix -op
-OP +OP || <OP >OP = |OP &OP ~OP *OP /OP %OP !=

s O ATU T £ OEAOA POAAAAAA AU TTA 10
$
or
?
The operators +, -, +.,-., % & &&can be used as both prefix and infix operators. When these operators are

used as prefix operators, the tilde character is prepended internally to generate the operator name so that the
parser can distinguish such usage from an infix use of the operator. For example, - x is parsed as an application
of the operator ~ to the identifier x. This generated name is also used in definitions for these prefix operators.
Consequently, the definitions of the following prefix operators include the ~ character:

/I To complete ly redefin e the prefix + operator:
let (~+) x = x

/I To complete ly redefin e the infix + operator to be addition modulo -7
let(+)ab=(a+b)%7

Il To define the operator on a type:
type C(n:int) =
letn=n%7
member x.N =n
static member (~+) (x:C) = x
static member (~ -)(xC)=C( -n)
static member (+) (x1:C,x2:C) = C(x1.N+x2.N)
static member ( -) (x1:C,x2:C) = C(x1.N -x2.N)

The:: operator is special. It represents the union case for the addition of an element to the head of an immutable
linked list, and cannot be redefined, although it may be used to form infix expressions.It always accepts
arguments in tupled formd as do all union casesd rather than in curried form.

32

bt



4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs

Rules of precedence control the order of evaluation for ambiguous expression and pattern constructs. Higher

precedence items are evaluated before lower precedence items.

The following table shows the order of precedence, from highest to lowest, and indicates whether the operator or
expression is associated with the token to its left or right. The OPmarker represents the symbolic - op tokens that

begin with the specified prefix, except those listed elsewhere in the table. For example, +OPrepresents any token
that begins with a plus sign, unless the token appears elsewhere in the table.

Operator or expression

Associativity

Comments

f<types>

f(x)

prefix -op
"| rule”

nf
"lazy X"
"assert x"

QP
*OP /OP %OP
-OP +OP

?

"OP

I=OP <OP >OP = |OP &OP $

S>>
& &&

or ||

function, fun, match, try

let

when

as

Left
Left
Left
Left
Right

Left

Right

Left

Left

Not associative
Right

Right

Left

Right

Left

Left

Not associative
Right

Right

Not associative
Not associative
Not associative
Right

Left

Right

Right

High-precedence type application; see 815.3

High-precedence application; see §15.2

Applies to prefix uses of these symbols

Pattern matching rules

Applies to infix uses of these symbols

33



If ambiguous grammar rules (such as the rules from 86) involve tokens in the table, a construct that appears
earlier in the table has higher precedence than a construct that appears later in the table. The associativity
indicates whether the operator or construct applies to the item to the left or the right of the operator.

For example, consider the following token stream:
a+tb*c
In this expression, the expr infix -op expr rule for b * c takes precedence over the expr infix -op expr

rule for a + b , because the * operator has higher precedence than the + operator. Thus, this expression can be
pictured as follows:

+ b*c

Q

rather than

at+tb *c

Likewise, given the tokens
a*b*c
the left associativity of * means we can picture the resolution of the ambiguity as:

a*b *c

In the preceding table, leading . characters are ignored when determining precedence for infix operators. For
example, .* has the same precedence as *. This rule ensures that operators such as .* , which is frequently
used for pointwise-operation on matrices, have the expected precedence.

The table entries marked as fHigh-precedence applicationdand fHigh-precedence type applicationoare the result
of the augmentation of the lexical token stream, as described in §15.2 and §15.3.

34



5. Types and Type Constraints

The notion of type is central to both the static checking of F# programs and to dynamic type tests and reflection
at runtime. The word is used with four distinct but related meanings:

1  Type definitions, such as the actual CLI or F# definitions of System.String  or
Microsoft.FSharp.Collections . Map_, >,

1  Syntactic types, such as the text option<_> that might occur in a program text. Syntactic types are
converted to static types during the process of type checking and inference.

1 Static types, which result from type checking and inference, either by the translation of syntactic types that
appear in the source text, or by the application of constraints that are related to particular language
constructs. For example, opti on<int> is the fully processed static type that is inferred for an expression
Some(1+1). Static types may contain type variables as described later in this section.

1 Runtime types, which are objects of type System.Type and represent some or all of the information that
type definitions and static types convey at runtime. The obj.GetType() method, which is available on all F#
values, provides access to the runtime type of an object. An obj ect 6s runtime type is r
of the identifiers and expressions that correspond to the object. Runtime types may be tested by built-in
language operators such as :? and :?>, the expression form downcast expr, and pattern matching type
tests. Runtime types of objects do not contain type variables. Runtime types that System.Reflection

reports may contain type variables that are represented by System.Type values.

The following describes the syntactic forms of types as they appear in programs:

type =

( type )

type -> type --function type

type *..* type - tuple type

typar -- variable type

long - ident -- named type, suchas int

long -ident <types > -- namedtype, suchas list<int>

long -ident <> -- named type, suchas IEnumerable< >

type long -ident -- named type, suchas intlist

type [, ... s -- array type

type lazy - lazy type

type typar -defns -~ type with constraints

typar > type -- variable type with subtype constrain t

#type -- anonymous type with subtype constraint
types = type, .., type

atomic -type =
type : one of
#type typar ( type ) long-identlong -ident <types >

typar =
_ -- anonymous variable type
" ident -~ type variable
~ident -- static head - type type variable
constraint =
typar > type -- coercion constraint
typar : null -- nullness constraint
static -typars :( membersig ) -- member "trait" constraint
typar :(new : unit ->'T) --  CLI default con  structor constraint
typar : struct -~ CLI non - Nullable struct
typar : not struct -- CLlI reference type

typar :enum<type > -- enum decomposition constraint




typar :unmanaged -- unmanaged constraint

typar :delegate< type,type > -- delegate decomposition constraint
typar : equality

typar : comparison

typar - defn := attributes opt typar

typar -defns =< typar -defn, ..., typar -defn typar -constraints op >
typar - constraints :=when constraint and ... and constraint

static - typars :=

Aident
(“ident or...or”" ident )

member sig := <see Section 10>

In a type instantiation, the type name and the opening angle bracket must be syntactically adjacent with no
intervening whitespace, as determined by lexical filtering (815). Specifically:

array<int>
and not

array < int >

5.1 Checking Syntactic Types

Syntactic types are checked and converted to static types as they are encountered. Static types are a
specification device used to describe

1  The process of type checking and inference.
1 The connection between syntactic types and the execution of F# programs.

Every expression in an F# program is given a unique inferred static type, possibly involving one or more explicit
or implicit generic parameters.

For the remainder of this specification we use the same syntax to represent syntactic types and static types. For
example int32 * int32 is used to represent the syntactic type that appears in source code and the static type
that is used during checking and type inference.

The conversion from syntactic types to static types happens in the context of a name resolution environment
(814.1), a floating type variable environment, which is a mapping from names to type variables, and a type
inference environment (8§14.5).

The phr as e onmeans adalic typetipakis formed from a fresh type inference variable. Type inference
variables are either solved or generalized by type inference (§14.5). During conversion and throughout the
checking of types, expressions, declarations, and entire files, a set of current inference constraints is maintained.
That is, each static type is processed under input constraints j , and results in output constraints j 6 Type
inference variables and constraints are progressively simplified and eliminated based on these equations through
constraint solving (§14.5).

36



5.1

.1 Named Types

Named types have several forms, as listed in the following table.

Form __ Description

long -ident <ty .+ A+ ©U  Named type with one or more suffixed type arguments.

long - ident Named type with no type arguments

type long -ident Named type with one type argument; processed the same as long - ident <type >
ty lazy Shorthand for the named type Microsoft.FSharp.Control.Lazy< ty> .
ty:1->1tyo A function type, where:

Aty1 is the domain of the function values associated with the type
Aty2 is the range.

In compiled code it is represented by the named type
Microsoft.FSharp.Core.FastFunc< ty 1, ty 2>.

Named types are converted to static types as follows:

il

5.1

Name Resolution for Types (814.1) resolves long - ident to a type definition with formal generic parameters
<typar it A itypar ,>and formal constraints C. The number of type arguments n is used during the name
resolution process to distinguish between similarly named types that take different numbers of type
arguments.

Fresh type inference variables <ty' 1+ A + Q-LaPe generated for each formal type parameter. The formal
constraints Care added to the current inference constraints for the new type inference variables; and
constraints ty ; = ty' ;| are added to the current inference constraints.

.2 Variable Types
A type of the form ‘ident is a variable type. For example, the following are all variable types:
‘a
T
'Key

During checking, Name Resolution (§14.1) is applied to the identifier.

If name resolution succeeds, the result is a variable type that refers to an existing declared type parameter.

If name resolution fails, the current floating type variable environment is consulted, although only in the
context of a syntactic type that is embedded in an expression or pattern. If the type variable name is
assigned a type in that environment, F# uses that mapping. Otherwise, a fresh type inference variable is
created (see §14.5) and added to both the type inference environment and the floating type variable
environment.

A type of the form _is an anonymous variable type. A fresh type inference variable is created and added to the

type inference environment (see §14.5) for such a type.

37



A type of the form "ident is a statically resolved type variable. A fresh type inference variable is created and
added to the type inference environment (see §14.5). This type variable is tagged with an attribute that indicates
that it can be generalized only at inline  definitions (see 814.6.7). The same restriction on generalization applies
to any type variables that are contained in any type that is equated with the “ident type in a type inference
equation.

Note: this specification generally uses uppercase identifiers such as 'T or 'Key for user-declared
generic type parameters, and uses lowercase identifiers such as 'a or'b for compiler-inferred
generic parameters.

5.1.3 Tuple Types
A tuple type has the following form:

ty,1 *... % ty n
The elaborated form of a tuple type is shorthand for a use of the family of F# library types
System.Tuple<_,...,_> . See 86.3.2 for the details of this encoding.

When considered as static types, tuple types are distinct from their encoded form. However, the encoded form of
tuple types is visible in the F# type system through runtime types. For example, typeof<int * int> is
equivalent to typeof<System.Tuple<int,int>>

5.1.4 Array Types
Array types have the following forms:

ty [l

ty [, .. .1
A type of the form ty [| is a single-dimensional array type, and a type of the form ty [, ... , |isa
multidimensional array type. For example, int[,,] is an array of integers of rank 3.
Except where specified otherwise in this document, these array types are treated as named types, as if they are
an instantiation of a fictitious type definition System.Array ,<ty >where n corresponds to the rank of the array
type.

Note: The type int[][,] in F# is the same as the type in t [|][]  in C# although the dimensions
are swapped. This ensures consistency with other postfix type names in F# such as int list
list

F# 2.0 supports multidimensional array types only up to rank 4.

5.1.5 Constrained Types

A type with constraints has the following form:
type when constraints

During checking, type is first checked and converted to a static type, then constraints  are checked and added
to the current inference constraints. The various forms of constraints are described in§5.2.

A type of the form typar > type is a type variable with a subtype constraint and is equivalent to typar when
typar > type.

A type of the form #type is an anonymous type with a subtype constraint and is equivalent to 'a when 'a >
type , where ‘a is a fresh type inference variable.

38



5.2 Type Constraints

A type constraint limits the types that can be used to create an instance of a type parameter or type variable. F#
supports the following type constraints:

Subtype constraints

Nullness constraints

Member constraints

Default constructor constraints
Value type constraints
Reference type constraints
Enumeration constraints
Delegate constraints

Unmanaged constraints

= =4 =4 =4 4 4 -4 -4 -4 -4

Equality and comparison constraints

5.2.1 Subtype Constraints
An explicit subtype constraint has the following form:
typar > type

During checking, typar s first checked as a variable type, type is checked as a type, and the constraint is
added to the current inference constraints. Subtype constraints affect type coercion as specified in 85.4.7.

Note that subtype constraints also result implicitly from:

1  Expressions of the form expr :> type

1  Patterns of the form pattern :> type

1  The use of generic values, types, and members with constraints.

1 The implicit use of subsumption when using values and members (§14.4.2).

A type variable cannot be constrained by two distinct instantiations of the same named type. If two such
constraints arise during constraint solving, the type instantiations are constrained to be equal. For example,
during type inference, if a type variable is constrained by both IA<int >and | A<string >, an error occurs when
the type instantiations are constrained to be equal. This limitation is specifically necessary to simplify type
inference, reduce the size of types shown to users, and help ensure the reporting of useful error messages.

5.2.2 Nullness Constraints

An explicit nullness constraint has the following form:

typar : null

During checking, typar is checked as a variable type and the constraint is added to the current inference
constraints. The conditions that govern when a type satisfies a nullness constraint are specified in §5.4.8.

In addition:

1 Thetypar must be a statically resolved type variable of the form ~ident . This limitation ensures that the
constraint is resolved at compile time, and means that generic code may not use this constraint unless that
code is marked inline  (814.6.7).

39



Note: Nullness constraints are primarily for use during type checking and are used relatively rarely
in F# code.

Nullness constraints also arise from expressions of the form null .

5.2.3 Member Constraints

An explicit member constraint has the following form:
(typar or...or typar ):( membersig )
For example, the F# library defines the + operator with the following signature:

val inline (+) : *a ->Mp ->"c
when (“a or *b) : (static member (+) : "a * b -> )

This definition indicates that each use of the + operator results in a constraint on the types that correspond to
parameters “a, *b, and “c. If these are named types, then either the named type for “a or the named type for b
must support a static member called + that has the given signature.

In addition:

1 Eachtypar must be a statically resolved type variable (85.1.2) in the form “ident . This ensures that the
constraint is resolved at compile time against a corresponding named type. It also means that generic code
cannot use this constraint unless that code is marked inline  (814.6.7).

1 The membersig cannot be generic; that is, it cannot include explicit type parameter definitions.

1  The conditions that govern when a type satisfies a member constraint are specified in §14.5.4 .

Note: Member constraints are primarily used to define overloaded functions in the F# library and are
used relatively rarely in F# code.

Uses of overloaded operators do not result in generalized code unless definitions are marked as
in line . For example, the function

letfx=x+x

results in a function f that can be used only to add one type of value, such as int or float . The
exact type is determined by later constraints.

A type variable may not be involved in the support set of more than one member constraint that has the same
name, staticness, argument arity, and support set (814.5.4). If it is, the argument and return types in the two
member constraints are themselves constrained to be equal.This limitation is specifically necessary to simplify
type inference, reduce the size of types shown to users, and ensure the reporting of useful error messages.

5.2.4 Default Constructor Constraints
An explicit default constructor constraint has the following form:
typar :(new : unit ->'T)

During constraint solving (§14.5), the constraint type : (new : unit ->'T) ismetiftype hasa
parameterless object constructor.

Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

5.2.5 Value Type Constraints
An explicit value type constraint has the following form:

typar : struct

40



During constraint solving (§14.5), the constraint type : struct  is metif type is a value type other than the CLI
type System.Nullable<_>

Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

The restriction on System.Nullable is inherited from C# and other CLI languages, which give this
type a special syntactic status. In F#, the type option<_> is similar to some uses of
System.Nullable<_> . For various technical reasons the two types cannot be equated, notably
because types such as System.Nullable<System.Nullable<_>> and

System.Nullable<string> are not valid CLI types.

5.2.6 Reference Type Constraints
An explicit reference type constraint has the following form:

typar : not struct

During constraint solving (814.5), the constraint type : not struct is met if type is a reference type.

Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

5.2.7 Enumeration Constraints
An explicit enumeration constraint has the following form:
typar :enum<underlying -type >

During constraint solving (§14.5), the constraint type : enum<underlying -type >is metif type is a CLI or F#
enumeration type that has constant literal values of type underlying - type .

Note: This constraint form exists primarily to allow the definition of library functions such as enum It
is rarely used directly in F# programming.

The enumconstraint does not imply anything about subtypes. For example, an enumconstraint does
not imply that the type is a subtype of Syst em.Enum

5.2.8 Delegate Constraints
An explicit delegate constraint has the following form:

typar :delegate< tupled -arg-type, return -type >

During constraint solving (§14.5), the constraint type : delegate< tupled -arg-type, return -types >is met
if type is a delegate type Dwith declaration type D = delegate of  object * argl * ... * argN and
tupled -arg-type = argl *..* argN. That is, the delegate must match the CLI design pattern where the
sender object is the first argument to the event.

Note: This constraint form exists primarily to allow the definition of certain F# library functions that
are related to event programming. It is rarely used directly in F# programming.

The delegate constraint does not imply anything about subtypes. In particular,a 6 del egat e 6
constraint does not imply that the type is a subtype of System.Delegate .

The delegate constraint applies only to delegate types that follow the usual form for CLI event
handl ers, where the fir stThareagon isthatthe purgoseoftiesender 06 obj ect
constraint is to simplify the presentation of CLI event handlers to the F# programmer.

41



5.2.9 Unmanaged Constraints
An unmanaged constraint has the following form:

typar :unmanaged

During constraint solving (814.5), the constraint type : unmanaged is metif type is unmanaged as specified
below:

1 Types sbyte , byte , char, nativeint , unativeint , float32 , float ,int16 , uintl6 ,int32 , uint32 ,
int64 , uinté4 , decimal are unmanaged.

1 Type nativeptr< type> is unmanaged.

1 A non-generic struct type whose fields are all unmanaged types is unmanaged.

5.2.10 Equality and Comparison Constraints
Equality constraints and comparison constraints have the following forms, respectively:

typar : equality
typar : comparison

During constraint solving (§14.5), the constraint type : equality  is met if both of the following conditions are
true:

1 The type is a named type, and the type definition does not have, and is not inferred to have, the NoEquality
attribute.

1 The type has equality dependencies ty 1, ..., ty », each of which satisfies ty i : equality

The constraint type : comparison is a comparison constraint. Such a constraint is met if all the following
conditions hold:

1 Ifthe type is a named type, then the type definition does not have, and is not inferred to have, the
NoComparison attribute, and the type definition implements System.IComparable or is an array type or is
System.IntPtr  or is System.UIntPtr

1 If the type has comparison dependencies ty 4, ..., ty », then each of these must satisfy ty ; : comparison

An equality constraint is a relatively weak constraint, because with two exceptions, all CLI types satisfy this
constraint. The exceptions are F# types that are annotated with the NoEquality attribute and structural types
that are inferred to have the NoEquality —attribute. The reason is that in other CLI languages, such as C#, it
possible to use reference equality on all reference types.

A comparison constraint is a stronger constraint, because it usually implies that a type must implement
System.IComparable .

5.3 Type Parameter Definitions

Type parameter definitions can occur in the following locations:

§  Value definitions in modules

 Member definitions

1  Type definitions

1  Corresponding specifications in signatures

Forexample,t he f ol |l owi ng def i n@afubctiosdefinfigne par ameter o6T

let id<'T> (x:'T) = x

42



Likewise, in a type definition:

type Funcs<'T1,'T2> =
{ Forward: 'T1 ->'T2;
Backward : ' T2 ->'T2}

Likewise, in a signature file:

val id<'T>:'T ->'T

Explicit type parameter definitions can include explicit constraint declarations. For example:

let dispose2<'T when 'T :> System.IDisposable> ( x:'T,y:'T) =
x.Dispose()
y.Dispose()

The constraint in this example requires that ' T be a type that supports the IDisposable interface.

However, in most circumstances, declarations that imply subtype constraints on arguments can be written more
concisely:

let throw (x: Exception) = raise x

Multiple explicit constraint declarations use and:

let multipleConstraints <'T when T :> System.IDisposable and
T :> System.IComparable > (x: 'T, y: 'T) =
if x.CompareTo(y) < 0 then x.Dispose()  else y.Dispose()

Explicit type parameter definitions can declare custom attributes on type parameter definitions (§13.1).

5.4 Logical Properties of Types

During type checking and elaboration, syntactic types and constraints are processed into a reduced form
composed of:

T Named types op<types >, where each op consists of a specific type definition, an operator to form function
types, an operator to form array types of a specific rank, or an operator to form specific n-tuple types.

1  Type variables ' ident .

5.4.1 Characteristics of Type Definitions

Type definitions include CLI type definitions such as System.String  and types that are defined in F# code (88).
The following terms are used to describe type definitions:

1 Type definitions may be generic, with one or more type parameters; for example,
System.Collecti  ons.Generi c.Dictionary<'Key,'Value >,

1  The generic parameters of type definitions may have associated formal type constraints.
1 Type definitions may have custom attributes (813.1), some of which are relevant to checking and inference.

1  Type definitions may be type abbreviations (8§8.3). These are eliminated for the purposes of checking and
inference (see 85.4.2).

1  Type definitions have a kind which is one of the following:

Y Class
T Interface
1 Delegate

43



= =_ =4 =4 =1

il

Struct
Record
Union
Enum
Measure

Abstract

The kind is determined at the point of declaration by Type Kind Inference (88.2) if it is not specified explicitly
as part of the type definition. The kind of a type refers to the kind of its outermost named type definition, after
expanding abbreviations. For example, a type is a class type if it is a named type C<types > where Cis of

kind class. Thus, System.Collections.Generic.List<int>

is a class type.

1 Type definitions may be sealed. Record, union, function, tuple, struct, delegate, enum, and array types are
all sealed, as are class types that are marked with the SealedAttribute  attribute.

1 Type definitions may have zero or one base type declarations. Each base type declaration represents an
additional type that is supported by any values that are formed using the type definition. Furthermore, some
aspects of the base type are used to form the implementation of the type definition.

1  Type definitions may have one or more interface declarations. These represent additional encapsulated
types that are supported by values that are formed using the type.

Class, interface, delegate, function, tuple, record, and union types are all reference type definitions. A type is a
reference type if its outermost named type definition is a reference type, after expanding type definitions.

Struct types are value types.

5.4.2 Expanding Abbreviations and Inference Equations

Two static types are considered equivalent and indistinguishable if they are equivalent after taking into account
both of the following:

1 The inference equations that are inferred from the current inference constraints (814.5).

1  The expansion of type abbreviations (88.3).

For example, static types may refer to type abbreviations such as int , which is an abbreviation for

System.Int32 and is declared by the F# library:

type int = System.Int32

This means that the types int32 and System.Int32 are considered equivalent, as are System. Int32 - > int

and int

- > System.Int32

Likewise, consider the process of checking this function:

let checkString (x:string) y =
(x =), y.Contains("Hello")

During checking, fresh type inference variables are created for values x and y; | et 6stycamdty,. t hem

Checking imposes the constraints ty 1 = string

and ty 1 = ty .. The second constraint results from the use of

the generic = operator. As a result of constraint solving, ty » = string is inferred, and thus the type of y is

string

44



All relations on static types are considered after the elimination of all equational inference constraints and type
abbreviations. For example, we say int is a struct type because System.Int32 is a struct type.

Note: Implementations of F# should attempt to preserve type abbreviations when reporting types
and errors to users. This typically means that type abbreviations should be preserved in the logical
structure of types throughout the checking process.

5.4.3 Type Variables and Definition Sites

Static types may be type variables. During type inference, static types may be partial, in that they contain type
inference variables that have not been solved or generalized. Type variables may also refer to explicit type
parameter definitions, in which case the type variable is said to be rigid and have a definition site.

For example, in the following, the definition site of the type parameter ‘T is the type definition of C.
type C<T>="T*'T

Type variables that do not have a binding site are inference variables. If an expression is composed of multiple
sub-expressions, the resulting constraint set is normally the union of the constraints that result from checking all
the sub-expressions. However, for some constructs (notably function, value and member definitions), the
checking process applies generalization (§14.6.7). Consequently, some intermediate inference variables and
constraints are factored out of the intermediate constraint sets and new implicit definition site(s) are assigned for
these variables.

For example, given the following declaration, the type inference variable that is associated with the value x is
generalized and has an implicit definition site at the definition of function id :

letid x = x

Occasionally in this specification we use a more fully annotated representation of inferred and generalized type
information. For example:

let id <a> Xa =X4a

Here, 'a represents a generic type parameter that is inferred by applying type inference and generalization to the
original source code (8§14.6.7), and the annotation represents the definition site of the type variable.

5.4.4 Base Type of a Type

The base type for the static types is shown in the table. These types are defined in the CLI specifications and
corresponding implementation documentation.

Static Type Base Type

Abstract types System.Object

All array types System.Array

Class types The declared base type of the type definition if the type has one; otherwise,

System.Object . For generic types C<ype -inst >, substitute the formal generic
parameters of Cfor type -inst .

Delegate types System.MulticastDelegate
Enum types System.Enum

Exception types System.Exception
Interface types System.Object

Record types System.Object

45



Static Type Base Type

Struct types System.ValueType
Union types System.Object
Variable types System.Object

5.4.5 Interfaces Types of a Type

The interface types of a named type C<type -inst > are defined by the transitive closure of the interface
declarations of Cand the interface types of the base type of C, where formal generic parameters are substituted
for the actual type instantiation type - inst .

The interface types for single dimensional array types ty [| include the transitive closure that starts from the
interface System.Collections.Generic.|List< ty >, which includes
System.Collections.Generic.ICollection< ty > and System.Collections.Generic.|[Enumer able<ty >.

5.4.6 Type Equivalence

Two static types ty 1 and ty » are definitely equivalent (with respect to a set of current inference constraints) if

either of the following is true:

1 ty1hasform op<ty 11, ...ty 1>, ty 2 has form op<ty 21, ..., ty on> and each ty 4 is definitely
equivalentto ty » forall 1 <=i <=n.

d ORd

1 ty.and ty, are both variable types, and they both refer to the same definition site or are the same type
inference variable.

This means that the addition of new constraints may make types definitely equivalent where previously they were

not. For example, givenj =a ={int  }, we have list<int> = list<'a>

Two static types ty 1 and ty » are feasibly equivalent if ty 1 and ty » may become definitely equivalent if further
constraints are added to the current inference constraints. Thus lisi<int>  and listi<'a>  are feasibly
equivalent for the empty constraint set.

5.4.7 Subtyping and Coercion

A static type ty » coerces to static type ty 1 (with respect to a set of current inference constraints X), if ty 1 is in the
transitive closure of the base types and interface types of ty ,. Static coercion is written with the :> symbol:
ty2 > tyq,

Variable types 'T coerce to all types ty if the current inference constraints include a constraint of the form T :>
ty 2, and ty is in the inclusive transitive closure of the base and interface types of ty ».

A static type ty » feasibly coerces to static type ty 1 if ty » coerces to ty 1 may hold through the addition of further
constraints to the current inference constraints. The result of adding constraints is defined in Constraint Solving
(814.5).

46



5.4.8 Nullness

The design of F# aims to greatly reduce the use of null literals in common programming tasks, because they
generally result in error-prone code. However:

1 The use of some null literals is required for interoperation with CLI libraries.

1  The appearance of null values during execution cannot be completely precluded for technical reasons
related to the CLI and CLI libraries.

As a result, F# types differ in their treatment of the null literal and null values. All named types and type
definitions fall into one of the following categories:

1 Types with the null literal. These types have null as an fextraovalue. The following types are in this
category:

1  All CLI reference types that are defined in other CLI languages.
1  Alltypes that are defined in F# and annotated with the AllowNullLiteral attribute.

For example, System.String  and other CLI reference types satisfy this constraint, and these types permit
the direct use of the null literal.

1 Types with null as an abnormal value. These types do not permit the null literal, but do have null as an
abnormal value. The following types are in this category:

1  All F#list, record, tuple, function, class, and interface types.
1 All F# union types except those that have null as a normal value, as discussed in the next bullet point.

For types in this category, the use of the null literal is not directly allowed. However, strictly speaking, it is
possible to generate a null  value for these types by using certain functions such as

Unchecked.defaul tof< type >. For these types, null is considered an abnormal value. Operations differ in
their use and treatment of null values; for details about evaluation of expressions that might include null
values, see §6.9.

1 Types with null as arepresentation value. These types do not permit the null literal but use the null
value as a representation.
For these types, the use of the null literalisnotdi rect |y permitted. However
values of the type is represented by the null value. The following types are in this category:

1  The unittype. The null value is used to represent all values of this type.

1  Any union type that has the
Microsoft.FSharp.Core.CompilationRepresentation(CompilationRepresentationFlags.UseN
ullAsTrueValue)  attribute flag and a single null union case. The null value represents this case. In
particular, null represents Nonein the F# option<_> type.

1 Types without null . These types do not permit the null literal and do not have the null value. All value
types are in this category, including primitive integers, floating-point numbers, and any value of a CLI or F#
struct  type.

A static type ty satisfies a nullness constraintty : null  ifit:

1 Has an outermost named type that has the null literal.

1 Is avariable type with a typar :null  constraint.

a7

one



5.4.9 Default Initialization

Related to nullness is the default initialization of values of some types to zero values. This technique is common
in some programming languages, but the design of F# deliberately de-emphasizes it. However, default
initialization is allowed in some circumstances:

1  Checked default initialization may be used when atypeisk nown t o have a valid and fAsafe
value. For example, the types of fields that are labeled with DefaultValue (true) are checked to ensure
that they allow default initialization.

1 CLl libraries sometimes perform unchecked default initialization, as do the F# library primitives
Unchecked.defaultof<_>  and Array.zeroCreate

The following types permit default initialization:
1  Any type that satisfies the nullness constraint.

1 Primitive value types.

1 Struct types whose field types all permit default initialization.

5.4.10 Dynamic Conversion Between Types
A runtime type vty dynamically converts to a static type ty if any of the following are true:
1 vty coercestoty .

1 vty isint32[] andty isuint32[] (or conversely). Likewise for sbyte[] /byte[] ,int16[] /uintl6[]
int64[] /uint64[] , and nativeint[]  /unativeint[]

1 vty isenunj] where enumhas underlying type underlying , and ty is underl ying [| (or conversely), or the
(un)signed equivalent of underlying [|] by the immediately preceding rule.

T vty iselemty 4[], ty iselemty 5[] , elemty 1 is a reference type, and elemty 1 converts to elemty ».

 ty is System.Nullable< vty >.

Note that this specification does not define the full algebra of the conversions of runtime types to static types
because the information that is available in runtime types is implementation dependent. However, the
specification does state the conditions under which objects are guaranteed to have a runtime type that is
compatible with a particular static type.

Note: This specification covers the additional rules of CLI dynamic conversions, all of which apply
to F# types. For example:

let x = box [| System.DayOfWeek.Monday |]
lety = x :? int32[]
printf "%b" y // true

In the previous code, the type System.DayOfWeek.Monday[|] does not statically coerce to
int32[] , but the expression x :? int32[] evaluates to true.

letx =box [| 1]
lety = x:? uint32 []
printf "%b" y // true

In the previous code, the type int32[] does not statically coerce to uint32[] , but the
expression x :? uint32 [] evaluates to true.
let x = box [| "]

lety =x:? obj]
printt  "%b"y /[ true

48



In the previous code, the type string[]  does not statically coerce to obj[] , but the
expression x :? obj[]  evaluates to true.

let x = box 1
let y = x :? System.Nullable<int32>
printf "%b" y // true

In the previous code, the type int32 does not coerce to System.Nullable<int32> |, but the
expression x :? System.Nullable<int32> evaluates to true.

49






6. Expressions

The expression forms and related elements are

as follows:

expr

const

( expr )

begin expr end
long -ident -or-op
expr ' long -ident -or-op
expr expr

expr (expr)

expr <types >

expr infix -op expr
prefix -op expr
expr .[ expr]

expr .[ slice -range]

expr.[ slice -range, slice -range]
expr <- expr --
expr , ..., expr --

new type expr

{new base-call object - members
{ field -initializer s}

{ expr with field -initializer s
[ expr ;...; expr ] --
[l expr ;..; expr ] -
expr { compor-range-expr } -
[ comp or-range - expr ] --
[[ compor-range-expr |[] --
lazy expr --
null --
expr @ type -
expr > type -
expr :? type --
expr :?> type -
upcast expr -
downcast expr --
let function -defn in expr Z-
let value -defn in expr Z-
letrec  function -or-value -defns
use ident = expr in expr

fun argument-pats -> expr -
function  rules -
expr ; expr -
match expr with rules --
try expr with rules --
try expr finally expr --

if expr then expr elif -branches
while expr do expr done
for ident = expr to expr do exp
for pat in expr-or-range-expr d
assert expr

<@expr @>

<@@xpr @@>

Y%expr
%%expr

(static -typars :( membersig) e

a constant value
block expression
block expression
lookup expression
dot lookup expression
application expression
high precedence application
type application expression
infix application expression
prefix application expression
indexed lookup expression
slice expression (1D)
slice expression (2D)
assignment expression
tuple expression
simple object expression
interface  -impls } -- object expression
-- record expression

} -- record cloning expression
list expression
array expression
computation expression
computed list expression
computed array expression
delayed expression
the "null" value for a reference type
type annotation
static upcast coercion
dynamic type test
dynamic downcast coercion
static upcast expression
dynamic downcast expression
function definition expression
value definition expression
in expr -- recursive definition expression
Z- deterministic disposal expression

function expression

matching function expression
sequential execution expression
match expres sion

try/with expression

try/finally expression

opt €lse -branch opx -- conditional expression
while loop
r done -- simple for loop

0 expr done
assert expression
guoted expression
guoted expression

enumerable for loop

expression  splice
weakly typed expression splice

Xpr) -Z static member invocation




Expressions are defined in terms of patterns and other entities that are discussed later in this specification. The
following constructs are also used:

exprs = expr ‘.Y expr
expr - or - range - expr =
expr
range - expr
elif -branches := elif -branch ... elif -branch
elif -branch :=elif expr then expr
else -branch :=else expr
function -or-value -defn =
function -defn

value - defn

function -defn =
inline opt accessop ident -or-op typar -defns o argument-pats return -type opx = expr

value - defn =
mutable opt accessop pat typar -defns opr return -type opt = expr

return -type =
type

function -or-value -defns =
function -or-value -defn and ... and function - or-value - defn

argument- pats := atomic -pat ... atomic - pat

field - initializer =
long -ident = expr -- field initialization

field -initializer s = field -initializer R field -initializer

object - construction =

type expr -- construction expression
type -- interface construction expression
base-call =
object - construction -- anonymous base construction
object - construction as ident -- named base construct ion
interface -impls := interface -impl ... interface -impl

interface  -impl =
interface  type object - membersy -- interface implementation

object - members :=with memberdefns end

memberdefns := memberdefn ... memberdefn

52



Computation and range expressions are defined in terms of the following productions:

comp or - range - expr =
comp expr
short - comp expr
range - expr

comp expr =
let! pat = expr in compexpr --
do! expr in comp expr -
use! pat =exprin compexpr --
yield!  expr --
yield expr -
return!  expr --
return  expr -

binding computation
sequential computation
auto cleanup computation
yield computation

yield result

return computation

return result

expr --control flow or imperative action

short - comp expr =

for pat in expr-or-range-expr -> expr -- Yyieldresult
range - expr =

expr .. expr -- range sequence

expr .. expr .. expr -- range sequence with skip

slice -range =

expr .. -- slice from index to end

. expr -- slice from start to index
expr.. expr -- slice from index to index
e -- slice from start to end

6.1 Some Checking and Inference Terminology

The rules applied to check individual expressions are described in the following subsections. Where necessary,
these sections reference specific inference procedures such as Name Resolution (§14.1) and Constraint Solving
(814.5).

All expressions are assigned a static type through type checking and inference. During type checking, each
expression is checked with respect to an initial type. The initial type establishes some of the information available
to resolve method overloading and other language constructs. We also use the following terminology:

T The phr as ety fistassateditobp equal tothetypety .0 or dyiimfyhiys flassertedo indiceze
that the t¢ciomsdbriasnadded to the current inference constrai

T The p hiy assasseri@dto be a subtypeofty .0 or syiimpilyyi si assertedo indicates t
constraint ty 1 :> ty , is added to the current inference constraints.

T The phraige sitkywwmevn to ... 0 indicates thatygiven¢hecumentt i al t yp
inference constraints.

T The phrase AfAtehpehastypety®@s sneams the initial type of the expr
equalto ty .

Additionally:

1  The addition of constraints to the type inference constraint set fails if it causes an inconsistent set of
constraints (§14.5). In this case either an error is reported or, if we are only attempting to assert the
condition, the state of the inference procedure is left unchanged and the test fails.

53



6.2 Elaboration an d Elaborated Expressions

Checking an expression generates an elaborated expression in a simpler, reduced language that effectively
contains a fully resolved and annotated form of the expression. The elaborated expression provides more explicit
information than the source form. For example, the elaborated form of System.Console.WriteLine("Hello")
indicates exactly which overloaded method definition the call has resolved to. Elaborated forms are underlined in

Except for this extra resolution information, elaborated forms are syntactically a subset of syntactic expressions,
and in some cases (such as constants) the elaborated form is the same as the source form. This specification
uses the following elaborated forms:

Constants

Primitive object expressions
Data expressions (tuples, union cases, array creation, record creation)

Default initialization expressions

=A =4 =4 =4 4 =4 a4 =

= =4 a4 -—a -a -a _a _a _a
=
o
il
o
e}
o
2
2
=)
o
®
S
e}
=
o
o
%
ie]
=
o
o
>
®

The constructs required for the elaboration of pattern matching (87).
T Null tests

1 Switches on integers and other types

1  Switches on union cases

1  Switches on the runtime types of objects

The following constructs are used in the elaborated forms of expressions that make direct assignments to local
variablesandarraysand gener at e \albeg. The bperatprs ara Ibosaly named after their
corresponding primitive constructs in the CLI.

1 Assigning to a byref-pointer: expr  <- sonj __expr

1 Generating a byref-pointer by taking the address of a mutable value: &path.

1 Generating a byref-pointer by taking the address of a record field: & expr.field ).

1 Generating a byref-pointer by taking the address of an array element: & expr. [ expr])_

Elaborated expressions form the basis for evaluation (see §6.9) and for the expression trees that quoted
expressions return(see 86.8).

54



By convention, when describing the process of elaborating compound expressions, we omit the process of
recursively elaborating sub-expressions.

6.3 Data Expressions

This section describes the following data expressions:

Simple constant expressions
Tuple expressions

List expressions

Array expressions

Record expressions
Copy-and-update record expressions
Function expressions

Object expressions

Delayed expressions
Computation expressions
Sequence expressions

Range expressions

Lists via sequence expressions
Arrays via sequence expressions

Null expressions

=A =4 =4 =4 =4 4 -4 -4 -4 -4 -4 -4 -4 -4 -a -2

'printf' formats

55



6.3.1 Simple Constant Expressions

Simple constant expressions are numeric, string, Boolean and unit constants. For example:

3y /I sbyte

32uy /I byte

17s // int16

18us /[ uint16

86 /I int/int32
99u [/ uint32

99999999L  //int64
10328273UL / [/ uint64

1. /I float/double
1.01 /I float/double
1.01el10 /I float/double
1.0f /I float32/single
1.01f /I float32/single

1.01el0f /I float32/single
99999999n /[ nativeint (System.IntPtr)
10328273un  // unativeint  (System.UIntPtr)

999999991  // big int ( System. Numerics. Bigint eger or user -specified)
‘a' /I char (System.Char)

"3" /I string (String)

"c: \\'home" // string (System.String)

@"c:\home" /I string (Verbatim Unicode, System.String)

"ASCII"B Il byte[]

0 /1 unit (Microsoft.FSharp.Core.Unit)

false // bool (System.Boolean)

true /I bool (System.Boolean)

Simple constant expressions have the corresponding simple type and elaborate to the corresponding simple

constant value.
Integer literals with the suffixes Q R, Z, |, N, Gare processed using the following syntactic translation:

XxXxx<suffix>

For xxxx =0 y NumericLiteral<suffix>.FromZero()

For xxxx =1 y NumericLiteral<suffix>.FromOne()

For xxxx in the Int32 range y NumericLiteral<suffix>.FromInt32(xxxx)
For xxxx in the Int64 range y NumericLiteral<suffix>.FromInt64(xxxx)
For other numbers y NumericLiteral<suffix>.FromString("xxxx")

For example, defining a module NumericLiteralZ  as below enables the use of the literal form 327 to generate a
sequenceboth&8rRadt er staxisBvailablei far mumkzels oussige the range of 32-bit integers.

module NumericLiteralZ =
let FromZero() =™
let FromOne() = "Z"
let FromiInt32 n = String.replicate n "Z"

F# compilers may optimize on the assumption that calls to numeric literal functions always terminate, are
idempotent, and do not have observable side effects.

6.3.2 Tuple Expressions

An expression of the form expr 4, ..., expr , is a tuple expression. For example:

let three = (1,2,"3")
let blastoff = (10,9,8,7,6,5,4,3,2,1,0)

56



The expression has the type (ty 1 * ... * ty n) for fresh typesty 1 A ty ., and each individual expression e; is
checked using initial type ty ;.

Tuple types and expressions are translated into applications of a family of F# library types named System.Tuple .
Tuple typesty 1 *...* ty » are translated as follows:

1 For n <=7 the elaborated formis Tuple<ty 1,..., ty >

1 For larger n, tuple types are shorthand for applications of the additional F# library type System.Tuple<_> as

follows:
1 Forn =8 the elaborated form is Tuple<ty 1,..., ty 7, Tuple< ty g>>.
1 For 9 <=nthe elaborated form is Tuple<ty 1,..., ty 7, ty > where ty gis the converted form of the type
(tys*.* tyn).
Tuple expressions (expr 1,..., expr,) are translated as follows:
1  For n <=7 the elaborated form new Tuple< ty 1t Aty »>(expri,..., €exprg).
1  For n =8 the elaborated form new Tuple< ty 1t Aty 7, Tuple< ty g>>(expri,..., exprz, new

Tuple<ty g>(exprs) .

1 For 9 <=n the elaborated form new Tuple<ty 1,... ty 7, ty sa>(expr ..., exprz, new ty gn( esn) where
ty sn is the type (ty g*...* 1y ) and expr g, is the elaborated form of the expression
expr g,..., expr n.

When considered as static types, tuple types are distinct from their encoded form. However, the encoded form of
tuple values and types is visible in the F# type system through runtime types. For example, typeof<int * int>

is equivalent to typeof<System.Tuple<int,int>> ,and (1,2) has the runtime type System.Tuple<int,int>
Likewise, (1,2,3,4,5,6,7,8,9) has the runtime type

Tuple<int,int,int,int,int,int,int, Tuple<int,int>>

Note: The above encoding is invertible and the substitution of types for type variables preserves this
inversion. This means, among other things, that the F# reflection library can correctly report tuple
types based on runtime System.Type values. The inversion is defined by:

1  Forthe runtime type Tuple<ty 1,..., ty x> when n <=7, the corresponding F# tuple type is
ty 1 *LUF ty N

1 For the runtime type Tuple<ty 1,..., Tuple< ty n>>when n = 8, the corresponding F# tuple
typeis ty 1 * ... * ty s

1  For the runtime type Tuple<ty 4,..., ty 7, ty sp>, if ty g, corresponds to the F# tuple type ty s
FLE ty n then the corresponding runtime typeisty 1 * ... * ty n

Runtime types of other forms do not have a corresponding tuple type. In particular, runtime types
that are instantiations of the eight-tuple type Tuple<_, , , , , , , > must always have
Tuple<_> in the final position. Syntactic types that have some other form of type in this position are
not permitted, and if such an instantiation occurs in F# code or CLI library metadata that is

referenced by F# code, an F# implementation may report an error.

6.3.3 List Expressions
An expression of the form [ expr ;...; expr ] is a list expression. The initial type of the expression is asserted
to be Microsoft.FSharp.Collections.List< ty > for a fresh type ty .

If ty is a named type, each expression expr; is checked using a fresh type ty ' as its initial type, with the
constraintty’ > ty . Otherwise, each expression expr; is checked using ty as its initial type.

57



List expressions elaborate to uses of Microsoft.FSharp.Collections.List<_> as
op_Cons(expr.i,(op_Cons(_expr 2... op_Cons.(____expr n, 0p_Nil)...) where op_Consand op_Nil are the

union cases with symbolic names :: and [| respectively.

6.3.4 Array Expressions

An expression of the form [| expr;...; exprn |] is an array expression. The initial type of the expression is
asserted to be ty [| for a fresh type ty .

If this assertion determines that ty is a named type, each expression expr; is checked using a fresh type ty' as
its initial type, with the constraint ty’ :> ty . Otherwise, each expression expr; is checked using ty as its initial
type.

Array expressions are a primitive elaborated form.

Note: The F# 2.0 implementation ensures that large arrays of constants of type bool , char, byte ,
shyte , intl6 , uintl6 ,int32 , uint32 ,int64 and uint64 are compiled to an efficient binary
representation based on a call to

System.Runtime.CompilerServices.RuntimeHelpers.Initi alizeArray

6.3.5 Record Expressions
An expression of the form { field -initializer 1K A fid -initializer n } is arecord construction
expression. For example:

type Data ={ Count : int; Name : string }
let datal = { Count = 3; Name = "Hello"; }
let data2 = { Name = "Hello"; Count= 3 }

In the following example, data4 uses a long identifier to indicate the relevant field:

module M =

type Data = { Age : int; Name : string; Height . float }
let data3 = { M.Age = 17; M.Name = "John"; M.Height = 186.0}
let data4 = { data3 with M.Name = "Bill"; M.Height = 176.0 }

Fields may also be referenced by using the name of the containing type:

module M2 =
type Data = { Age : int; Name : string; Height : float }
let data5 = { M2.Data.Age = 17; M2.Data.Name = "John"; M2.Data.Height = 186.0}

let data6 = { data5 with M2.Data.Name = "Bill"; M2.Data.Height=176.0 }

open M2
letdata7 ={ Data.Age =17;Data .Name ="John"; Data.Height=186.0}
let data8 = { data5 with Data.Name = "Bill"; Data.Height=176.0 }
Each field - initializer i has the form field -label ;| = expr;. Each field -label i isalong -ident , which

must resolve to a field F in a unique record type R as follows:

M Iffield -label ;i is a single identifier fld and the initial type is known to be a record type R<_,...,_ > that
has field F with name fld , then the field label resolves to F;.

M Iffield -label i is not a single identifier or if the initial type is a variable type, then the field label is resolved
by performing Field Label Resolution (see 814.1) on field -label ;. This procedure results in a set of fields
FSet;. Each element of this set has a corresponding record type, thus resulting in a set of record types
RSet;. The intersection of all RSet; must yield a single record type R, and each field then resolves to the
corresponding field in R.

58



The set of fields must be complete. That is, each field in record type R must have exactly one field definition.
Each referenced field must be accessible (see §10.5), as must the type R

After all field labels are resolved, the overall record expression is asserted to be of type R<ty 1,..., ty > for fresh

typesty 1,..., ty n Each expr; is then checked in turn. The initial type is determined as follows:

1. Assume the type of the corresponding field F in R<ty 1,..., ty n>isfty i

2. Ifthe type of F prior to taking into account the instantiation <ty 1,..., ty x> is a named type, then the initial
type is a fresh type inference variable ft y'; with a constraint fty’' > fty .

3. Otherwise the initial type is fty ;.

Primitive record constructions are an elaborated form in which the fields appear in the same order as in the
record type definition. Record expressions themselves elaborate to a form that may introduce local value
definitions to ensure that expressions are evaluated in the same order that the field definitions appear in the
original expression. For example:

type R={b: int; a:int}
{a =1+1;b =2}

Records expressions are also used for object initializations in additional object constructor definitions (§8.6.3).
For example:

type C =
val x : int
valy :int
new() ={x=1y=2}

Note: The following record initialization form is deprecated:
{new type with Field ; = exprys AT A A Fileld A = exprn }
The F# 2.0 implementation allows the use of this formonly with uppercase identifiers.

F# code should not use this expression form. A future version of the F# language will issue a
deprecation warning.

6.3.6 Copy-and-update Record Expressions

A copy-and-update record expression has the following form:
{ expr with field -initializers }

where field - initializer s is of the following form:
field -label 1 = expr1 K A fi®dd -label , = exprnq

Each field -label ; is along -ident . In the following example, data? is defined by using such an expression:

type Data = { Age : int; Name : string; Height : float }
let datal = { Age = 17; Name = "John"; Height = 186.0}
let data2 = { datal with Name = "Bill"; Height = 176.0 }

The expression expr is first checked with the same initial type as the overall expression. Next, the field
definitions are resolved by using the same technique as for record expressions. Each field label must resolve to a
field F in a single record type R, all of whose fields are accessible. After all field labels are resolved, the overall
record expression is asserted to be of type R<ty 1,..., ty x> for fresh types ty 1,..., ty n. Each expr; is then
checked in turn with initial type that results from the following procedure:

1. Assume the type of the corresponding field F in R<ty 1,..., ty >isfty ;.

59



2. Ifthe type of I before considering the instantiation <ty 1,..., ty x> is a named type, then the initial type is a
fresh type inference variable fty' ; with a constraint fty' ; :> fty ;.

3. Otherwise, the initial type is fty ;.
A copy-and-update record expression elaborates as if it were a record expression written as follows:

let v =exprin{ field -label 1 = expr1K A fi#dd -label , = exprn;F 1 =Vv.F 1;...;F M=V.F m}
where F, ... Fyare the fields of Rthat are not defined in field - initializer s and v is a fresh variable.

6.3.7 Function Expressions
An expression of the form fun pat; ... pat, -> expr is a function expression. For example:

(funx ->x+1)

(funxy ->x+Yy)
(fun [x] ->x) 1/l note, incomplete match
(fun (x,y) (z,w) ->X+y+z+w)

Function expressions that involve only variable patterns are a primitive elaborated form. Function expressions
that involve non-variable patterns elaborate as if they had been written as follows:

fun vy ... vy ->
let pat; =vi1
let patn =vnq
expr

No pattern matching is performed until all arguments have been received. For example, the following does not
raise a MatchFailureException  exception:

let f=fun[x]y ->y
letg="f[] // ok

However, if a third line is added, a MatchFailureException exception is raised:

let z =g 3// MatchFailureException is raised

6.3.8 Object Expressions

An expression of the following form is an object expression:

{new tyo args-exprop Object - members
interface  ty 1 object - members
A
interface  ty » object - members }

In the case of the interface declarations, the object - membersare optional and are considered empty if absent.
Each set of object - members has the form:

with  memberdefns endopt

Lexical filtering inserts simulated $end tokens when lightweight syntax is used.

Each member of an object expression members can use the keyword membey override , or default . The
keyword membercan be used even when overriding a member or implementing an interface.

For example:

let objl =
{ new System.Collections.Generic.IComparer<int> with
member x.Compare(a,b) = compare (a % 7) (b % 7) }

let obj2 =

60



{ new System.Object() with
member x.ToString () = "Hello" }

let obj3 =
{ new System.Object () with
member x.ToString () = "Hello, base.ToString() =" + base.ToString() }

let obj4 =
{ new System.Object() with
member x.Finalize() = printfn "Finalize";
interface System.IDisposable with
member x.Dispose() = pri ntfn "Dispose”; }

An object expression can specify additional interfaces beyond those required to fulfill the abstract slots of the type
being implemented. For example, obj4 in the preceding examples has static type System.Object but the object
additionally implements the interface System.IDisposable . The additional interfaces are not part of the static
type of the overall expression, but can be revealed through type tests.

Object expressions are statically checked as follows.

1. First, ty o to ty , are checked to verify that they are named types. The overall type of the expression is ty o
and is asserted to be equal to the initial type of the expression. However, if ty  is type equivalent to
System.Object and ty 1 exists, then the overall type is instead ty 1.

2. The type ty o must be a class or interface type. The base construction argument args - expr must appear if
and only if ty ¢ is a class type. The type must have one or more accessible constructors; the call to these
constructors is resolved and elaborated using Method Application Resolution (see §14.4). Except for ty o,
each ty i must be an interface type.

3. The F# compiler attempts to associate each member with a unique dispatch slot by using dispatch slot
inference (§14.7). If a unique matching dispatch slot is found, then the argument types and return type of the
member are constrained to be precisely those of the dispatch slot.

4. The arguments, patterns, and expressions that constitute the bodies of all implementing members are next
checked one by one to verify the following:

T For each member, the Athisodo value tfpor the member

1 Each member of an object expression can initially access the protected members of ty o.

1 If the variable base-ident appears, it must be named base, and in each member a base variable with
this name is in scope. Base variables can be used only in the member implementations of an object
expression, and are subject to the same limitations as byref values described in §14.9.

The object must satisfy dispatch slot checking (§14.8) which ensures that a one-to-one mapping exists between
dispatch slots and their implementations.

Object expressions elaborate to a primitive form. At execution, each object expression creates an object whose
runtime type is compatible with all of the ty ; that have a dispatch map that is the result of dispatch slot checking
(814.8).

The following example shows how to both implement an interface and override a method from System.Object .
The overall type of the expression is INewldentity

type public INewldent ity =
abstract IsAnonymous : bool

let anon =

{ new System.Object() with
member i.ToString() = "anonymous"

61

S



interface INewldentity with
member i.IsAnonymous = true }

6.3.9 Delayed Expressions

An expression of the form lazy expr is a delayed expression. For example:
lazy (printfn "hello world")

is syntactic sugar for
new System.Lazy (fun () -> expr)

The behavior of the System.Lazy library type ensures that expression expr is evaluated on demand in response
to a . Value operation on the lazy value.

6.3.10 Computation Expressions
The following expression forms are all computation expressions:

expr {for ..}
expr {let...}
expr {let!...}
expr {use..}
expr {while ...}
expr {yield ...}
expr {yield!...}

expr {try ...}
expr {return ...}
expr {return!...}

More specifically, computation expressions are of the following form:
builder -expr { cexpr }

where cexpr is, syntactically, the grammar of expressions with the additional constructs that are defined in comp
expr . Computation expressions are used for sequences and other non-standard interpretations of the F#
expression syntax. The expression

builder -expr { cexpr }
translates to
let b =builder -expr inb.Run (b.Delay(fun () -> {| cexpr [}d)

for a fresh variable b. The type of b must be a named type after the checking of. If a Runmethod does not exist
on the inferred type of b when builder -expr is checked, the call to Runis omitted. Likewise, if no Delay method
exists on the type of b when the expression is checked, that call is omitted. The resulting expression is then
checked.

The translation {| _ |}cis defined recursively according to the following rules:

{|let binds in cexpr [}

{|let! pat = expr in cexpr |}
{| do expr in cexpr |}

{| do! expr in cexpr |}

let binds in {| cexpr [}o

b.Bind( expr, (fun pat -> {| cexpr [}9)
expr; {| cexpr |}c

b.Bind( expr, (fun () -> {| cexpr [}J)

{| yield expr |[}c = b.Yield( expr)
{| yield! expr |}c = b. YieldFrom( expr)
{| return expr |}c = b.Return( expr)

{| return!  expr |}c b.Return From(expr)

{|use pat = expr in cexpr |}
{Juse! v = expr in cexpr |}

b.Using( expr, (fun pat -> {|cexpr [}d)
b.Bind( expr, (fun v ->

62



b.Using( v,(funv  -> {|cexpr [}))

{|if expr then cexpro [}c = if expr then {| cexpro |}c else b.Zero()

{|if expr then cexpro else cexpri|}c = if expr then {|cexpro [}c else {|cexpri |}c

{| match expr with pati -> cexpri |}c = match expr with pat; -> {| cexpri [}c
{|for pat in expr do cexpr |} = b.For( {| expr |} (fun pat -> {| cexpr |[}o)

{|for ident = expri to expr, do exprs |}
= b.For( {|seq {expr 1 .. expra}lle (fun pat -> {| cexpr |}J)

{| while expr do cexpr |}c b.While((fun () -> expr), {|lcexpr |}pelayed)
b.TryWith( {| cexpr |}oelayed, (fun v ->

match v with

| ( pati:exn) -> { cexpri |}

| _ -> reraise exn)

{| try cexpr with pat; -> cexpri [}c

{| try cexpr finally expr |} b.TryFinally( {| cexpr |}pelayed, (fun () -> expr))
{| trans - cexpro; cexpri |} = b.Combine( {| trans -cexpro |}Jo {| cexpri |}pelayed)

other -expr; {| cexpri |}

{| other -expro ; cexpri [}
{| other -expr [} = other -expr; b.Zero()

Where

1 The auxiliary translation {| cexpr [}pelayed is b.Delay(fun () ->{| cexpr |[}o).

1 Aftrans - cexpr ¢ is any syntactic expression form that receives an explicit translation by any of these rules,
except for the final rule.

1 The auxiliary translation {| _ |} converts expr to an expression with the type
System.Collections.Generic.IEnumerable< ty >, for some type ty , by using enumerable extraction
§6.5.6.

This translation implicitly places type constraints on the expected form of the builder methods. For example, for
the async builder found in the Microsoft.FSharp.Control library, these correspond to implementing a builder
of a type that has the following member signatures:

type AsyncBuilder with

member For: seq<'T> * ('T -> Async<unit>) - > Async<unit>
member Zero : unit - > Async<unit>
member Combine : Async<unit> * Async<'T> -> Async<'T>
member While : (unit - > bool) * Async<unit> - > Async<unit>
member Return :'T  -> Async<'T>
member Delay : (unit ->Async<'T>) -> Async<'T>
member Using: ‘T * (‘T -> Async<'U>) -> Async<'U>

when 'U :> System.IDisposable
member Bind: Async<'T> * ('T -> Async<'U>) -> Async<'U>
member TryFinally: Async<'T> * (unit ->unit)  ->Async<'T>
member TryWith: Async<'T> * (exn -> Async<'T>) -> Async<'T>

The following example shows a common approach to implementing a new computation expression builder for a
monad. The example uses computation expressions to define computations that can be "partially run" by
executing them step-by-step, for example, up to a time limit.

/Il Computations that can cooperatively yield by returning a continuation
type Eventually<'T> =

| Done of 'T

| NotYetDone of (unit -> Eventually<'T>)

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]

63



module Eventually =

/Il The bind for the computations. Stitch "k" onto the end of the computation.
/Il Note combinators like this are usually written in the reverse way,
/Il for example,
/Il e |>bind k
letrec bindk e =
match e with
| Done x - > NotYetDone (fun () ->kXx)
| NotYetDone work - > NotYetDone (fun () - > bind k (work()))

/Il The return for the computations.
let result x = Done x

type OkOrException<'T> =
| Ok of 'T
| Exception of System.Exception

/Il The catch for the computations. Stitch try/with throughout
/It he computation and return the overall result as an OkOrException
let rec catch e =
match e with
| Done x - > result (Ok x)
| NotYetDone work - >
NotYetDone (fun () ->
let res = try Ok(work()) with | e -> Exception e
match res with
| Ok cont - > catch cont // note, a tailcall
| Exception e - > result (Exception e))

/Il The delay operator
let de lay f = NotYetDone (fun () ->1())

/Il The stepping action for the computations.
letstep ¢ =

match ¢ with

| Done _ ->c

| NotYetDone f  ->f()

/I The rest of the operations are boiler plate

/Il The tryFinally operator

/Il This is boiler - plate in terms of "result ", "catch" and "bind ".
let tryFinally e compensation =

catch (e)

|> bind (fun res -> compensation();

match res with
| Okv ->resultv

| Exception e ->raise e)

/Il The tryWith operator
/Il This is boiler - plate in terms of "result", "catch" and "bind".
let tryWith e handler =

catch e

|> bind (function Ok v ->result v | Exception e -> handler e)
/Il The whileLoop operator
/Il This is boiler - plate in terms of "result" and "bind" .
let rec whileLoop gd body =

if gd() then body |> bind (fun v - > whileLoop gd body)

64



else result ()

/Il The sequential composition operator

/Il This is boiler - plate in terms of "result" and "bind"
let combine el e2 =
el |> bind (fun () ->e2)

/Il The using operator
let using (resource: #System.IDisposable) f =
tryFinally (f resource) (fun () - > resource.Dispose())

/Il The forLoop operator
/Il This is boiler - plate in terms of "catch" , "result" and "bind"
let forLoop (e:seq<_>) f=
let ie = e.GetEnumerator()
tryFinally (whileLoop (fun () - > ie.MoveNext())
(delay (fun () -> letv =ie.Current in f v)))
(fun ()  ->ie.Dispose())

/I Give the mapping for F# computation expre  ssions .
type EventuallyBuilder() =
member x.Bind(e,k) = Eventually.bind k e
member x.Return(v) = Eventually.result v
member x.ReturnFrom(v) =V
member x.Combine(el,e2) = Eventually.combine el e2
member x.Delay(f) = Eventually.delay f
member x.Zero() = Eventually.result ()
member x.TryWith(e,handler) = Eventually.tryWith e handler
member x.TryFinally(e,compensation) = Eventually.tryFinally e compensation
member x.For(e:seq<_>,f) = Eventually.forLoop e f
member x.Using(resource,e) = Eventually.using resource e

let eventually = new EventuallyBuilder()

After the computations are defined, they can be built by using eventually { ... }

let comp =
eventually { for x in 1 .. 2do
printfn " x = %d" x
return3 + 4}

Thesecomput ati ons canoForexampdiee fist epped

let step x = Eventually.step x
comp |> step
/ returns "NotYetDone <closure> "

comp |> step |> step

/I prints "x=1"
/I returns "NotYetDone <closure> "
comp |> step |> step |> step |> step |> step |> step
/I prints "x=1"
/I prints "x=2"
YY OAOOOT O 2.1 09A0sT T A ,AITOOOA, 2

comp |> step |> step |> step |> step |> step |> step |> step |> step

/I prints "x=1"
/I prints "x=2"
/I returns "Done 7"

65



6.3.11 Sequence Expressions
An expression in one of the following forms is a sequence expression:

seq { compexpr }
seq{ short -comp expr }

For example:
seq { for xin [ 1, 2; 3] doforyin|5; 6] do yield x +vy}
seq { forxin[ 1; 2; 3 ]doyieldx + x}
seq { for xin [ 1, 2, 3] ->x + x}

Logically speaking, sequence expressions can be thought of as computation expressions with a builder of type
Microsoft.FSharp.Collections.SeqBuilder . This type can be considered to be defined as follows:

type SeqBuilder() =
member x.Yield (v) = Seq.singleton v
member x.YieldFrom (s:seq<_>) =s
member x.Return (():unit) = Seq.empty
member x.Combine (xs1,xs2) = Seq.append xs1 xs2
member x.For (xs,g) = Seq.collect f xs
member x.While (guard,body) = SequenceExpressionHelpers.EnumerateWhile guard body
member x.TryFinally (xs,compensation) =
SequenceExpressionHelpers.EnumerateThenFinally xs compensation
member x.Using (resource,xs) = SequenceExpressionHelpers.EnumerateUsing resource xs

However, this builder type is not actually defined in the F# library. Instead, sequence expressions are elaborated
directly as follows:

Seq.singleton  expr

expr

Seq.append {| expr [}{| expr [}
Seq.map (fun pat -> {|exprz2 |}) expr:

{| yield expr [}

{| yield! expr |}

{l expr1 ; exprz [}

{|for pat in expri -> expr2 |}

>r>>>>>

{| for pat in expri do expr: |} Seq.collect (fun pat -> {|expra [}) expri
{| while expri do expr [} RuntimeHelpers .EnumerateWhile

(fun () -> expri)

{l expr2 [})

{| try expr finally expr2 |} A RuntimeHelpers .EnumerateThenFinally

(I'expry [})

(fun() -> expro)
{{use v = expr1 in expr2 |} A let v = expriin

RuntimeHelpers .EnumerateUsingv  {| expr2 |}

{|let v = expriin expr2|} A let v =expriin { expr2 [}
{| match expr with pat; -> expri |} A .match expr with pat; -> {|cexpri |}
{l expra [} A expri ; Seq.empty
{|if expr then expro |}c A if expr then {|expro |}c else Seq.empty

{|if expr then expro else expri|} A if expr then {|expro |}c else {lexpri |}c

Here the use of Segand RuntimeHelpers refers to the corresponding functions in
Microsoft.FSharp.Collections.Seq and Microsoft.FSharp.Core.CompilerService s.RuntimeHelpers
respectively. This means that a sequence expression generates an object of type
System.Collections.Generic.|[Enumerable< ty > for some type ty . Such an object has a GetEnumerator
method that returns a System.Collections.Generic.|[Enumerator< ty >whose MoveNext, Current and
Dispose methods implement an on-demand evaluation of the sequence expressions.

6.3.12 Range Expressions

Expressions of the following forms are range expressions.
{el. e2}
{el. e2.e3 }

seq{ el . e2}
seq{ el . e2.e3 }

66



Range expressions generate sequences over a specified range. For example:

seq{1..10}//1;2;3;4;5;6;7;8;9; 10
seq{1..2..10}//1;3;5;7;9

Range expressions involving expr1 .. expr; are translated to uses of the (..)  operator, and those involving
expri .. expri .. exprs are translated to uses of the (.. ..) operator:

seq { el .. e2} y (..) e e
seq { el .. e2..e3 } vy (... ) e1ezes
The default definition of these operators is in Microsoft.FSharp.Core.Operators . The (.. ) operator

generates an IEnumerable<_> for the range of values between the start (expr 1) and finish (expr 2) values, using
an increment of 1 (as defined by Microsoft.FSharp.  Core. LanguagePrimitives.GenericOne ). The (.. .. )
operator generates an IEnumerable<_> for the range of values between the start (expr 1) and finish (expr 3)
values, using an increment of expr .

The seq keyword, which denotes the type of computation expression, can be omitted for simple range
expressions, but this is not recommended and might be deprecated in a future release. It is always preferable to
explicitly mark the type of a computation expression.

Range expressions also occur as part of the translated form of expressions, including the following:

T [ expri.. exprz]
T [ expri. expr2]]
1 for var in expri .. expry do exprs

A sequence iteration expression of the form for var in expri .. expr. do exprs doneis sometimes
elaborated as a simple for loop-expression (86.5.7).

6.3.13 Lists via Sequence Expressions

A list sequence expression is an expression in one of the following forms

[ comp expr ]
[ short -comp expr ]
[ range-expr ]

For example:
let x2 = [ yield 1; yield 2 ]
let x3 =[yield 1

if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then
yield 2]

6.3.14 Arrays Sequence Expressions

An expression in one of the following forms is an array sequence expression:

[[| compexpr |[]
[| short -compexpr |]
[| range-expr |]

Inall cases [| cexpr |] elaborates to Microsoft.FSharp.Collections.Seq.toArray(seq { cexpr} ).

67



For example:

let x2 = [| yield 1;yield 2 |]
let x3 =[| yield 1
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday then
yield 2 |]

6.3.15 Null Expressions
An expression in the form null is a null expression. A null expression imposes a nullness constraint (85.2.2,
85.4.8) on the initial type of the expression. The constraint ensures that the type directly supports the value null .

Null expressions are a primitive elaborated form.

6.3.16 'printf' Formats

Format strings are strings with %markers as format placeholders. Format strings are analyzed at compile time

and annotated with static and runtime type information as a result of that analysis. They are typically used with
one of the functions printf , fprintf , sprintf , or bprintf  in the Microsoft.FSharp. ~ Core.Printf  module.
Format strings receive special treatment in order to type check uses of these functions more precisely.

More concretely, a constant string is interpreted as a printf-style format string if it is expected to have the type
Microsoft.FSharp.  Core. Printf  Format<'Printer,'State,'Residue,'Result, Tuple> . The string is
statically analyzed to resolve the generic parameters of the PrintfFormat  type, of which 'Printer  and 'Tuple
are the most interesting:

1 'Printer is the function type that is generated by applying a printf  -like function to the format string.

1 'Tuple isthe type of the tuple of values that are generated by treating the string as a generator (for
example, when the format string is used with a function similar to scanf in other languages).

A format placeholder has the following shape:
%[flags][width][.precision][type]
where:
flags
Are 0, -, +, and the space character. The # flag is invalid and results in a compile-time error.
width
Is an integer that specifies the minimum number of characters in the result.
precision
Is the number of digits to the right of the decimal point for a floating-point type. .
type

Is as shown in the following table.

Placeholder string Type

%b bool

%s string

%c char

%d %oi One of the basic integer types:
byte , sbyte , intl6 , uintl6 ,int32 , uint32 , int64 , uint64 , nativeint  or
unativeint

%u Basic integer type formatted as an unsigned integer

68



Placeholder string Type

%X Basic integer type formatted as an unsigned hexadecimal integer with lowercase
letters a through f.

%X Basic integer type formatted as an unsigned hexadecimal integer with uppercase
letters A through F.

%0 Basic integer type formatted as an unsigned octal integer.

%e %k %f, %k %g %G | float or float32

%M System.Decimal

%0 System.Object

%A Fresh variable type 'T

%a Formatter of type 'State  ->'T ->'Residue for a fresh variable type 'T

%t Formatter of type 'State - > 'Residue
For example, the format string "%s %d %s"is given the type Printf  Format<(string ~ ->int ->string ->
'd), 'b, 'c, 'd,(string * int * string)> for fresh variable types 'b, 'c, 'd . Applying printf  toit

yields a function of type string ->int ->string  -> unit

6.4 Application Expressions

6.4.1 Basic Application Expressions

Application expressions involve variable names, dot-notation lookups, function applications, method applications,
type applications, and item lookups, as shown in the following table.

Expression Description

long -ident -or-op Long-ident lookup expression

expr "' long -ident -or-op Dot lookup expression

expr expr Function or member application expression

expr(expr) High precedence function or member application
expression

expr <types > Type application expression

expr< > Type application expression with an empty type list

type expr Simple object expression

The following are examples of application expressions:

System.Math.PI

System.Math.Pl.ToString()

(3 +4).ToString()
System.Environment.GetEnvironmentVariable("PATH").Length
System.Console.WriteLine("Hello World")

Application expressions may start with object construction expressions that do not include the newkeyword:

System.Object()
System.Collections.Generic.List<int>(10)
System.Collections.Generic.KeyValuePair(3,"Three")

69



System.Object().GetType()
System.Collections.Generic.Dictionary<int,int>(10).[1]

If the long - ident - or - op starts with the special pseudo-identifier keyword global , F# resolves the identifier with
respect to the global namespaced that is, ignoring all open directives (see §14.2). For example:

global. System.Math.PI

is resolved to System.Math.P| ignoring all open directives.

The checking of application expressions is described in detail as an algorithm in §14.2. To check an application
expression, the expression form is repeatedly decomposed into a lead expression expr and a list of projections
projs through the use of Unqualified Lookup (814.2.1). This in turn uses procedures such as Expression-
Qualified Lookup and Method Application Resolution.

As described in §14.2, checking an application expression results in an elaborated expression that contains a
series of lookups and method calls. The elaborated expression may include:

Uses of named values

Uses of union cases

1 Record constructions

1 Applications of functions

1 Applications of methods (including methods that access properties)
1  Applications of object constructors

1 Uses of fields, both static and instance

1 Uses of active pattern result elements

Additional constructs may be inserted when resolving method calls into simpler primitives:

1 The use of a method or value as a first-class function may result in a function expression.

For example, System.Environment.GetEn vironmentVariable  elaborates to:
(funv  -> System.Environment.GetEnvironmentVariable(v))
for some fresh variable v.

1 The use of post-hoc property setters results in the insertion of additional assignment and sequential
execution expressions in the elaborated expression.

For example, new System.Windows.Forms.Form(Text="Text") elaborates to
let v = new System.Windows.Forms.Form() in v.set_Text("Text"); v
for some fresh variable v.

1  The use of optional arguments results in the insertion of Some(_) and Nonedata constructions in the
elaborated expression.

For uses of active pattern results (see §10.2.4), for result i in an active pattern that has N possible results of
types types , the elaborated expression form is a union case Choice NOfi of type
Microsoft.FSharp.Core.Choice< type s>.

6.4.2 Object Construction Expressions

An expression of the following form is an object construction expression:

newty (ei ... e€n)

70



An object construction expression constructs a new instance of a type, usually by calling a constructor method on
the type. For example:

new System.Object()

new System.Collections.Generic.List<int>()

new System.Windows.Forms.Form (Text="Hello World")
new T()

The initial type of the expression is first asserted to be equal to ty . The type ty must not be an array, record,
union or tuple type. If ty is a named class or struct type:

1
1

ty must not be abstract.

If ty is a struct type, n is 0, and ty does not have a constructor method that takes zero arguments, the
expression el abor atleist tpatttheryn® faallue Afzemr o

Otherwise, the type must have one or more accessible constructors. The overloading between these
potential constructors is resolved and elaborated by using Method Application Resolution (see §14.4).

If ty is a delegate type the expression is a delegate implementation expression.

il

If the delegate type has an Invoke method that has the following signature
Invoke( ty 1,..., tyn) -> 1ty a

then the overall expression must be in this form:
new ty (expr) where expr hastypety ;1 ->... ->ty,-> 1ty s
If type rty ais a CLI void type, then rty gis unit , otherwise itis rty a.

If any of the types ty i is a byref-type then an explicit function expression must be specified. That is, the
overall expression must be of the form new ty (fun pat:. patn -> exprsogy) -

If ty is a type variable:

There must be no arguments (thatis, n =0 ).
The type variable is constrained as follows:
ty :(new : unit ->1ty) -- CLIdefault constructor constraint

The expression elaborates to a call to
Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicFunctions.Createlnstance< ty >() , which
in turn calls System.Activator.Createlnstance< ty >() , which in turn uses CLI reflection to find and call
the null object constructor method for type ty . On return from this function, any exceptions are wrapped by
using System.TargetlnvocationException

6.4.3 Operator Expressions

Operator expressions are specified in terms of their shallow syntactic translation to other constructs. The
following translations are applied in order:

infix -or-prefix -op el vy (~infix -or-prefix -op)el
prefix -op el y (prefix -op)el
el infix -op e2 y (infix -op)ele2

Note: When an operator that may be used as either an infix or prefix operator is used in prefix
position, a tilde character ~ is added to the name of the operator during the translation process.

These rules are applied after applying the rules for dynamic operators (86.4.4).

71



The parenthesized operator name is then treated as an identifier and the standard rules for unqualified name
resolution (814.1) in expressions are applied. The expression may resolve to a specific definition of a user-
defined or library-defined operator. For example:

let (+++) ab = (a,b)
3+++4

In some cases, the operator name resolves to a standard definition of an operator from the F# library. For
example, in the absence of an explicit definition of (+),

3+4
resolves to a use of the infix operator Microsoft.FSharp.Core.Operators.(+)
Some operators that are defined in the F# library receive special treatment in this specification. In particular:

1 The &expr and &&expr address-of operators (§6.4.5)

1 Theexpr && expr andexpr || expr shortcut control flow operators (§86.5.4)

1 The %xpr and %%xpr expression splice operators in quotations (86.8.3)

1 The library-defined operators, such as +, -, *, /, % ** , <<<, >>> &&&||| , and " (817.2).

If the operator does not resolve to a user-defined or library-defined operator, the name resolution rules (§14.1)
ensure that the operator resolves to an expression that implicitly uses a static member invocation expression
(86.4.8) that involves the types of the operands. This means that the effective behavior of an operator that is not
defined in the F# library is to require a static member that has the same name as the operator, on the type of one
of the operands of the operator. In the following code, the otherwise undefined operator -- > resolves to the static
member on the Receiver type, based on a type-directed resolution:

type Receiver(latestMessage:string) =
static member (< -- ) (receiver:Receiver,message:string) =
Receiver(message)

static member ( -- >) (message,receiver:Receiver) =
Receiver(message)

let r=Receiver "no message"
r< -- "Message One"

"Message Two" -- >r

6.4.4 Dynamic Operator Expressions
Expressions of the following forms are dynamic operator expressions:

expri ? expr:z
expri ? expraz <- exprs

These expressions are defined by their syntactic translation:

expr ? ident y (?) expr "ident "

expri ? ( expr2) y (?) expriexpr:

expri ? ident <- expr: y (?<-) expri"ident " expr:

expri ?( expra) <- exprs y (?<-) expriexprz exprs
Here "ident " is a string literal that contains the text of ident .

Note: The F# core library FSharp.Core.dll  does not define the (?) and (?<-) operators.
However, user code may define these operators. For example, it is common to define the operators
to perform a dynamic lookup on the properties of an object by using reflection.

72



This syntactic translation applies regardless of the definition of the (?) and (?<-) operators. However, it does
not apply to uses of the parenthesized operator names, as in the following:

() xy

6.4.5 The AddressOf Operators

Under default definitions, expressions of the following forms are address-of expressions, called byref-address-of
expression and nativeptr-address-of expression, respectively:

&expr
&&expr

Such expressions take the address of a mutable local variable, byref-valued argument, field, array element, or
static mutable global variable.

For &expr and &&xpr , the initial type of the overall expression must be of the form byref< ty >and
nativeptr< ty > respectively, and the expression expr is checked with initial type ty .

The overall expression is elaborated recursively by taking the address of the elaborated form of expr , written
AddressOf(expr , DefinitelyMutates ), defined in §6.9.4.

Use of these operators may result in unverifiable or invalid common intermediate language (CIL) code; when
possible, a warning or error is generated. In general, their use is recommended only:

1 To pass addresses where byref or nativeptr ~ parameters are expected.

1 To pass a byref parameter on to a subsequent function.

1  When required to interoperate with native code.

Addresses that are generated by the &&operator must not be passed to functions that are in tail call position. The
F# compiler does not check for this.

Direct uses of byref types, nativeptr  types, or values in the Microsoft.FSharp.Nativelnterop module may
result in invalid or unverifiable CIL code. In particular, byref and nativeptr  types may NOT be used within
named types such as tuples or function types.

When calling an existing CLI signature that uses a CLI pointer type ty* , use a value of type nativeptr<ty>

Note: The rules in this section apply to the following prefix operators, which are defined in the F#
core library for use with one argument.

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators. (~&)
Microsoft.FSharp.Core.LanguagePrimitives.Intrinsi cOperators.(~&&)

Other uses of these operators are not permitted.

6.4.6 Lookup Expressions

Lookup expressions are specified by syntactic translation:

e1. get_ Item( ey)

erget_ltem( e, e3)
er.get_Item( ey, es3 e€4)
er.get_Item( ey es €, €s)

e;. set_ Item( ez, e3)

er.set_ltem( e es ey
er.set_ltem( ey es €, €s)
er.set_ltem( ez es €4, €5 €5)

e[ e

e[ ez ej]

e[ ez, es3 e4

e[ e, es es eg)

en] e < - es

e[ e, e3]<- e4

81.[ €2, €3, 64] <- €5
81.[ €2, €3, €y, 85] < - €¢

< < < << <<=

73



In addition, for the purposes of resolving expressions of this form, array types of rank 1, 2, 3, and 4 are assumed
to support a type extension that defines an Item property that has the following signatures:

type T[] with
member arr.ltem : int ->'T

type 'T[,] with
member arr.ltem : int * int ->'T

type 'T[,,] with
member arr.ltem : int * int * int ->'T

type T[,,,] with
member arr.ltem : int * int * int * int ->'T

In addition, if type checking determines that the type of e; is a named type that supports the DefaultMember
attribute, then the member name identified by the DefaultMember attribute is used instead of ltem .

6.4.7 Slice Expressions
Slice expressions are defined by syntactic translation. For 1-D slices:

el.[ expt.. € 30pt] y e1.GetSlice( argo, args)
el.[*] y ei1.GetSlice(None,None)

where arg; is Some e o if € op iS present and Noneotherwise. At least one e; o, must be present. A similar
translation is used for 2-D slices:

el.[ exopt-- € 30pt, € 4opt-- € 5opt] y ei1.GetSlice( arg, arg s, arg 4, args)
el *, e 2opt.- € 30pt] y e1.GetSlice(None,None, arg,, arg s)
el expt.. € 30pt, *] y e1.GetSlice( arg 2, arg 3,None,None)
el * ] y e1.GetSlice(None,None,None,None)

Because this is a shallow syntactic translation, the GetSlice name may be resolved by any of the relevant Name
Resolution (§14.1) techniques, including defining the method as a type extension for an existing type.

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a method
GetSlice that has the following signature:

type ‘T[] with
member arr.GetSlice : ?startl:int * ?endl:int -> T[]

type "T[,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int * ?end2:int -> T[]

type "T[,,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int * ?end2:int *
?start3:int * ?end3:int
-> T[]

type T[,,,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int * ?end2:int *

?start3:int * ?end3:int * ?start4:int * ?end4:int
->'T[,,.]

6.4.8 Member Constraint Invocat ion Expressions

An expression of the following form is a member constraint invocation expression:

(static -typars :( membersig ) expr)

Type checking proceeds as follows:

1. The expression is checked with initial type ty .

74



3.

4,

A statically resolved member constraint is applied (85.2.3):
static -typars :( membersig )

ty is asserted to be equal to the return type of the constraint.

expr is checked with an initial type that corresponds to the argument types of the constraint.

The elaborated form of the expression is a member invocation. For example:

let inline speak (a: "a) =

let x = ("a : (member Speak: unit - > string) (a))
printfn "It said: %s" x

lety = ("a: (member MakeNoise: unit - > string) (a))
printfn "Then it went:  %s"y

type Duck() =
member x.Speak() = "I'm a duck"
member x.MakeNoise() = "quack"

type Dog() =
member x.Speak() = "I'm a dog"
member x.MakeNoise() ="  grrrr

let x = new Duck()
let y = new Dog()
speak x

speak y

Outputs:

It said: I'm a duck
Thenit went: quack
It said: I'ma dog
Thenit went: grrrr

6.4.9 Assignment Expressions

An expression of the following form is an assignment expression:

expri <- exprs

A modified version of Unqualified Lookup (814.2.1) is applied to the expression expr 1 using a fresh expected

of the following constructs:

il

An invocation of a property with a setter method. The property may be an indexer.

Type checking incorporates expr ; as the last argument in the method application resolution for the setter
method. The overall elaborated expression is a method call to this setter property and includes the last
argument.

75



The overall elaborated expression is an assignment to a field (see §6.9.4):

AddressOf (expr 1a.[ expraip]. , DefinitelyMutates ) <-sionj . €XPr2

Note: Because assignments have the preceding interpretations, local values must be mutable so
that primitive field assignments and array lookups can mutate their immediate contents. In this
context, ii mmedi at e d ¢ o ncontents of a nmuialalenvalue tyreeFor example, given

[<Struct>]

type SA =
new(v) ={x=v}
val mutable x : int

[<Struct>]

type SB =
new(v) ={sa=v}
val mutable sa : SA

let s1 = SA(0)
let mutable s2 = SA(0)
let s3 = SB(0)

let mutable s4 = SB(0)
Then these are not permitted:

slx< - 3
s3.sax< - 3

and these are:

s2x< - 3
s4sax< - 3
s4.sa< - SA(2)

6.5 Control Flow Expressions

6.5.1 Parenthesized and Block Expressions
A parenthesized expression has the following form:

(expr)

A block expression has the following form:

begin expr end

The expression expr is checked with the same initial type as the overall expression.

The elaborated form of the expression is simply the elaborated form of expr .

76



6.5.2 Sequential Execution Expressions
A sequential execution expression has the following form:

expri; expr:
For example:
printfn "Hello"; printfn " World"; 3

The ; token is optional when both of the following are true:

1  The expression expr » occurs on a subsequent line that starts in the same column as expr ;.
1  The current pre-parse context that results from the syntax analysis of the program text is a SeqBlock (815).

When the semicolon is optional, parsing inserts a $sep token automatically and applies an additional syntax rule
for lightweight syntax (§15.1.1). In practice, this means that code can omit the ; token for sequential execution
expressions that implement functions or immediately follow tokens such as begin and (.

The expression expr 1 is checked with an arbitrary initial type ty . After checking expr 1, ty is asserted to be equal
to unit . If the assertion fails, a warning rather than an error is reported. The expression expr » is then checked
with the same initial type as the overall expression.

Sequential execution expressions are a primitive elaborated form.

6.5.3 Conditional Expressions
A conditional expression has the following form:s

if expria then exprip
elif  exprsa then exprap
A

elif  exprna then exprnp
else expr jast

The elif and else branches may be omitted. For example:

if (1 + 1=2)then "ok" else "not ok"
if (1 + 1=2)then printfn "ok"

Conditional expressions are equivalent to pattern matching on Boolean values. For example, the following
expression forms are equivalent:

if expri then expr, else exprs
match ( expr 1:bool) with true -> expr, |false  -> exprs

If the else branch is omitted, the expression is a sequential conditional expression and is equivalent to:
match ( expr 1:bool) with true -> expr, |false  ->()

with the exception that the initial type of the overall expression is first asserted to be unit .

6.5.4 Shortcut Operator Expressions

Under default definitions, expressions of the following form are respectively an shortcut and expression and a
shortcut or expression:

expr && expr
expr || expr

These expressions are defined by their syntactic translation:

expri && expr > y if expri then expr . else false
expri || expr2 y if expri then true else expr 2

7



Note: The rules in this section apply when the following operators, as defined in the F# core library,
are applied to two arguments.

Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(&&)
Microsoft.FSharp.Core.LanguagePrimitives.IntrinsicOperators.(||)

If the operator is not immediately applied to two arguments, it is interpreted as a strict function that
evaluates both its arguments before use.

6.5.5 Pattern -Matching Expressions and Functions
A pattern-matching expressionhas the following form:
match expr with rules

Pattern matching is used to evaluate the given expression and select a rule (87). For example:

match (3, 2) with
|1, j ->printin"j=%d"j
|1, 2 -> printfn "i = %d" i
| - > printfn "no match"

A pattern-matching function is an expression of the following form:
function  rules

A pattern-matching function is syntactic sugar for a single-argument function expression that is followed by
immediate matches on the argument. For example:

function
|1, j ->printin "] = %d" |
| - > printfn "no match"

is syntactic sugar for the following, where x is a fresh variable:

funx ->
match x with
|1, j ->printfn "j = %d"

| - > printfn "no match"

6.5.6 Sequence Iteration Expressions
An expression of the following form is a sequence iteration expression:

for pat in expri do expr» done

The done token is optional if expr » appears on a later line and is indented from the column position of the for
token. In this case, parsing inserts a $done token automatically and applies an additional syntax rule for
lightweight syntax (815.1.1).

For example:

forx, yin[(1, 2); (3, 4)] do
printfn "x = %d, y = %d" x y
The expression expr 1 is checked with a fresh initial type ty ex,r, Which is then asserted to be a subtype of type
IEnumerable< ty >, for a fresh type ty . If the assertion succeeds, the expression elaborates to the following,
where v is of type IEnumerator< ty >and pat is a pattern of type ty :

let v = expri.GetEnumerator()
try
while ( v.MoveNext()) do
match v.Current with
| pat -> expr2

l_ ->0

78



finally
match box( v) with
| :? System.IDisposable as d -> d.Dispose()

l_ ->0
If the assertion fails, the type ty e,y may also be ofanyst at i ¢ type that satisfies
libraries. If so, the enumerable extraction process is used to enumerate the type. In particular, ty ,r may be any
type that has an accessible GetEnumerator method that accepts zero arguments and returns a value that has
accessible MoveNextand Current properties. The type of pat is the same as the return type of the Current
property on the enumerator value. However, if the Current property has return type obj and the collection type
ty has an ltem property with a more specific (non-object) return type ty », type ty - is used instead, and a
dynamic cast is inserted to convert v.Current to ty ».

A sequence iteration of the form

for var in expri .. expr, do exprs done

where the type of expr 1 or expr » is equivalent to int , is elaborated as a simple for-loop expression (§86.5.7)

6.5.7 Simple for -Loop Expressions
An expression of the following form is a simple for loop expression:
for var = expri to exprz do exprs done

The done token is optional when e2 appears on a later line and is indented from the column position of the for
token. In this case, a $done token is automatically inserted, and an additional syntax rule for lightweight syntax
applies (815.1.1). For example:

for x = 1 to 30 do
printfn "x = %d, x*2 = %d" X (X*X)

The bounds expr1 and expr . are checked with initial type int . The overall type of the expression is unit . A
warning is reported if the body expr s of the for loop does not have static type unit .

The following shows the elaborated form of a simple for-loop expression for fresh variables start and finish

let __start = expra in

For-loops over ranges that are specified by variables are a primitive elaborated form. When executed, the
iterated range includes both the starting and ending values in the range, with an increment of 1.

An expression of the form

for var in expri .. expr, do exprs done

is always elaborated as a simple for-loop expression whenever the type of expr 1 or expr ; is equivalent to int .

6.5.8 While Expressions

A while loop expression has the following form:

while expri1 do expr, done

The done token is optional when expr » appears on a subsequent line and is indented from the column position
of the while . In this case, a $done token is automatically inserted, and an additional syntax rule for lightweight
syntax applies (§15.1.1).

For example:

while System.DateTime.Today.DayOfWeek = System.DayOfWeek.Monday do
printfn "I don't like Mondays"

79

t

he

fico



The overall type of the expression is unit . The expression expr 1 is checked with initial type bool . A warning is
reported if the body expr > of the while loop cannot be asserted to have type unit .

6.5.9 Try-with Expressions

A try-with expression has the following form:

try expr with rules

For example:
try "1" with _ ->
try
failwith "fail"
with
| Failure msg - > "caught"
| :? System.InvalidOperationException - > "unexpected"

Expression expr is checked with the same initial type as the overall expression. The pattern matching clauses
are then checked with the same initial type and with input type System.Exception

Try-with expressions are a primitive elaborated form.

6.5.10 Reraise Expressions

A reraise expression is an application of the re raise F# library function. This function must be applied to an
argument and can be used only on the immediate right-hand side of rules in a try-with expression.

try
failwith "fail"
with e - > printfn "Failing"; reraise()

Note: The rules in this section apply to any use of the function
Microsoft.FSharp.Core.Operators.reraise , Which is defined in the F# core library.

When executed, reraise () continues exception processing with the original exception information.

6.5.11 Try -finally Expressions
A try-finally expression has the following form:
try expri finally expr 2
For example:
try "1" finally printfn "Finally!"
try
failwith "fail"

finally
printfn "Finally block"

Expression expr 1 is checked with the initial type of the overall expression. Expression expr » is checked with
arbitrary initial type, and a warning occurs if this type cannot then be asserted to be equal to unit .

Try-finally expressions are a primitive elaborated form.

80



6.5.12 Assertion Expressions
An assertion expression has the following form:
assert expr

The expression assert expr is syntactic sugar for System.Diagnostics.Debug.Assert(expr)

Note: System.Diagnostics.Debug.Assert is a conditional method call. This means that

assertions are triggered only if the DEBUG conditional compilation symbol is defined.

6.6 Definition Expressions

A definition expression has one of the following forms:

let function -defn in expr

let value -defn in expr

letrec  function -or-value -defns in expr
use ident = expri in expr

Such an expression establishes a local function or value definition within the lexical scope of expr and has the
same overall type as expr .

In each case, the in token is optional if expr appears on a subsequent line and is aligned with the token let . In
this case, a $in token is automatically inserted, and an additional syntax rule for lightweight syntax applies
(815.1.1)

For example:

letx=1
X + X

and

letx, y=("One", 1)
x.Length +y

and
letid x = xin (id 3, id "Three")
and

let swap (x, y) = (y,X)
Listmapswap|[ (1, 2):(3, 4) ]

and
let Kx y =xin Listmap (K 3) [ 1, 2; 3; 4]

Function and value definitions in expressions are similar to function and value definitions in class definitions
(88.6.1.3), modules (810.2.1), and computation expressions (86.3.10), with the following exceptions:

1 Function and value definitions in expressions may not define explicit generic parameters (85.3). For
example, the following expression is rejected:
let f<'T> (x:'T) =xinf3
1 Function and value definitions in expressions are not public and are not subject to arity analysis (814.10).

1 Any custom attributes that are specified on the declaration, parameters, and/or return arguments are ignored
and result in a warning. As a result, function and value definitions in expressions may not have the
ThreadStatic  or ContextStatic  attribute.

81



6.6.1 Value Definition Expressions
A value definition expression has the following form:

let value -defn in expr

where value - defn has the form:

mutable opt accessqpt pat typar -defns opr return -type opr = rhs-expr

Checking proceeds as follows:

1. Check the value - defn (814.6), which defines a group of identifiers ident ; with inferred types ty |
2. Add the identifiers ident ; to the name resolution environment, each with corresponding type ty ;.
3. Check the body expr against the initial type of the overall expression.

In this case, the following rules apply:

1 If pat is a single value pattern ident , the resulting elaborated form of the entire expression is

let ident 1 <typarsl >= exprl in
body- expr

where ident 1, typars 1 and expr ; are defined in §14.6.

1 Otherwise, the resulting elaborated form of the entire expression is

A
let__ident n_<typars n>=_exprn.in.
body:- expr.

Value definitions in expressions may be marked as mutable . For example:

let mutable v="0
while v < 10 do
v<- v+1
printfn "v = %d" v

Such variables are under the same restrictions as values of type byref<_> (814.9), and are implicitly
dereferenced each time they are used.

6.6.2 Function Definition Expressions

A function definition expression has the form:

let function -defn in expr

where function -defn has the form:

inline opt accessop ident -or-op typar -defns op¢ pat: ... patn, return -type opt = rhs-expr

Checking proceeds as follows:
1. Check the function -defn (814.6), which defines ident 1, ty 1, typars 1 and expr 1
2. Add the identifier ident ; to the name resolution environment, each with corresponding type ty 1.

3. Check the body expr against the initial type of the overall expression.

82



The resulting elaborated form of the entire expression is

where ident 4, typars 1 and expr ; are as defined in §14.6.

6.6.3 Recursive Definition Expressions

An expression of the following form is a recursive definition expression:
letrec  function -or-value -defns in expr

The defined functions and values are available for use within their own definitionsd that is can be used within any
of the expressions on the right-hand side of function - or - value - def ns. Multiple functions or values may be
defined by usingl A0 OAA A FoAexaple:
let test() =
let rec twoForward count =
printfn "at %d, taking two steps forward" count
if count = 1000 then "got there!"
else oneBack (cou nt+ 2)
and oneBack count =

printfn "at %d, taking one step back " count
twoForward (count - 1)

twoFor ward 1

test()

In the example, the expression defines a set of recursive functions. If one or more recursive values are defined,
the recursive expressions are analyzed for safety (§14.6.6). This may result in warnings (including some reported
as compile-time errors) and runtime checks.

6.6.4 Deterministic Disposal Expressions
A deterministic disposal expression has the form:

use ident = expri in expr2
For example:

use inStream = System.lO.File.OpenText "input.txt"

let linel = inStream.ReadLine()

let line2 = inStream.ReadLine()

(linel,line2)
The expression is first checked as an expression of form let ident = expr1 in expr. (8Error! Reference
ource not found.), which results in an elaborated expression of the following form:

Only one value may be defined by a deterministic disposal expression, and the definition is not generalized
(814.6.7). The type ty 1, is then asserted to be a subtype of System.IDisposable . If the dynamic value of the
expression after coercion to type obj is non-null, the Dispose method is called on the value when the value goes
out of scope. Thus the overall expression elaborates to this:

83



6.7 Type-Related Expressions

6.7.1 Type-Annotated Expressions

A type-annotated expression has the following form, where ty indicates the static type of expr :
expr : ty

For example:

(1 :int)
let fx=(x:string) + x

When checked, the initial type of the overall expression is asserted to be equal to ty . Expression expr is then
checked with initial type ty . The expression elaborates to the elaborated form of expr . This ensures that
information from the annotation is used during the analysis of expr itself.

6.7.2 Static Coercion Expressions
A static coercion expressiond also called a flexible type constraintd has the following form:

expr > ty

The expression upcast expr is equivalent to expr :> _, so the target type is the same as the initial type of the
overall expression. For example:

(1 :> obj)

("Hello" :> obj)

([1;2;3] :> seq<int>).GetEnumerator()
(upcast 1 : obj)

The initial type of the overall expression is ty . Expression expr is checked using a fresh initial type ty ¢, with
constraint ty . :> ty . Static coercions are a primitive elaborated form.

6.7.3 Dynamic Type -Test Expressions
A dynamic type-test expression has the following form:

expr :? ty
For example:

((1 :> obj) :?int)
((1 :> ohj) :? string)

The initial type of the overall expression is bool . Expression expr is checked using a fresh initial type ty .. After
checking:

1 The type ty « must not be a variable type.
T Awarning is given if ty . coerces to ty .

M The type ty « must not be sealed.
1

If type ty is sealed, or if ty is a variable type, or if type ty < is not an interface type, then ty :>ty ¢ is
asserted.

Dynamic type tests are a primitive elaborated form.

6.7.4 Dynamic Coercion Expressions
A dynamic coercion expression has the following form:

expr :?> ty

84



The expression downcast el is equivalent to expr :?> _, so the target type is the same as the initial type of the
overall expression. For example:

let obj1 = (1 :> obj)
(obj1 :?> int)

(obj1 :?> string)
(downcast objl : int)

The initial type of the overall expression is ty . Expression expr is checked using a fresh initial type ty . After
these checks:

1 The type ty « must not be a variable type.
1 Awarning is given if ty  coerces to ty .

1 The type ty « must not be sealed.
1

If type ty is sealed, or if ty is a variable type, or if type ty < is not an interface type, then ty :>ty ¢ is
asserted.

Dynamic coercions are a primitive elaborated form.

6.8 Quoted Expressions

An expression in one of these forms is a quoted expression:
<@expr @>
<@@expr @@>

The former is a strongly typed quoted expression, and the latter is a weakly typed quoted expression. In both
cases, the expression forms capture the enclosed expression in the form of a typed abstract syntax tree.

The exact nodes that appear in the expression tree are determined by the elaborated form of expr that type
checking produces.

For details about the nodes that may be encountered, see the documentation for the
Microsoft.FSharp.Quotations .Expr type in the F# core library. In particular, quotations may contain:
1 References to module-bound functions and values, and to type-bound members. For example:

letid x = x
let f (x i) =<@id 1 @>

In this case the value appears in the expression tree as a node of kind
Microsoft.FSharp.Quotations.Expr. Call .

9 A function, value, or member that is annotated with the ReflectedDefinition attribute. If so, the
expression tree that forms its definition may be retrieved dynamically using the
Microsoft.FSharp.Quotations.Expr.TryGetReflectedDefinition

1 References to defined values, such as the following:
let f (x i) =<@x+ 1 @>

Such a value appears in the expression tree as a node of kind
Microsoft.FSharp.Quotations.Expr.Value

85



1 References to generic type parameters or uses of constructs whose type involves a generic parameter, such
as the following:

letf (x:'T) =<@ (x,x) :'T*'T @>

In this case, the actual value of the type parameter is implicitly substituted throughout the type annotations
and types in the generated expression tree.

In F# 2.0, the following limitations apply to quoted expressions:

1 Quotations may not use object expressions.

1 Quotations may not define expression-bound functions that are themselves inferred to be generic. Instead,
expression-bound functions should either include type annotations to refer to a specific type or should be
written by using module-bound functions or class-bound members.

6.8.1 Strongly Typed Quoted Expressions
A strongly typed quoted expression has the following form:
<@expr @>

For example:
<@1+1@>

<@ (funx ->x+1)@>

In the first example, the type of the expression is Microsoft.FSharp.Quotations.Expr <int> . In the second
example, the type of the expression is Microsoft.FSharp.Quotations.Expr <int ->int>

When checked, the initial type of a strongly typed quoted expression <@expr @>is asserted to be of the form
Microsof t.FSharp.Quotations.Expr< ty > for a fresh type ty . The expression expr is checked with initial type

ty .

6.8.2 Weakly Typed Quoted Expressions

A weakly typed quoted expression has the following form:

<@@xpr @@>

Weakly typed quoted expressions are similar to strongly quoted expressions but omit any type annotation. For
example:

<@@1+1@@>
<@@ (funx ->x+1) @@>
In both these examples, the type of the expression is Microsoft.FSharp.Quotations.Expr

When checked, the initial type of a weakly typed quoted expression <@ expr @ >is asserted to be of the form
Microsoft.FSharp.Quotations.Expr . The expression expr is checked with fresh initial type ty .

6.8.3 Expression Splices

Both strongly typed and weakly typed quotations may contain expression splices in the following forms:

%oexpr
%%expr

These are respectively strongly typed and weakly typed splicing operators.

86



6.8.3.1 Strongly Typed Expression Splices
An expression of the following form is a strongly typed expression splice:

Yexpr
For example, given

open Microsoft.FSharp.Quotations

let f1 (v:Expr<int>) =<@ %v +1 @>

let expr =fl<@ 3 @>
the identifier expr evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree for <@ 3 @>
replaces the splice in the corresponding expression tree node.

A strongly typed expression splice may appear only in a quotation. Assuming that the splice expression %expr is
checked with initial type ty , the expression expr is checked with initial type
Microsoft.FSharp.Quotations.Expr <ty >.

Note: The rules in this section apply to any use of the prefix operator
Microsoft.FSharp.Core.ExtraTopLevelOperators.( ~%). Uses of this operator must be applied
to an argument and may only appear in quoted expressions.

6.8.3.2 Weakly Typed Expression Splices

An expression of the following form is a weakly typed expression splice:
%%Xpr

For example, given

open Microsoft.FSharp.Quotations

letfl (V:Expr)=<@ % W +1@>

let tree = f1 <@ @3 a>
the identifier tree evaluates to the same expression tree as <@ 3 + 1 @>. The expression tree replaces the
splice in the corresponding expression tree node.

A weakly typed expression splice may appear only in a quotation. Assuming that the splice expression %%xpr is
checked with initial type ty , then the expression expr is checked with initial type
Microsoft.FSharp.Quotations.Expr . No additional constraint is placed on ty .

Additional type annotations are often required for successful use of this operator.

Note: The rules in this section apply to any use of the prefix operator
Microsoft.FSharp.Core.ExtraTopLevelOperators.( ~98% , which is defined in the F# core
library. Uses of this operator must be applied to an argument and may only occur in quoted
expressions.

6.9 Evaluation of Elaborated Forms

At runtime, execution evaluates expressions to values. The evaluation semantics of each expression form are
specified in the subsections that follow.

6.9.1 Values and Execution Context

The execution of elaborated F# expressions results in values. Values include:

Primitive constant values

1 The special value null

87



1 References to object values in the global heap of object values
1  Values for value types, containing a value for each field in the value type

1 Pointers to mutable locations (including static mutable locations, mutable fields and array elements)

Evaluation assumes the following evaluation context:

1 A global heap of object values. Each object value contains:
1 A runtime type and dispatch map
A set of fields with associated values
For array objects, an array of values in index order
For function objects, an expression which is the body of the function

An optional union case label, which is an identifier

= =/ =4 =4 =4

A closure environment that assigns values to all variables that are referenced in the method bodies that
are associated with the object

1 A global environment that maps runtime-type/name pairs to values.Each name identifies a static field in a
type definition or a value in a module.

1  Alocal environment mapping names of variables to values.
1 Alocal stack of active exception handlers, made up of a stack of try/with and try/finally handlers.
Evaluation may also raise an exception. In this case, the stack of active exception handlers is processed until the

exception is handled, in which case additional expressions may be executed (for try/finally handlers), or an
alternative expression may be evaluated (for try/with handlers), as described below.

6.9.2 Parallel Execution and Memory Model

In a concurrent environment, evaluation may involve both multiple active computations (multiple concurrent and
parallel threads of execution) and multiple pending computations (pending callbacks, such as those activated in
response to an 1/O event).

If multiple active computations concurrently access mutable locations in the global environment or heap, the
atomicity, read, and write guarantees of the underlying CLI implementation apply. The guarantees are related to
the logical sizes and characteristics of values, which in turn depend on their type:

1  F# reference types are guaranteed to map to CLI reference types. In the CLI memory model, reference types
have atomic reads and writes.

1 F# value types map to a corresponding CLI value type that has corresponding fields. Reads and writes of
sizes less than or equal to one machine word are atomic.

The VolatileField attribute marks a mutable location as volatile in the compiled form of the code.

Ordering of reads and writes from mutable locations may be adjusted according to the limitations specified by the
CLI memory model. The following example shows situations in which changes to read and write order can occur,
with annotations about the order of reads:

type ClassContainingMutableData() =

let value = (1, 2)

let mutable mutableValue = (1, 2)
[<VolatileField>]

let mutable volatileMutableValue = (1, 2)

member x.ReadValues() =
/I Two reads on an immutable value
let (a1, bl) = value

88



/I One read on mutableValue, which may be duplicated according
/I to ECMACLI spec .
let (a2, b2) = mutableValue

/I One read on volatileMutableValue, which may not be duplicated
let (a3, b3) = volatileMutableValue

al, bl, a2, b2, a3, b3

member x.WriteValues() =
/I One read on mutableValue, which may be duplicated according
/I to ECMACLI spec .
let (a2, b2) = mutableValue

/I One write on mutableValue.
mutableValue< - (a2 + 1, b2 + 1)

/I One read on volatileMutableValue, which may not be duplicated
let (a3, b3) = volatileMutableValue

/I One write on volatileMutableValue.
volatileMutableValue < - (@3 +1, b3 +1)

let obj = ClassContainingMutableData()

Async.Parallel [ async { return obj.WriteValues() } ;
async { return obj.WriteValues() };
async { return obj.ReadValues() };
async { return obj.ReadValues() } ]

6.9.3 Zero Values

Some types have a zero value. The zerovaluei s t hefidef aul t 0 val ue f cenvirontheat. t ype i n
The following types have the following zero values:

1  For reference types, the null value.

1 For value types, the value with all fields set to the zero value for the type of the field. The zero value is also
computed by the F# library function Unchecked.defaultof<  ty >.

6.9.4 Taking the Address of an Elaborated Expression

When the F# compiler determines the elaborated forms of certain expressions, it mustcomputea fir ef erenced t
an elaborated expression expr , written AddressOf(expr , mutation). The AddressOf operation is used internally

within this specification to indicate the elaborated forms of address-of expressions, assignment expressions, and

method and property calls on objects of variable and value types.

The AddressOf operation is computed as follows:

1 Ifexpr has form path where path is a reference to a value with type byref< ty >, the elaborated form is

T If expr has form expr ..field where field _is a mutable, non-readonly CLI field, the elaborated form is

1 Ifexpr has form expr a. [ expr ] where the operation is an array lookup, the elaborated form is
& AddressOf(expr a). [ exprol) -

1 Ifexpr has any other form, the elaborated form is & ,where v is a fresh mutable local value that is initialized
by adding let v = expr to the overall elaborated form for the entire assignment expression. This
initialization is known as a defensive copy of an immutable value. If expr is a struct, expr is copied each

89



time the AddressOf operation is applied, which results in a different address each time. To keep the struct in
place, the field that contains it should be marked as mutable.

The AddressOf operation is computed with respect to mutation, which indicates whether the relevant elaborated
form uses the resulting pointer to change the contents of memory. This assumption changes the errors and
warnings reported.

1 If mutation is DefinitelyMutates  , then an error is given if a defensive copy must be created.
1 If mutation is PossiblyMutates , then a warning is given if a defensive copy arises.
An F# compiler can optionally upgrade Possibl yMutates to DefinitelyMutates for calls to property setters

and methods named MoveNextand GetNextArg , which are the most common cases of struct-mutators in CLI
library design. This is done by the F# 2.0 compiler.

Note:In F#2.0,thewar ni ng fAcopy due to possible mutation of val
not reported when using the default settings of the F# compiler. This is because the majority of
value types in CLI libraries are immutable. This is warning number 52 in the F# 2.0 implementation.

CLI libraries do not include metadata to indicate whether a particular value type is immutable.
Unless a value is held in arrays or locations marked mutable, or a value type is known to be
immutable to the F# compiler, F# inserts copies to ensure that inadvertent mutation does not occur.

6.9.5 Evaluating Value References
At runtime, an elaborated value reference v is evaluated by looking up the value of v in the local environment.

6.9.6 Evaluating Function Applications
At runtime, an elaborated application of a function f e; ... e, is evaluated as follows:
1 The expressions f and e; ... e, are evaluated.

1 If f evaluates to a function value with closure environment E, arguments v ... vy, and body expr, where m
<= n, then E is extended by mapping v: ... vnto the argument values for e: ... ey, The expression expr is
then evaluated in this extended environment and any remaining arguments applied.

1 If f evaluates to a function value with more than n arguments, then a new function value is returned with an
extended closure mapping n additional formal argument names to the argument values for e; ... ey

The result of calling the obj.GetType() method on the resulting object is under-specified (see §6.9.24).

6.9.7 Evaluating Method Applications

At runtime an elaborated application of a method is evaluated as follows:

1 The elaborated form is eo. M e1, ée,) for an instance method or M e1, ée,,) for a static method.
1  The (optional) ep and e1, €e, are evaluated in order.

i If eg evaluates to null , a NullReferenceException is raised.

1

If the method is declared abstract @& that is, if it is a virtual dispatch slotd then the body of the member is
chosen according to the dispatch maps of the value of e, (§14.8).

1 The formal parameters of the method are mapped to corresponding argument values. The body of the
method member is evaluated in the resulting environment .

90



6.9.8 Evaluating Union Cases
At runtime, an elaborated use of a union case Case( e1, ée,,) for a union type ty is evaluated as follows:
1 The expressions e1, €e, are evaluated in order.

1 The result of evaluation is an object value with union case label Case and fields given by the values of
e, éen.

M Ifthe type ty uses null as a representation (§85.4.8) and Case s the single union case without arguments,
the generated value is null .

1  The runtime type of the object is either ty or an internally generated type that is compatible with ty .

6.9.9 Evaluating Field Lookups

At runtime, an elaborated lookup of a CLI or F# fields is evaluated as follows:
1 The elaborated form is expr . F for an instance field or F for a static field.
1  The(optional) expr is evaluated.

1 Ifexpr evaluates to null , a NullReferenceException is raised.

1

The value of the field is read from either the global field table or the local field table associated with the
object.

6.9.10 Evaluating Array Expressions
At runtime, an elaborated array expression [| __eiK A _en [l is evaluated as follows:

1 Each expression e; A /s evaluated in order.

1  The result of evaluation is a new array of runtime type ty [| that contains the resulting values in order.

6.9.11 Evaluating Record Expressions

1 Each expression e; A /s evaluated in order.

1 The result of evaluation is an object of type ty with the given field values

6.9.12 Evaluating Function Expressions

Y  The values in the closure are the current values of those variables in the execution environment.

1  The result of calling the obj.GetType() method on the resulting object is under-specified (see §6.9.24).

6.9.13 Evaluating Object Expressions

At runtime, elaborated object expressions

is evaluated as follows:

91



1  The expression evaluates to an object whose runtime type is compatible with all of the ty i and which has the
corresponding dispatch map (814.8). If present, the base construction expression ty o (args - expr)._is

executed as the first step in the construction of the object.
1  The object is given a closure that assigns values to all variables that are referenced in expr .

1  The values in the closure are the current values of those variables in the execution environment.

The result of calling the obj.GetType() method on the resulting object is under-specified (see §6.9.24).

6.9.14 Evaluating Definition Expressions

At runtime, each elaborated definition pat = expr is evaluated as follows:

1 The expression expr is evaluated.

1 The expression is then matched against pat to produce a value for each variable pattern (§87.2) in pat .

1 These mappings are added to the local environment.

6.9.15 Evaluating Integer For Loops

At runtime, an integer for loop for__var = expr i to_expr» do exprs done is evaluated as follows:

1  Expression expr ; is evaluated to a value v;.

T Ifviistrue , expression expr ; is evaluated, and the expression while expr i1 do expr, done is evaluated

again.
1 Ifviisfalse ,the loop terminates and the resulting value is null (the representation of the only value of

1 Expression expr is evaluated to a value v.

1 If the static type of e is a value type, and ty is a reference type, v is boxed; that is, v is converted to an
object on the heap with the same field assignments as the original value. The expression evaluates to a
reference to this object.

M Otherwise, the expression evaluates to v.
6.9.18 Evaluating Dynamic Type -Test Expressions

1. Expression expr is evaluated to a value v.

92



2. Ifvisnull ,then:

T Ifty e usesnull as arepresentation (§85.4.8), the resultis true .
I Otherwise the expression evaluates to false .

3. Ifvisnotnull and has runtime type vty which dynamically converts to ty (85.4.10), the expression
evaluates to true . However, if ty is an enumeration type, the expression evaluates to true if and only if ty
is precisely vty .

6.9.19 Evaluating Dynamic Coercion Expressions

1. Expression expr is evaluated to a value v.
2. Ifvisnull :

1 Ifty e uses null as arepresentation (85.4.8), the result is the null value.
1 Otherwise a NullReferenceException s raised.
3. Ifvisnotnull :
1 If v has dynamic type vty which dynamically converts to ty (85.4.10), the expression evaluates to the
dynamic conversion of v to ty .

o Ifvty is areference type and ty is a value type, then v is unboxed; that is, v is converted from
an object on the heap to a struct value with the same field assignments as the object. The
expression evaluates to this value.

o Otherwise, the expression evaluates to v.

1 Otherwise an InvalidC astException is raised.

Note: Some F# typesd most notably the option<_> typed use null as a representation for
efficiency reasons (85.4.8),. For these types, boxing and unboxing can lose type distinctions. For
example, contrast the following two examples:

> ( box([]:string list) :?> int list);;
System.InvalidCastException A

> (box(None:string option) :?> int option);;
val it : int option = None

In the first case, the conversion from an empty list of strings to an empty list of integers (after first
boxing) fails. In the second case, the conversion from a string option to an integer option (after first
boxing) succeeds.

6.9.20 Evaluating Sequential Execution Expressions

1 The expression expr 1 is evaluated for its side effects and the result is discarded.

1 The expression expr » is evaluated to a value v, and the result of the overall expression is va.
6.9.21 Evaluating Try -with Expressions

1 The expression expr 1 is evaluated to a value vi.

93



1 If no exception occurs, the result is the value vi.
1 If an exception occurs, the pattern rules are executed against the resulting exception value.

1 If no rule matches, the exception is reraised.

1 Ifarule pat ->expr , matches, the mapping pat =v 1 is added to the local environment, and
expr 2 is evaluated.

6.9.22 Evaluating Try -finally Expressions
1 The expression expr i is evaluated.
9 If the result of this evaluation is a value v , then expr ; is evaluated.
1) If this evaluation results in an exception, then the overall result is that exception.
2) If this evaluation does not result in an exception, then the overall result is v.
1 If the result of this evaluation is an exception, then expr ; is evaluated.
3) If this evaluation results in an exception, then the overall result is that exception.

4) If this evaluation does not result in an exception, then the original exception is re-raised.

6.9.23 Evaluating AddressOf Expressions
At runtime, an elaborated address-of expression is evaluated as follows. First, the expression has one of the
following forms:

1 &path where path is a static field.

T &expr.field )
T & expra.[expry])
9 & where v is a local mutable value.

The expression evaluates to the address of the referenced local mutable value, mutable field, or mutable static
field.

Note: The underlying CIL execution machinery that F# uses supports covariant arrays, as
evidenced by the fact that the type string[]  dynamically converts to obj[] (85.4.10). Although
this feature is rarely used in F#, its existence means that array assignments and taking the address
of array elements may fail at runtime with a System.ArrayTypeMismatchException  if the runtime
type of the target array does not match the runtime type of the element being assigned. For
example, the following code fails at runtime:

let F(x: byref<obj>) = ()

leta=  Array.zeroCreate<obj> 10

let b = Array.zeroCreate<string> 10

F(&a.[0])

let bb = ((b :> obj) :?> obj[])

/I The next line raises a System.ArrayTypeMismatchException exception
F(&bb.[1])

6.9.24 Values with Underspecified Object Identity and Type Identity

The CLI and F# support operations that detect object identityd that is, whether two object references refer to the
same fAphysical 0 o%yjteenObject.REferenceEguasiopl e, obj.) returns true if the two
object references refer to the same object. Similarly,
System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode() returns a hash code that is partly

94



based on physical object identity, and the AddHandler and RemoveHandler operations (which register and
unregister event handlers) are based on the object identity of delegate values.

The results of these operations are underspecified when used with values of the following F# types:
Function types

Tuple types

Immutable record types

Union types

=A =_ = =4 =4

Boxed immutable value types

For two values of such types, the results of System.Object.ReferenceEquals  and
System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode are underspecified; however, the
operations terminate and do not raise exceptions. An implementation of F# is not required to define the results of
these operations for values of these types.

For function values and objects that are returned by object expressions, the results of the following operations
are underspecified in the same way:

1 Object.GetHashCode()
1 Object.GetType()

For union types the results of the following operations are underspecified in the same way:

1 Object.GetType()

95






7. Patterns

Patterns are used to perform simultaneous case analysis and decomposition on values together with the match,
try...with , function , fun, and let expression and declaration constructs. Rules are attempted in order from

top to bottom and left to right. The syntactic forms of patterns are shown in the subsequent table.

rule =
pat pattern -guardoyx -> expr -- pattern, optional guard and action
pattern -guard :=when expr
pat :=
const -- constant pattern
long -ident pat - paramop: patopr -- nNamed pattern
_ -- wildcard pattern
pat as ident -- "as" pattern
pat ‘|'" pat -- disjunctive pattern
pat '& pat -- conjunctive  pattern
pat : pat -- "cons" pattern
pat type -- pattern with type constraint
pat,..., pat -- tuple pattern
(pat) -- parenthesized pattern
list -pat -- list pattern
array - pat -- array pattern
record - pat -- record pattern
:? atomic -t ype -- dynamic type test pattern
:? atomic -type as ident -- dynamic type test pat tern
null -- null -test pattern
attributes pat -- pattern with attributes
list -pat :=
[]
[ pat ;..; pat ]
array -pat =
[
[l pat ;..; pat |]
record -pat =
{ field -pat ;..; field -pat }
atomic - pat :=
pat one of
const long-ident list -pat record -pat array -pat (pat)
:? atomic - type
null
field -pat := long -ident = pat
pat - param :=
| const
| long -ident
|[ pat-param ;...; pat - param ]
| (  pat-param, ..., pat - param )
| long -ident pat-param
| pat-param : type
| <@ expr @>
| <@@expr @@>
| null
pats = pat ,.., pat
field -pats := field -pat ;...; field - pat




rules =" opt rule "L rule

Patterns are elaborated to expressions through a process called pattern match compilation. This reduces pattern
matching to decision trees which operate on an input value, called the pattern input. The decision tree is made up
of the following constructs:

Conditionals on integers and other constants
Switches on union cases

Conditionals on runtime types

Null tests

Value definitions

= =4 =2 =4 -4 =

An array of pattern-match targets referred to by index

7.1 Simple Constant Patterns

The pattern const is a constant pattern which matches values equal to the given constant. For example:

let rotate3 x =
match x with

10 -> "two"
|1 -> "zero"
|2 -> "one"

| _ ->failwith "rotate3"

In this example, the constant patterns are 0, 1, and 2. Any constant listed in 86.3.1 may be used as a constant
pattern except for integer literals that have the suffixes Q R Z, | , N, G

Simple constant patterns have the corresponding simple type. Such patterns elaborate to a call to the F#
structural equality function Microsoft.FSharp.Core.Operators.(=) with the pattern input and the constant as
arguments. The match succeeds if this call returns true ; otherwise, the match fails.

Note: The use of Microsoft.FSharp.Core.Operators.(=) means that CLI floating-point equality
is used to match floating-point values, and CLI ordinal string equality is used to match strings.

7.2 Named Patterns

Patterns in the following forms are named patterns:

Long- ident
Long-ident pat
Long-ident pat - params pat

If long - ident is a single identifier that does not begin with an uppercase character, it is interpreted as a variable
pattern. During checking, the variable is assigned the same value and type as the pattern input.

If long - ident is more than one-character long or begins with an uppercase character (that is, if
System.Char.lsUpper Invariant is true and System.Char.lsLower Invariant is false on the first
character), it is resolved by using Name Resolution in Patterns (§14.1.6). This algorithm produces one of the
following:

1 A union case

1  An exception label

98



1 An active pattern case name

T Aliteral value

Otherwise, long - ident must be a single uppercase identifier ident . In this case, pat is a variable pattern. An
F# implementation may optionally generate a warning if the identifier is uppercase. Such a warning is
recommended if the length of the identifier is greater than two.

After name resolution, the subsequent treatment of the named pattern is described in the following sections.

7.2.1 Union CasePatterns

If | ong-ident from 8§7.2 resolves to a union case, the pattern is a union case pattern. If long -ident resolves to
a union case Case, then long - ident and long -ident pat are patterns that match pattern inputs that have
union case label Case. The long -ident form is used if the corresponding case takes no arguments, and the
long -ident pat form is used if it takes arguments.

At runtime, if the pattern input is an object that has the corresponding union case label, the data values carried by
the union are matched against the given argument patterns.

For example:

type Data =
| Kind1 of int * int
| Kind2 of string * string

let data = Kind1(3, 2)

let result =
match data with
| Kindl (a,b) ->a+b
| Kind2 (sl1,s2) ->sl.Length +s2.Length

In this case, result is given the value 5.

7.2.2 Literal P atterns

If | ong-ident from 8§7.2 resolves to a literal value, the pattern is a literal pattern. The pattern is equivalent to the
corresponding constant pattern.

In the following example, the Literal  attribute (810.2.2) is first used to define two literals, and these literals are
used as identifiers in the match expression:

[<Literal>]
let Casel =1

[<Literal >]
let Case2 = 100

let result =
match 1 00 with
| Casel ->"Casel"
| Case2 ->"Case 2"
| _ ->"Some other case"

Inthiscase,result i s given the value "Case20.

99



7.2.3 Active Patterns

If long -ident from 87.2 resolves to an active pattern case name CaseNamgethen the pattern is an active pattern.
The rules for name resolution in patterns (§14.1.6) ensure that CaseNamgeis associated with an active pattern
function f in one of the following forms:

T (] CaseNamp inp
Single case. The function accepts one argument (the value being matched) and can return any type.

T (] CaseNamg_|) inp

Partial. The function accepts one argument (the value being matched) and must return a value of type
Microsoft.FSharp.Core. option<_>

T (] CaseNamg ...| CaseNamg) inp
Multi-case. The function accepts one argument (the value being matched), and must return a value of type
Microsoft.FSharp.Core. Choice<_,..., >  based on the number of case names. In F# 2.0, the limitation
nO 7pliesp

T (| CaseNamp argi .. argn inp

Single case with parameters. The function accepts n+1 arguments, where the last argument (inp ) is the
value to match, and can return any type.
T (| CaseNamg_|) arg: ... argn inp

Partial with parameters. The function accepts n+1 arguments, where the last argument (inp ) is the value to
match, and must return a value of type Microsoft.FSharp.Core.  option<_> .

Other active pattern functions are not permitted. In particular, multi-case, partial functions such as the following
are not permitted:

(|CaseName1l] ... |CaseNamen|_])

When an active pattern function takes arguments, the pat - params are interpreted as expressions that are
passed as arguments to the active pattern function. The pat - params are converted to the syntactically identical
corresponding expression forms and are passed as arguments to the active pattern function f .

At runtime, the function f is applied to the pattern input, along with any parameters. The pattern matches if the
active pattern function returns v, Choice kOfN v, or Somev, respectively, when applied to the pattern input. If the
pattern argument pat is present, it is then matched against v.

The following example shows how to define and use a partial active pattern function:

let (|Positive|_]) inp = if inp > 0 then Some(inp) else None

let (|Negative|_]) inp = if inp < 0 then Some( - inp) else None
match 3 with

| Positive n - > printfn "positive, n = %d" n

| Negative n - > printfn "negative, n = %d" n

| - > printfn "zero"
The following example shows how to define and use a multi-case active pattern function:

let (JAIB|C]) inp = if inp < 0 then A elif inp = 0 then B else C

match 3 with
| A ->"negative"
| B ->"zero"

| C ->"positive"

The following example shows how to define and use a parameterized active pattern function:

100



let ([MultipleOf|_|) n inp = if inp%n = 0 then Some (inp / n) else None

match 16 with
| MultipleOf 4 n - > printfn "x = 4*%d" n
| _ -> printfn "not a multiple of 4"

An active pattern function is executed only if a left-to-right, top-to-bottom reading of the entire pattern indicates
that execution is required. For example, consider the following active patterns:

let (JALLI) x =
if x = 2 then failwith "x is two"
elif x = 1 then Some()
else None

let (IB|_|) x =

if x=3 then failwith "x is three" else None

let (|C]|) x = failwith "got to C"

letfx=
match x with
|0 ->0
|A ->1
|IB ->2
|C ->3

|_ ->4
These patterns evaluate as follows:

fo/l0

fl1 /11

f 2 // failwit h "x is two"
f 3 // failwith "x is three"

f 4 // failwith "got to C"

An active pattern function may be executed multiple times against the same pattern input during resolution of a
single overall pattern match. The precise number of times that the active pattern function is executed against a
particular pattern input is implementation-dependent.

7.3 QA\soPatterns
A n fpattera is of the following form:

pat as ident

T h e patesnddefines ident to be equal to the pattern input and matches the pattern input against pat . For
example:

let t1 = (1, 2)
let (X, y)ast2=t1
printfn "%d - %d %A" xyt2 // 1 -2-(1, 2)

This example binds the identifiers x, y, and t1 to the values 1, 2, and (1,2) , respectively.

101



7.4 Wildcard Patterns

The pattern _is a wildcard pattern and matches any input. For example:

let categorize x =
match x with
| 1->0
|0 ->1
|_ ->0

In the example, if x is 0, the match returns 1. If x has any other value, the match returns 0.

7.5 Disjunctive Patterns
A disjunctive pattern matches an input value against one or the other of two patterns:
pat | pat

At runtime, the patterm input is matched against the first pattern. If that fails, the pattern input is matched against
the second pattern. Both patterns must bind the same set of variables with the same types. For example:

type Date = Date of int * int * int
let isYearLimit date =
match date with

| (Date (year, 1, 1)|Date (year, 12, 31)) -> Some year
| ->None

let result = isYearLimit (Date (2010,12,31))

In this example, result is given the value true , because the pattern input matches the second pattern.

7.6 Conjunctive Patterns

A conjunctive pattern matches the pattern input against two patterns.
pat: & pat:

For example:

let (IMultipleOf|_|) n inp = if inp%n = 0 then Some (inp / n) else None
let result =
match 56 with

| MultipleOf 4 m & MultipleOf 7 n ->m+n
| -> false

In this example, result is given the value 22 (= 16 + 8), because the pattern input match matches both patterns.

7.7 List Patterns

The pattern pat :: pat is a union case pattern that matches the fconsounion case of F# list values.
Thepattern[] i s a union case pattern that matches the Anil o unior
The pattern [ patq ;... pat | is shorthand for a series of :: and empty list patterns pat, :: A kpgat, :

.

102



For example:

let rec count x =
match x with
10 ->0
| h:a:t ->h+countt

letresult 1 =count[1;2;3]

let result2 =
match [1;2;3] with
| [a;b;c] ->a+b+c

|- >0

In this example, both result 1 and result2 are given the value 6.

7.8 Type-Annotated Patterns

A type-annotated pattern specifies the type of the value to match to a pattern.
pat : type

For example:

let rec sum XS =
match x s with
10 ->0
| (h:int)::t ->h+sumt

In this example, the initial type of h is asserted to be equal to int before the pattern h is checked. Through type
inference, this in turn implies that xs and t have static type int list , and sumhas static type
int list ->int

7.9 Dynamic Type-Test Patterns

Dynamic type-test patterns have the following two forms:

? type
:? type as ident

A dynamic type-test pattern matches any value whose runtime type is type or a subtype of type. For example:

let message (x : System. Exception) =
match x with
| :? System.OperationCanceledException - > "cancelled"
| :? System.ArgumentException ->"invalid argumen  t"

| _ ->"unknown error"

If the type-test pattern is of the form :? type as ident , then the value is coerced to the given type and ident is
bound to the result. For example:

let findLength (x : obj) =
match x with
| :? string as s -> s.Length
|_ ->0

In the example, the identifier s is bound to the value x with type string

If the pattern input has type ty i, , pattern checking uses the same conditions as both a dynamic type-test
expression e :? type and a dynamic coercion expression e :?> type where e has type ty i,. An error occurs

103



if t ype cannot be statically determined to be a subtype of the type of the pattern input. A warning occurs if the
type test will always succeed based on type and the static type of the pattern input.

A warning is issued if an expression contains a redundant dynamic type-test pattern, after any coercion is
applied. For example:

match box "3" with

|:? string ->1

| :? string ->1 /[ awarning is reported that this rule is "never matched "
| ->2

match box "3" with

| :? System.IComparable ->1
| :? string ->1 /[ awarning is reported that this rule is "never matched "
l_ ->2

At runtime, a dynamic type-test pattern succeeds if and only if the corresponding dynamic type-test expression
e :? ty would return true where e is the pattern input. The value of the pattern is bound to the results of a
dynamic coercion expression e :?> ty .

7.10 Record Patterns

The following is a record pattern:

{ long -ident 1 = patg; ... ; long -ident , = pat n}
For example:
type Data = { Header:string; Size: int; Names: str ing list }

let totalSize data =
match data with
| { Header = "TCP"; Size = size; Names= names} ->size + names.Length * 12
| {Header = "UDP"; Size = size} ->size
| _ ->failwith "unknown header"
The long - ident ; are resolved in the same way as field labels for record expressions and must together identify
a single, unique F# record type. Not all record fields for the type need to be specified in the pattern.

7.11 Arr ay Patterns

An array pattern matches an array of a partciular length:
[l pat ;..; pat ]

For example:

let checkPackets data =
match data with
| [| "HeaderA"; datal; data2 |] ->(datal, data2)
| [| "HeaderB"; data2; datal |] ->(datal, data2)
| _ ->failwith "unknown packet"

104



7.12 Null Patterns

The null pattern null  matches values that are represented by the CLI value null . For example:

let path =
match System.Environment.GetEnvironmentVariable("PATH") with
| null  -> failwith "no path set!"

|res ->res

Most F# types do not use null as a representation; consequently, the null pattern is generally used to check
values passed in by CLI method calls and properties. For a list of F# types that use null as a representation, see
§5.4.8.

7.13 Guarded Pattern Rules

Guarded pattern rules have the following form:

pat when expr
For example:

let categorize x =

match x with

| _whenx<0 -> -1
| _whenx<0 ->1
|_ ->0

The guards on a rule are executed only after the match value matches the corresponding pattern. For example,
the following evaluates to 2 with no output.

match (1, 2) with
| 3, x)when (printfn "not printed"; true) ->0
G y) ->y

105






8. Type Definitions

Type definitions define new named types. The grammar of type definitions is shown below.

type -defn =
abbrev - type - defn
record -type - defn
union - type - defn
anon- type - defn
class -type - defn
struct -type - defn
interface - type - defn
enum type - defn
delegate -type - defn
type - extension

type - name :=
attributes  opt accessopt ident typar -defns opt

abbrev - type - defn =
type - name = type

union - type -defn =
type -name '="  union - type - cases type -extension -elements opt

union - type - cases =
" opt union -type -case '|'..."|' union - type - case

union - type - case =
attributes ot UNion - type - case- data

union - type - case-data :=

ident -- null  union case
ident of type *..* type -- n-ary union case
ident : uncurried - sig -- n-ary union case

record -type -defn :=
type -name = '{" record -fields }' type -extension -elements opt

record -fields :=
record -field ;...; record -field ; opt

record -field =
attributes  opr mutable o5 accessop ident @ type

anon- type -defn :=
type - name primary -constr -args opt Object -val o5t '=' begin class -type - body end

class -type -defn :=
type - name primary -constr -args opt Object -val o5 '=' class class -type -body end

as-defn :=as ident

class -type - body =
class -inherits -decl op¢ class -function -or-value -defn sy type - defn - elements op

class -inherits -decl :=inherit type expr opt
class -function -or-value -defn :=

attributes  opt static opt letrec ope function -or-value -defns
attributes  opt static opt do expr




struct -type -defn :=

type - name primary - constr -args opt as- defn ope =" struct struct -type - body end

struct -type -body := type - defn - elements

interface - type -defn =
type - name '=' interface interface - type - body end

interface - type -body := type - defn - elements
exception -defn :=

attributes  opt exception  union - type - case- data
attributes ot exception ident = long -ident

exception definition
exception abbreviation

enum type - defn :=
type -name ' =' enum type - cases

enum type - cases =
' opt enumtype -case |'...°[ enum type - case

enum type - case =
ident '=' const -- enum constant definition

delegate -type -defn :=
type -name ' =' delegate - sig

delegate -sig =
delegate of  uncurried - sig --  CLI delegate definiti on

type - extension =
type - name type - extension - elements

type - extension -elements := with type -defn-elements end

type - defn - element =
member defn
interface - impl
interface - spec

type - defn - elements : = type - defn - element ... type - defn - element

primary -constr -args :=
attributes  opt accessop (simple -pat, ..., simple - pat)

simple - pat :=
| ident
| simple - pat: type

additional -constr -defn :=
attributes  opt accessopt New pat as-defn = additional - constr -expr

additional - constr -expr :=
stmt ';' additional -constr -expr -- sequence construction (after)
additional - constr -expr then expr -- sequence construction (before)
if expr then additional -constr -expr else additional -constr -expr
let function -or-value -defn in additional -constr -expr

additional - constr -init -expr

additional - constr -init -expr :=

{" class -inherits -decl field -initializer s 'Y -- explicit construction

new type expr -- delegated construction
member defn :=

attributes  op static ot Mmember access ot Method- or - prop-defn - concrete member

108




attributes  opr override accessqy method- or - prop - defn
attributes ot default  accesso, method- or - prop - defn

additional - constr -defn -- additional constructor

method- or - prop - defn =

get/set methods

uncurried -sig :=
args - spec -> type

args - spec =
arg-spec* ... *arg - spec

arg - spec =
attributes ot arg-name specqpt type

arg - name spec =
?opt ident

interface - spec =
interface  type

attributes ot static opt val mutable oy accessqp ident : type

attributes ot abstract membegy accessox membersig -- abstract member

override member
override member
value member

ident. opt function -defn -- method definition
ident. opt value -defn -- property definition
ident. op ident with function -or-value -defns -- property definition via

membersig =
ident typar -defns opr : curried -sig -- method or property signature
ident typar -defns o : curried -sig with get -- property signature
ident typar -defns o : curried -sig with set -- property signature
ident typar -defns o : curried -sig with get,set -- property signature
ident typar -defns o : curried -sig with set,get -- property signature
curried -sig =
args -spec -> ... -> args-spec -> type

For example:

type int = System.Int32
type Color = Red | Green | Blue
type Map<'T> = { entries: 'T[] }

Type definitions can be declared in:
 Module definitions

1 Namespace declaration groups
F# supports the following kinds of type definitions:
Type abbreviations (88.3)
Record type definitions (§8.4)
Union type definitions (§8.5)
Class type definitions (§8.6)
Interface type definitions (88.7)
Struct type definitions (88.8)
Enum type definitions (§8.9)
Delegate type definitions (§8.10)

= =4 =4 4 4 -4 a4 - -

Exception type definitions (88.11)

109




1 Type extension definitions (§8.12)
1  Measure type definitions (89.4)

With the exception of type abbreviations and type extension definitions, type definitions define fresh, named
types that are distinct from other types.

A type definition group defines several type definitions or extensions simultaneously:
type ... and ...
For example:

type RowVector(entries: seq<int>) =
let entries = Seq.toArray entries
member x.Length = entries.Length
member x.Permute = ColumnVector(entries)

and ColumnVector(entries: seg<int>) =
let entries = Seq.toArray entries
member x.Length = entries.Length
member x.Permute = RowVector(entries)

A type definition group can include any type definitions except for exception type definitions and module
definitions.

Most forms of type definitions may contain both static elements and instance elements. Static elements are
accessed by using the type definition. Within a static ~ definition, only the static  elements are in scope. Most
forms of type definitions may contain members (§8.13).

Custom attributes may be placed immediately before a type definition group, in which case they apply to the first
type definition, or immediately before the name of the type definition:

[<Obsolete>] type X1() = class end

type [<Obsolete>] X2() = class end
and [<Obsolete>] Y2() = class end

8.1 Type Definition Group Checking and Elaboration

F# checks type definition groups by determining the basic shape of the definitions and then filling in the details. In
overview, a type definition group is checked as follows:

1. For each type definition:
1 Determine the generic arguments, accessibility and kind of the type definition
1 Determine whether the type definition supports equality and/or comparison
1 Elaborate the explicit constraints for the generic parameters.

2. For each type definition:

Establish type abbreviations
Determine the base types and implemented interfaces of each new type definition

1
1
1 Detect any cyclic abbreviations
1

Verify the consistency of types in fields, union cases, and base types.

3. For each type definition:

1 Determine the union cases, fields, and abstract members (§8.14) of each new type definition

110



1  Check the union cases, fields, and abstract members themselves, as described in the corresponding
sections of this chapter.

4. For each member, add items that represent the members to the environment as a recursive group.

5. Check the members, function, and value definitions in order and apply incremental generalization.

In the context in which type definitions are checked, the type definition itself is in scope, as are all members and
other accessible functionality of the type. This context enables recursive references to the accessible static
content of a type. It also enables recursive references to the accessible properties of any object that has the
same type as the type definition or a related type.

In more detail, given an initial environment env, a type definition group is checked as described in the following
paragraphs.

First, check the individual type definitions. For each type definition:
1. Determine the number, names, and sorts of generic arguments of the type definition.

1  For each generic argument, if a Measure attribute is present, mark the generic argument as a measure
parameter. The generic arguments are initially inference parameters, and additional constraints may be
inferred for these parameters.

1  For each type definition T, the subsequent steps use an environment env+ that is produced by adding
the type definitions themselves and the generic arguments for T to env.

2. Determine the accessibility of the type definition.

3. Determine and check the basic kind of the type definition, using Type Kind Inference if necessary (§88.2).
4. Mark the type definition as a measure type definition if a Measure attribute is present.

5. If the type definition is generic, infer whether the type definition supports equality and/or comparison.

6. Elaborate and add the explicit constraints for the generic parameters of the type definition, and then
generalize the generic parameters. Inference of additional constraints is not permitted.

7. If the type definition is a type abbreviation, elaborate and establish the type being abbreviated.
8. Check and elaborate any base types and implemented interfaces.
9. If the type definition is a type abbreviation, check that the type abbreviation is not cyclic.

10. Check whether the type definition has a single, zero-argument constructor, and hence forms a type that
satisfies the default constructor constraint.

11. Recheck the following to ensure that constraints are consist:
1 The type being abbreviated, if any.
1  The explicit constraints for any generic parameters, if any.

1 The types and constraints occurring in the base types and implemented interfaces, if any.

12. Determine the union cases, fields, and abstract members, if any, of the type definition. Check and elaborate
the types that the union cases, fields, and abstract members include.

13. Make additional checks as defined elsewhere in this chapter. For example, check that the AbstractClass
attribute does not appear on a union type.

14. For each type definition that is a struct, class, or interface, check that the inheritance graph and the struct-
inclusion graph are not cyclic. This check ensures that a struct does not contain itself and that a class or
interface does not inherit from itself. This check includes the following steps:

a) Create a graph with one node for each type definition.

111



b) Close the graph under edges.
1 (T, base-type-definition)
1 (T, interface-type-definition)

1 (T, T2) where T1is a struct and T2 is a type that would store a value of type T1<é > f or s ome
instantiati o n . Her e fnZanssthaoXrisi Yrogis a¥stouct type with an instance field that
stores Y.

c) Check for cycles.
The special case of a struct S<typars > storing a static field of type S<typars > is allowed.

15. Collectively add the elaborated member items that represent the members for all new type definitions to the
environment as a recursive group (88.13), excluding interface implementation members.

16. If the type definition has a primary constructor, create a member item to represent the primary constructor.

After these steps are complete for each type definition, check the members. For each member:

1. If the member is in a generic type, create a copy of the type parameters for the generic type and add the
copy to the environment for that member.

2. If the member has explicit type parameters, elaborate these type parameters and any explicit constraints.
3. If the member is an override, default, or interface implementation member, apply dispatch-slot inference.

4. If the member has syntactic parameters, assign an initial type to the elaborated member item based on the
patterns that specify arguments for the members.

5. If the member is an instance member, assign a type to the instance variable.

Finally, check the function, value, and member definitions of each new type definition in order as a recursive
group.

8.2 Type Kind Inference

A type that is specified in one of the following ways has an anonymous type kind:
1 By using begin and end on the right-hand side of the = token.

1 Inlightweight syntax, with an implicit begin /end.

F# infers the kind of an anonymous type by applying the following rules, in order:

1. |Ifthe type has a Class attribute, Interfac e attribute, or Struct attribute, this attribute identifies the kind of
the type.

2. If the type has any concrete elements, the type is a class. Concrete elements are primary constructors,
additional object constructors, function definitions, value definitions, non-abstract members, and any
inherit  declarations that have arguments.

3. Otherwise, the type is an interface type.

For example:

/I This is implicitly an interface
type IName =
abstract Name : string

/I This is implicitly a class, because it has a constructor

112



type ConstantName(n:string) =
member x.Name =n

/I This is implicitly a class, because it has a constructor
type AbstractName(n:string) =

abstract Name : string

default x.Name ="<no - name>"

If a type is not an anonymous type, any use of the Class attribute, Interface  attribute, or Struct  attribute must
match the class /end, interface /end, and struct /end tokens, if such tokens are present. These attributes
cannot be used with other kinds of type definitions such as type abbreviations, record, union, or enum types.

8.3 Type Abbreviations

Type abbreviations define new names for other types. For example:
type PairOfint = int * int

Type abbreviations are expanded and erased during compilation and do not appear in the elaborated form of F#
declarations, nor can they be referred to or accessed at runtime.

The process of repeatedly eliminating type abbreviations in favor of their equivalent types must not result in an
infinite type derivation. For example, the following are not valid type definitions:

type X = option<X >

type Identity<'T> ="'T
and Y = ldentity<Y>

The constraints on a type abbreviation must satisfy any constraints that the abbreviated type requires.

For example, assuming the following declarations:

type I1A =

abstract AbstractMember : int ->int
type IB =

abstract AbstractMember : int ->int

type C<'T when 'T :> IB>() =
static member StaticMember(x . 'a) = x.AbstractMember(1)

the following is permitted:
type D<'T when 'T :> IB> = C<'T>
whereas the following is not permitted:

type E<'T> = C<'T> // invalid: missing constraint

Type abbreviations can define additional constraints, so the following is permitted:
type F<'T when 'T :> IA and 'T :> IB> = C<'T>

The right side of a type abbreviation must use all the declared type variables that appear on the left side. For this
purpose, the order of type variables that are used on the right-hand side of a type definition is determined by their
left-to-right occurrence in the type.

For example, the following is not a valid type abbreviation.

type Drop<'T,'U> =T * 'T // invalid: dropped type variable

113



Note: This restriction simplifies the process of guaranteeing a stable and consistent compilation to
generic CLI code.

Flexible type constraints #type may not be used on the right side of a type abbreviation, because they expand to
a type variable that has not been named in the type arguments of the type abbreviation. For example, the
following type is disallowed:

type BadType = #Exception ->int // disallowed

Type abbreviations may be declared internal  or private

Note: Private type abbreviations are still, for all purposes, considered equivalent to the abbreviated
types.

8.4 Record Type Definition s

A record type definition introduces a type in which all the inputs that are used to construct a value are accessible
as properties on values of the type. For example:

type R1 =
{x:int;
y :int}
member this.Sum = this.x + this.y
In this example, the integers x and y can be accessed as properties on values of type R1.
Record fields may be marked mutable. For example:

type R2 =
{ mutable x : int;
mutable y : int }
member this.Move(dx,dy) =
thisx < - this.x +dx
this.y < - this.y +dy

The mutable attribute on x and y makes the assignments valid.

Record types are implicitly sealed and may not be given the Sealed attribute. Record types may not be given the
AbstractClass  attribute.

Record types are implicitly marked serializable unless the AutoSerializable(false) attribute is used.

8.4.1 Members in Record Types

Record types may declare members (88.13), overrides, and interface implementations. Like all types with
overrides and interface implementations, they are subject to Dispatch Slot Checking (§14.8).

8.4.2 Name Resolution and Record Field Labels

For a record type, the record field labels field 1 ... field yare added to the FieldLabels table of the current name
resolution environmentunless the record type has the RequireQualifiedAccess  attribute.

Record field labels in the FieldLabels table play a special role in Name Resolution for Members (814.1): an
expressionds type may be Forexbrgper ed from a record | abel

type R ={dx:int; dy: int}
letfx=x.dx//xis inferred to have type R

In this example, the lookup .dx is resolved to be a field lookup.

114



8.4.3 Structural Hashing, Equality ,and Comparison for Record Types

Record types implicitly implement the following interfaces and dispatch slots unless they are explicitly
implemented as part of the definition of the record type:

interface System.Collections.IStructuralEquatable

interface System.Collections.|StructuralComparable

interface System.IComparable

overr ide GetHashCode : unit ->int
override Equals : obj - > bool

The implicit implementations of these interfaces and overrides are described in §8.15.

8.4.4 With/End in Record Type Definitions
Record type definitions can include with/end tokens, as the following shows:
type R1 =
{x:int;
y:int}
with
member this.Sum = this.x + this.y

end
The with/end tokens can be omitted if the type - defn - elements vertically align with the { in the record -
fields . The semicolon (; ) tokens can be omitted if the next record - field vertically aligns with the previous
record - field

8.5 Union Type Definition s

A union type definition is a type definition that includes one or more union cases. For example:

type Message =
| Result of string
| Request of int * string
member x.Name = match x with Result(nm) ->nm | Request(_,nm) ->nm

Union case names must begin with an uppercase letter, which is defined to mean any character for which the CLI
library function System.Char.IsUpper returns true and System.Char.IsLower returns false .

The union cases Casel... CaseNhave module scope and are added to the Exprltems and Patltems tables in the
name resolution environment. This means that their unqualified names can be used to form both expressions and
patterns, unless the record type has the RequireQualifiedAccess  attribute.

Parentheses are significant in union definitions. Thus, the following two definitions differ:

type CType = C of int * int
type CType = C of (int * int)

The lack of parentheses in the first example indicates that the union case takes two arguments. The parentheses
in the second example indicate that the union case takes one argument that is a first-class tuple value.

The following declaration defines a type abbreviation if the named type A exists in the name resolution
environment. Otherwise it defines a union type.

type OneChoice = A
To disambiguate this case and declare an explicit union type, use the following:

type OneChoice =
| A

115



Union types are implicitly marked serializable unless the AutoSerializable(false) attribute is used.

8.5.1 Members in Union Types

Union types may declare members (88.13), overrides, and interface implementations. As with all types that
declare overrides and interface implementations, they are subject to Dispatch Slot Checking (814.8).

8.5.2 Structural Hashing, Equality ,and Comparison for Union Types

Union types implicitly implement the following interfaces and dispatch slots unless they are explicitly implemented
as part of the definition of the union type:

interface System.Collections.IStructuralEquatable
interface System.Collections.|StructuralComparable
interface System.IComparable

override GetHashCode :unit ->int

override Equals : obj - > bool

The implicit implementations of these interfaces and overrides are described in §8.15.

8.5.3 With/End in Union Type Definitions

Union type definitions can include with/end tokens, as the following shows:

type R1 =
{x:int;
y.int}
with
member this.Sum = this.x + this.y
end

The with/end tokens can be omitted if the type - defn - elements vertically align with the { in the record -
fields . The semicolon (; ) tokens can be omitted if the next record - field vertically aligns with the previous
record - field

For union types, the with/end tokens can be omitted if the type - defn - elements vertically alignwith the first | in
the union - type - cases. However, with/end must be present if the | tokens align with the type token. For
example:

/Il Note: this layout is permitted
type Message =
| Result of string
| Request of int * string
member x.Name = match x with Result(nm) ->nm | Request(_,nm) ->nm

/Il Note: this layout is not permitted

type Message =

| Result of string

| Request o fint* string

member x.Name = match x with Result( nm) ->nm | Request(_,nm) ->nm

8.5.4 Compiled Form of Union Types for Use from Other CLI Languages

A compiled union type Uhas:

M  One CLI static getter property U.C for each null union case C. This property gets a singleton object that
represents each such case.

M  One CLI nested type U.C for each non-null union case C. This type has instance properties ltem1 , ltem2 ....
for each field of the union case, or a single instance property Item if there is only one field. However, a

116



compiled union type that has only one case does not have a nested type. Instead, the union type itself plays
the role of the case type.

1 One CLI static method U.NewCfor each non-null union case C. This method constructs an object for that
case.

1 One CLI instance property UIsC for each case C. This property returns true or false for the case.

1 One CLl instance property U. Tag for each case C. This property fetches or computes an integer tag
corresponding to the case.

1 If Uhas more than one case, it has one CLI nested type U.Tags. The U.Tags typecontains one integer literal
for each case, in increasing order starting from zero.

1 A compiled union type has the methods that are required to implement its auto-generated interfaces, in
addition to any user-defined properties or methods.

These methods and properties may not be used directly from F#. However, these types have user-facing
List.Empty , List.Cons , Option.None , and Option.Some properties and/or methods.

A compiled union type may not be used as a base type in another CLI language, because it has at least one
assembly-private constructor and no public constructors.

8.6 Class TypeDefinition s

A class type definition encapsulates values that are constructed by using one or more object constructors. Class
types have the form:
type type - name pat opt as-defnopt =
class
class -inherits - decl opt
class -function -or-value - defn Sept
type - defn - elements
end
The class/end tokens can be omitted, in which case Type Kind Inference (88.2) is used to determine the kind of
the type.

In F#, class types are implicitly marked serializable unless the AutoSerializable(false) attribute is present.

8.6.1 Primary Constructors in Classes

An object constructor represents a way of initializing an object. Object constructors can create values of the type
and can partially initialize an object from a subclass. A class can have an optional primary constructor and zero
or more additional object constructors.

If a type definition has a pattern immediately after the type - nameand any accessibility annotation, then it has a
primary constructor. For example, the following type has a primary constructor:

type Vector2D(dx : float, dy : float) =
let length = sqrt(dx*x + dy*dy)
member v.Length = length
member v.DX = dx
member v.DY = dy

Class definitions that have a primary constructor may contain function and value definitions, including those that
use let rec.

The pattern for a primary constructor must have zero or more patterns of the following form:

(simple - pat, ..., simple - pat)

117



Each simple - pat has this form:

simple -pat :=
| ident
| simple -pat : type
Specifically, nested patterns may not be used in the primary constructor arguments. For example, the following is
not permitted because the primary constructor arguments contain a nested tuple pattern:

type TwoVectors((px, py), (gx, qy)) =
member v.Le ngth = sqrt((gx -px)*(ax -px) + @y -py)*@y -py))

Instead, one or more value definitions should be used to accomplish the same effect:

type TwoVectors(pv, qv) =
let (px, py) = pv
let (ax, qy) = qv
member v.Length = sqrt((ax -pX)*(ax -px) +(ay -py)* @y -py))
When a primary constructor is evaluated, the inheritance and function and value definitions are evaluated in
order.

8.6.1.1 Object References in Primary Constructors
For types that have a primary constructor, the name of the object parameter can be bound and used in the non-
non-static function, value and member definitions of the type definition as follows:

type X( a:int) as x =
let mutable currentA —a
let mutable currentB = 0
dox.B< - xA+3

member self. GetResult() = currentA+ currentB
member self.A with get() = currentA and set v = currentA < -V
member self.B  with get() = currentB and set v = currentB < -V

During construction, no member on the type may be called before the last value or function definition in the type
has completed; such a call results in an InvalidOperationException . For example, the following code raises
this exception:

type C() as self =

let f = (fun (x:C) ->x.F())

lety = f self

do printfn "construct"

member this.F() = printfn "hi JY=%A "y

let r = new C() // raises InvalidOperationException
The exception is raised because an attempt may be made to access the value of the field y before initialization is

complete.

8.6.1.2 Inheritance Declarations in Primary Constructors
Aninherit  declaration specifies that the type being defined is an extension of an existing type. Such
declarations have the following form:

class -inherits -decl :=inherit type expr opt
For example:

type MyDerived(...) =
inherit MyBase( ...)

If a class definition does not contain an inherit  declaration, the class inherits fromSystem.Object by default.

The inherit  declaration for a type must have arguments if and only if the type has a primary constructor.

118



8.6.1.3 Instance Function and Value Definitions in Primary Constructors
Classes that have primary constructors may include function definitions, value definitions, and ii d statements.
The following rules apply to these definitions:

1  Each definition may be marked static  (see §8.6.2.1). If the definition is not marked static , it is called an
instance definition.

1  The functions and values defined by instance definitions are lexically scoped (and thus implicitly private) to
the object being defined.

Each value definition may optionally be marked mutable .
A group of function and value definitions may optionally be marked rec .

Function and value definitions are generalized.

=A =4 =4 =4

Value definitions that declared in classes are represented in compiled code as follows:

1 If a value definition is not mutable, and is not used in any function or member, then the value is
represented as a local value in the object constructor.

1 If a value definition is mutable, or used in any function or member, then the value is represented as an
instance field in the corresponding CLI type.

1 Function definitions are represented in compiled code as private members of the corresponding CLI type.
For example, consider this type:

type C(x:int,y:int) =
letz=x+y
letfw=x+w
member this.Z =z
member this.Add(w) = fw

The input y is used only during construction, and no field is stored for it. Likewise the function f is
represented as a member rather than a field that is a function value.

A value definition is considered a function definition if its immediate right-hand-side is an anonymous function, as
in this example:

let f = (funw -> X+ W)
Function and value definitions may have attributes as follows:
1 Value definitions represented as fields may have attributes that target fields.

1 Value definitions represented as locals may have attributes that target fields, but these attributes will not be
attached to any construct in the resulting CLI assembly.

1 Function definitions represented as methods may have attributes that target methods.

For example:

type C(x:int) =
[<System.Obsolete>]
let unused = x
member __.P=1

In this example, no field is generated for unused, and no corresponding compiled CLI attribute is generated.
8.6.1.4 Static Function and Value Definitions in Primary Constructors

Classes that have primary constructors may have function definitions, value definitons,and fAdo 0 sthabt ement s
are marked as static:

1 The values that are defined by static function and value definitions are lexically scoped (and thus implicitly
private) to the type being defined.

119



Each value definition may optionally be marked mutable .
A group of function and value definitions may optionally be marked rec .
Static function and value definitions are generalized.

Static function and value definitions are computed once per generic instantiation.

= =2 =4 =4 =4

Static function and value definitions are elaborated to a static initializer associated with each generic
instantiation of the generated class. Static initializers are executed on demand in the same way as static
initializers for implementation files §12.5.

1  The compiled representation for static value definitions is as follows:

1 Ifthe value is not used in any function or member then the value is represented as a local value in the
CLI class initializer of the type.

1 If the value is used in any function or member, then the value is represented as a static field of the CLI
class for the type.

1  The compiled representation for a static function definition is a private static member of the corresponding
CLI type.

Static function and value definitions may have attributes as follows:
1  Static function and value definitions represented as fields may have attributes that target fields.

1  Static function and value definitions represented as methods may have attributes that target methods.

For example:

type C<'T>() =
static let mutablev=2+ 2
static do v < -3

member x.P =v
static member P2 = v+v

printfn "check: %d = 3" (new C<int>()).P
printfn "check: %d = 3" (new C<int>()).P
printfn "check: %d = 3" (new C<string>()).P
printfn "check: %d = 6" (C<int>.P2)

printfn "check: %d = 6" (C<string>.P2)

In this example, the value v is represented as a static field in the CLI type for C. One instance of this field exists
for each generic instantiation of C. The output of the program is

8.6.2 Members in Classes

Class types may declare members (88.13), overrides, and interface implementations. As with all types that have
overrides and interface implementations, such class types are subject to Dispatch Slot Checking (§14.8).

8.6.3 Additional Object Constructors in Classes

Although the use of primary object constructors is generally preferable, additional object constructors may also
be specified. Additional object constructors are required in two situations:

1 To define classes that have more than one constructor.

120



1  To specify explicit val fields without the DefaultValue attribute.

For example, the following statement adds a second constructor to a class that has a primary constructor:

type PairOfintegers(x:int,y:int) =
new (x) = PairOfintegers(x,x)

The next example declares a class without a primary constructor:

type PairOfStrings =
val sl : string
val s2 : string
new (s)={sl=s;s2=s}
new (sl,s2) ={sl=sl;s2=s2}
If a primary constructor is present, additional object constructors must call another object constructor in the same
type, which may be another additional constructor or the primary constructor.

If no primary constructor is present, additional constructors must initialize any val fields of the object that do not
have the DefaultValue attribute. They must also specify a call to a base class constructor for any inherited class
type. No call to a base class constructor is required if the base class is System.Object .

The use of additional object constructors and val fields is required if a class has multiple object constructors that
must each call different base class constructors. For example:

type BaseClass =
val sl : string
new (s)={sl=s}
new () = { s = "default" }

type SubClass =
inherit BaseClass
val s2 : string
new (s1,s2) = { inherit BaseClass(sl); s2 =s2}
new (s2) = { inher it BaseClass(); s2 =s2}

To implement additional object constructors, F# uses a restricted subset of expressions that ensure that the code
generated for the constructor is valid according to the rules of object construction for CLI objects. Note that
precisely one additional - constr -init -expr occurs for each branch of a construction expression.

For classes without a primary constructor, side effects can be performed after the initialization of the fields of the
object by using the additional - constr -expr then stmt form. For example:

type PairOfintegers(x:int,y:int) =
// This additional constructor has a side effect after initialization
new(x) =
PairOfintegers(x, X)
then
printfn "Initialized with only one integer"

The name of the object parameter can be bound within additional constructors. For example:

type X =
val a : (unit - > string)
val mutable b : string
new() as x ={a = (fun () ->x.b);b="b"}

A warning is given if x occurs syntactically in or before the additional - constr -init -expr of the construction
expression. If any member is called before the completion of execution of the additional - constr -init -expr
within the additional-constr-expr then an InvalidOperation ~ Exception is thrown.

121



8.6.4 Additional Fields in Classes

Additional field declarations indicate that a value is stored in an object. They are generally used only for classes
without a primary constructor, or for mutable fields that use default initialization, and typically occur only in
generated code. For example:

type PairOfintegers =
val x :int
valy :int
new(x, y)={x=xy=y}
The following shows an additional field declaration as a static field in an explicit class type:

type TypeWithADefaultMutableBooleanField =
[<DefaultValue>]
static val mutable ready : bool

At runtime, such a field is initially assigned the zero value for its type (86.9.3). For example:

type MyClass(name:string) =
/Il Keep a global count. It is initially zero.
[<DefaultValue>]
static val mutable count : int

/I Increment the count each time an object is created
do MyClass.count< - MyClass.count + 1

static member NumCreatedObjects = MyClass.count

member x.Name = name

A val specification in a type that has a primary constructor must be marked mutable and must have the
DefaultValue attribute. For example:

type X() =
[<DefaultValue>]
val mutable x : int

The DefaultValue attribute takes a check parameter, which indicates whether to ensure that the val
specification does not create unexpected null values. The default value for check is true . If this parameter is
true , the type of the field must permit default initialization (85.4.8). For example, the following type is rejected:

type MyClass<'T>() =
[<DefaultValue>]
static val mutable uninitial ized :'T

This is because the type 'T does not admit default initialization. However, in compiler-generated and hand-
optimized code it is sometimes essential to be able to emit fields that are completely uninitialized. In this case,
DefaultValue (false) can be used. For example:

type MyNullable<'T>() =
[<DefaultValue>]
static val mutable ready : bool

[<DefaultValue(false)>]
static val mutable uninitialized : 'T

122



8.7 Interface Type Definition s

An interface type definition represents a contract that an object may implement. Such a type definition
containsonly abstract members. For example:

type IPair<'T,'U> =
interface
abstract First: 'T
abstract Second: ‘U
end

type IThinker<'Thought> =
abstract Think: (‘Thought ->unit)  ->unit
abstract StopThinking: (unit - > unit)

Note: The interface /end tokens can be omitted when lightweight syntax is used, in which case
Type Kind Inference (88.2) is used to determine the kind of the type. The presence of any non-
abstract members or constructors means a type is not an interface type.

By convention, interface type names start with |, as in IEvent. However, this convention is not
followed as strictly in F# as in other CLI languages.

Interface types may be arranged hierarchically by specifying inherit  declarations. For example:

type I1A =
abstract One: int ->int

type IB =
abstract Two: int ->int

type IC =
inherit 1A
inherit IB
abstract Three: int ->int

Each inherit  declaration must itself be an interface type. Circular references are not allowed among inherit
declarations. F# uses the named types of the inherited interface types to determine whether references are

circular.

8.8 Struct Type Definition s

A struct type definition is a type definition whose instances are stored inline inside the stack frame or object of
which they are a part. The type is represented as a CLI struct type, also called a value type. For example:

type Complex =
struct
val real: float;
val imaginary: float
member x.R = x.real
member x.| = x.imaginary
end

Note: The struct/end  tokens can be omitted when lightweight syntax is used, in which case Type
Kind Inference (88.2) is used to determine the kind of the type.

123



Becaues structs undergo type kind inference (88.2), the following is valid:

[<Struct>]

type Complex(r:float, i:float) =
member x.R =r
member x.| =i

Structs may have primary constructors:

[<Struct>]

type Complex(r : float, . float) =
member x.R =r
member x.| =i

Structs that have primary constructors must accept at least one argument.

Structs may have additional constructors. For example:

[<Struct>]

type Complex(r : float, . float) =
member x.R =r
member x.| =i
new(r : float) = new Complex(r, 0.0)

The fields in a struct may be mutable only if the struct does not have a primary constructor. For example:

[<Struct>]
type MutableComplex =
val mutable real : float;
val mutable imaginary : float
member x.R = x.real
member x.I = X.imaginary
memer x.Change(r, i) = x.real < - r; X.maginary < -
new (r, i) ={real =r; imaginary =i }

Struct types may declare members, overrides, and interface implementations. As for all types that declare
overrides and interface implementations, struct types are subject to Dispatch Slot Checking (§14.8).

Structs may not have inherit  declarations.

Structs may nothavefil e fidl o@r st anlesstteyaresstatic. For example, the following is not valid:

[<Struct>]
type BadStructl (def:int)=
do System.Console.WriteLine("Structs cannot use 'do'!")

Structsmayhaves t at i cfidid @t ©t aForexampiet tke following is valid:

[<Struct>]
type GoodStructl (def:int) =
static do System.Console.WriteLine("Structs can us e 'static do™)

A struct type must be valid according to the CLI rules for structs; in particular, recursively constructed structs are
not permitted. For example, the following type definition is not permitted, because the size of BadStruct2 would
be infinite:

[<Struct>]
type BadStruct 2 =
val data : float;
val rest : BadStruct 2
new (data, rest) = { data = data; rest = rest }

Likewise, the implied size of the following struct would be infinite:

[<Struct>]
type BadStruct 3 (data : float, re st :BadStruct 3)=

124



member s.Data = data
member s.Rest = rest

If the types of all the fields in a struct type permit default initialization, the struct type has an implicit default
constructor,which initializes all the fields to the default value. For example, the Complex type defined earlier in
this section permits default initialization.

[<Struct>]

type Complex(r : float, | : float) =
member x.R =r
member x.I =i
new(r : float) = new Complex(r, 0.0)

let zero = Complex()

Note: The existence of the implicit default constructor for structs is not recorded in CLI metadata
and is an artifact of the CLI specification and implementation itself. A CLI implementation permits
default constructors for all struct types, although F# does not permit their direct use for F# struct

types unless all field types admit default initialization. This is similar to the way that F# considers
some types to have null as an abnormal value.

Public struct types for use from other CLI languages should be designed with the existence of the
default zero-initializing constructor in mind.

8.9 Enum Type Definitions

Occasionally the need arises to represent a type that compiles as a CLI enumeration type. An enum type
definition has values that are represented by integer constants and has a CLI enumeration as its compiled form.
Enum type definitions are declared by specifying integer constants in a format that is syntactically similar to a
union type definition. For example:

type Color =
| Red=0
| Green =1
| Blue =2

let rgb = (Color.Red, Color.Green, Color.Blue)

let show(colorScheme) =
match colorScheme wi th
| (Color.Red, Color.Green, Color.Blue) - > printfn "RGB in use"
| _ -> printfn "Unknown color scheme in use"

The example defines the enum type Color, which has the values Red, Green, and Blue, mapped to the constants
0, 1, and 2 respectively. The values are accessed by their qualified names: Color.Red, Color.Green, and
Color.Blue.

Each case must be given a constant value of the same type. The constant values dictate the underlying type of
the enum, and must be one of the following types:

I shbyte, intl6 ,int32 ,int 64, byte , uintl6 , uint32 , uint64 , char

The declaration of an enumeration type in an implementation file has the following effects on the typing
environment:

M Brings a named type into scope.

1 Adds the named type to the inferred signature of the containing namespace or module.

125



Enum types coerce to System.Enumand satisfy the enum<underlying - type > constraint for their underlying
type.

Each enum type declaration is implicitly annotated with the RequiresQualifiedAccess  attribute and does not
add the tags of the enumeration to the name environment.

type Color =
|[Red =0
| Green =1
| Blue =2

let red = Red // not accepted, must use Color.Red

Unli ke unions, enumeration tybebe@aawsd uQldlamemurménd gt iid m oeng 1
to and from their underlying primitive type representation. For example, a Color value that is not in the above
enumeration can be generated by using the enumfunction from the F# library:

let unknownColor : Colo r = enum<Color>(7)

This statement adds the value named unknownColor, equal to the constant 7, to the Color enumeration.

8.10 Delegate Type Definition s

Occasionally the need arises to represent a type that compiles as a CLI delegate type. A delegate type definition
has as its values functions that are represented as CLI delegate values. A delegate type definition is declared by
using the delegate keyword with a member signature. For example:

type Handler<'T> = delegate of obj * 'T -> unit

Delegates are often used when using Platform Invoke (P/Invoke) to interface with CLI libraries, as in the following
example:

type ControlEventHandler = delegate ofint  ->bool

[<Dllimport("kernel32.dlI")>]
extern void SetConsoleCtrIHandler(ControlEventHandler callback, bool add)

8.11 Exception Definitions

An exception definition defines a new way of constructing values of type exn (a type abbreviation for
System.Exception ). Exception definitions have the form:

exception ident of typei lj A tylpen

An exception definition has the following effect:

1 The identifier ident can be used to generate values of type exn.
1 The identifier ide nt can be used to pattern match on values of type exn.

1  The definition generates a type with name ident that derives from exn.

For example:

exception Error of int * string

raise (Error (3, "well that didn't work did it"))

try

126



raise (Error (3, "well that didn't work did it"))
with
| Error(sev, msg) - > printfn "severity = %d, message = %s" sev msg

The type that corresponds to the exception definition can be used as a type in F# code. For example:

let exn = Error (3, "well that didn't work did it")
let checkException() =
if (exn :? Error) then printfn "It is of type Error"
if (exn.GetType() = typeof<Error>) then printfn "Yes, it really is of type Error"

Exception abbreviations may abbreviate existing exception constructors. For example:

exception ThatWentBadlyWrong of string * int
exception ThatWentWrongBadly = ThatWentBadlyWrong

let checkForBadDay() =
if System.DateTime.Today.DayOfWeek = System.Day OfWeek.Monday then
raise (ThatWentWrongBadly("yes indeed",123))

Exception values may also be generated by defining and using classes that extend System.Exception

8.12 Type Extensions

A type extension associates additional members with an existing type. For example, the following associates the
additional member IsLong with the existing type System.String

type System.String with
member x.IsLong = (x.Length > 1000)
Type extensions may be applied to any accessible type definition except those defined by type abbreviations. A
type can have any number of extensions.

If the type extension is in the same module or namespace declaration group as the original type definition, it is
called an intrinsic extension. Members that are defined in intrinsic extensions follow the same name resolution
and other language rules as members that are defined as part of the original type definition.

If the type extension is not intrinsic, it must be in a module, and it is called an extension member. Opening a
module that contains an extension member extends the name resolution of the dot syntax for the extended type.
That is, extension members are accessible only if the module that contains the extension is open.

Name resolution for members that are defined in type extensions behaves as follows:

1 In method application resolution (see §14.4), regular members (that is, members that are part of the original
definition of a type, plus intrinsic extensions) are preferred to extension members.

1 Extension members that are in scope and have the correct name are included in the group of members
considered for method application resolution (see §14.4).

1 Anintrinsic member is always preferred to an extension member. If an extension member has the same
name and type signature as a member in the original type definition or an inherited member, then it will be
inaccessible.

The following illustrates the definition of one intrinsic and one extension member for the same type:

namespace Numbers
type Complex(r : float, i @ float) =
member x.R =r
member X.| =i

127



/I intrinsic extension

type Complex with
static member Create(a, b) = new Complex (a, b)
member x.RealPart = x.R
member x.ImaginaryPart = x.1

namespace Numbers
module ComplexExtensions =

/I extension member

type Num bers.Complex with
member x.Magnitude = ...
member x.Phase = ...

Extensions may define both instance members and static members.
Extensions are checked as follows:

1 Checking applies to the member definitions in an extension together with the members and other definitions
in the group of type definitions of which the extension is a part.

1  Two intrinsic extensions may not contain conflicting members because intrinsic extensions are considered
part of the definition of the type.

1 Extensions may not define fields, interfaces, abstract slots, inherit declarations, or dispatch slot (interface
and override) implementations.

 Extension members must be in modules.
1 Extension members are compiled as CLI static members with encoded names.

1 The elaborated form of an application of a static extension member C. Marg 1t Adrg,) is a call to this
static member with arguments arg 1t Adrg ..

1 The elaborated form of an application of an instance extension member obj . Marg 1t Adrg,) is an
invocation of the static instance member where the object parameter is supplied as the first argument to
the extension member followed by arguments arg1 A arg .

8.12.1 Imported CLIC# Extensions Members

TheCLIC#l anguage defines aj whcorhmonysoccorsin @helibrériesy along with some
other CLI languages. C# limits extension members to instance methods.

C#-defined extension members are made available to F# code in environments where the C#-authored assembly
is referenced and an open declaration of the corresponding namespace is in effect. However, some notable
limitations apply:

T C# extension membser  awharsedledfipe aresot availabée toiFacode in F# 2.0.

1T C# extension members whose fAthisodo paramet eF#20s an array

The encoding of compiled names for F# extension members is not compatible with C# encodings of C# extension
members. However, for instance extension methods, the naming can be made compatible. For example:

[<System.Runtime.Com pilerServices.Extension >]
module EnumerableExtensions =
[<CompiledName("OutputAll")>]
[<System.Runtime.Com pilerServices.Extensio n>]
type System.Collections.Generic.IEnumerable<'T> with
member x.OutputAll (this:seqg<'T>) =
for x in this do
System.Console.WriteLine (box x)

128

1



8.13 Members

Member definitions describe functions that are associated with type definitions and/or values of particular types.
Member definitions can be used in type definitions. Members can be classified as follows:

1 Property members

f Method members

A static member is prefixed by static  and is associated with the type, rather than with any particular object.
Here are some examples of static members:

type MyClass() =
static let mutable adjustableStaticValue = "3"
static let staticArray = [| "A"; "B" |]
static let staticArray2 = [|[| "A"; "B" []; [| "A"; "B" |1 ]

static member StaticMethod(y:int) =3 +4 +y
static member StaticProperty = 3 + staticArray.Length

static member StaticProperty2
with get() = 3 + staticArray.Length

static member MutableStaticProperty
with get() = adjustableStaticValue
and set(v:string) = adjustableStaticValue < -V

static member Staticlndexer
with get(idx) = static Array.[idX]

static member Staticlndexer2
with get(idx1,idx2) = staticArray2.[idx1].[idx2]

static member MutableStaticindexer
with get (idx1) = staticArray.[idx1]
and set (idx1) (v:string) = staticArray.[idx1] < -V

An instance member is a member without static . Here are some examples of instance members:

type MyClass() =
let mutable adjustablelnstanceValue = "3"
let instanceArray = [| "A"; "B" ]
let instanceArray2 = || [| "A""B" |]; [| "A""B" 1]

member x.InstanceMethod(y:int) = 3 + y + instanceArray.Length
member x.InstanceProperty = 3 + instanceArray.Length

member x.InstanceProperty2
with get () = 3 + instanceArray.Length

member x.Instancelndexer
with get (idx) = instanceArray.[idx]

member x.Instancelndexer2
with get (idx1,idx2) = instanceArray2.[idx1].[idx2]

member x.MutablelnstanceProperty

with get () = adjustablelnstanceValue
and set (v:string) = adjustablelnstanceValue < -V

129



member x.Mutablelnstancelndexer
with get (idx1) = instanceArray.[idx1]
and set (idx1) (v:string) = instanceArray.[idx1] < -V

Members from a set of mutually recursive type definitions are checked as a single mutually recursive group. As
with collections of recursive functions, recursive calls to potentially-generic methods may result in inconsistent
type constraints:

type Test() =
static member Id x = x
member t.M1 (x: int) = Test.ld(x)
member t.M2 (x: string) = Test.Id(x) // error, x has type 'string' not 'int'

A target method that has a full type annotation is eligible for early generalization (§14.6.7).

type Test() =
static member 1d<'T> (x:'T) : 'T = X
member t.M1 (x: int) = Test.ld(x)
member t.M2 (x: string) = Test.Id(x)

8.13.1 Property Members

A property member is a method- or - prop - defn in one of the following forms:

static opr memberident . oy ident = expr

static opr memberident . o ident with get pat = expr

static opt memberident . opr ident with set patop pat= expr

static opr memberident . oot ident with get pat = expr andset patoy pat = expr
static opr memberident . oy ident withset patox pat = expr and get pat = expr

A property member in the form

static opt memberident . ot ident withget pat; = expri andset pataa pato opt = €xpr2

is equivalent to two property members of the form:

static opt memberident . o ident withget pat: = expr:
static ot memberident . o ident with set  patza patan opt = €xpr:

Furthermore, the following two members are equivalent:

static opt memberident . opt ident = expr
static opt memberident . opt ident with get () = expr

These two are also equivalent:

static opx memberident . o ident with set pat = expr:
static opt memberident . opt ident with set () pat = expr

Thus, property members may be reduced to the following two forms:
static ot memberident . oy ident with get patigx = expr
static ot memberident . oy ident with set patigx pat = expr

The ident . opx must be present if and only if the property member is an instance member. When evaluated, the
identifier ident is bound to the i t hor 5 9 eobjécOparameter that is associated with the object within the
expression expr .

A property member is an indexer property if pat i« is not the unit pattern () . Indexer properties called Iltem are
special in the sense that they are accessible via the .[| notation. An ltem property that takes one argument is
accessed by using x.[i] ; with two arguments by x.[ij| , and so on. Setter properties must return type unit .

Property members may be declared abstract . If a property has both a getter and a setter, then both must be
abstract or neither must be abstract.

130



Each property member has an implied property type. The property type is the type of the value that the getter
property returns or the setter property accepts. If a property member has both a getter and a setter, and neither is
an indexer property, the signatures of both the getter and the setter must imply the same property type.

Static and instance property members are evaluated every time the member is invoked. For example, in the
following, the body of the member is evaluated each time C.Time is evaluated:

type C () =
static member Time = System.DateTime.Now

Note: A static property member may also be written with an explicit get method:

static member ComputerName
with get() = System.Environment.GetEnvironmentVariable("COMPUTERNAME")

8.13.2 Method Members

A method member is of the form:
static ot memberident . oy ident pati ... patn, = expr

The ident .o, can be present if and only if the property member is an instance member. In this case, the
identifier ident corresponds to the i t h(or & & ¢ Vafiable associated with the object on which the member is
being invoked.

Arity analysis (814.10) applies to method members. This is because F# members must compile to CLI methods,
which accept only a single fixed collection of arguments.

8.13.3 Curried Method Members

Methods that take multiple arguments may be written in iterated (i ¢ u r )rfarne Booexample:

static member StaticMethod?2 s1 s2 =
sprintf "In StaticMethod(%s,%s)" s1 s2

The rules of arity analysis (814.10) determine the compiled form of these members.

The following limitations apply to curried method members:

1 Additional argument groups may not include optional or byref parameters.

1  When the member is called, additional argument groups may not use named arguments(§8.13.4).

M Curried members may not be overloaded.

The compiled representation of a curried method member is a .NET method in which the arguments are
concatenated into a single argument group.

Note: It is recommended that curried argument members do not appear in the public API of an F#
assembly that is designed for use from other .NET languages. Information about the currying order
is not visible to these languages.

8.13.4 Named Arguments to Method Members
Calls to methodsd but not to let-bound functions or function valuesd may use named arguments. For example:

System.Console.WriteLine(format = "Hello {0}", arg0 = "World")
System.Console.WriteLine("Hello {0}", arg0 = "World")
System.Console.WriteLine(arg0 = "World", format = "Hello {0}")

The argument names that are associated with a method declaration are derived from the names that appear in
the first pattern of a member definition, or from the names used in the signature for a method member. For
example:

131



type C() =

member x.Swap(first, second) = (second, first)
letc =C()
c.Swap(first = 1,second = 2) //resultis'(2,1)
c.Swap(second = 1first = 2) /lresultis'(1,2)'

Named arguments may be used only with the arguments that correspond to the arity of the member. That is,
because members have an arity only up to the first set of tupled arguments, named arguments may not be used
with subsequent curried arguments of the member.

The resolution of calls that use named arguments is specified in Method Application Resolution (see §14.4). The
rules in that section describe how resolution matches a named argument with either a formal parameter of the

samenameorafis et t abl e 0 yrofthe sama namea. Bopexample, the following code resolves the
named argument to a settable property:

System.Windows.Forms.Form(Text = "Hello World")

If an ambiguity exists, assigning the named argument is assigned to a formal parameter rather than to a settable
return property.

The Method Application Resolution (§14.4) rules ensure that:

1 Named arguments must appear after all other arguments, including optional arguments that are
matched by position.

After named arguments have been assigned, the remaining required arguments are called the required unnamed
arguments. The required unnamed arguments must precede the named arguments in the argument list. The n
unnamed arguments are matched to the first n formal parameters; the subsequent named arguments must
include only the remaining formal parameters. In addition, the arguments must appear in the correct sequence.

For example, the following code is invalid:

/I error: unnamed args after named
System.Console.WriteLine(arg0 = "World", "Hello {0}")

Similarly, the following code is invalid:

type Foo() =

static member M (argl, arg2, arg3) =1
/' error: argl, arg3 not a prefix of the argument list
Foo.M(1, 2, arg2 = 3)

The following code is valid:

type Foo() =
static member M (argl, arg2, arg3) =1

Foo.M (1,2, arg3 =3)

The names of arguments to members may be listed in member signatures. For example, in a signature file:

type C =
static member ThreeArgs : argl:int * arg2:int * arg3:int ->int
abstract TwoArgs : argl:int * arg2:int ->int

8.13.5 Optional Arguments to Method Members

Method membersd but not functions definitionsd may have optional arguments. Optional arguments must appear
at the end of the argument list. An optional argument is marked with a ? before its name in the method
declaration. Inside the member, the argument has type option< argType >.

132



The following example declares a method member that has two optional arguments:
let defaultArg x y = match x with None ->y|Somev ->v
type T() =
static member  OneNormalTwoOptional (argl, ?arg2, ?arg3) =
let arg2 = defaultArg arg2 3

let arg3 = defaultArg arg3 10
argl + arg2 + arg3

Optional arguments may be used in interface and abstract members. In a signature, optional arguments appear
as follows:

static member OneNormalTwoOptional : argl:int * ?arg2:int * ?arg3:int ->int
Callers may specify values for optional arguments in the following ways:
1 Byname,suchasarg2 = 1.

1 By propagating an existing optional value by name, such as ?arg2=None or ?arg2=Some(3) or ?arg2=arg? .
This can be useful when building a method that passes optional arguments on to another method.

1 By using normal, unnamed arguments that are matched by position.

For example:

T.OneNormalTwoOptional(3)
T.OneNormalTwoOptional(3, 2)

T.OneNormalTwoOptional(argl = 3)
T.OneNormalTwoOptional(argl = 3, arg2 = 1)
T.OneNormalTwoOptional(arg2 = 3, argl = 0)
T.OneNormalTwoOptional(arg2 = 3, argl = 0, arg3 = 11)

T.OneNormalTwoOptional(0, 3, 11)

T.OneNormalTwoOptional(0, 3, arg3 = 11)
T.OneNormalTwoOptional(argl = 3, ?arg2 = Some 1)
T.OneNormalTwoOptional(arg2 = 3, argl = 0, arg3 = 11)
T.OneNormalTwoOptional(?arg2 = Some 3 argl = 0, arg3 = 11)
T.OneNormalTwoOptional(0, 3, ?arg3 = Some 11)

The resolution of calls that use optional arguments is specified in Method Application Resolution (see §14.4).

Optional arguments may not be used in member constraints.

Note: Imported CLI metadata may specify arguments as optional and may additionally specify a
default value for the argument. These are treated as F# optional arguments. CLI optional
arguments can propagate an existing optional value by name; for example, ?ValueTitle = Some
5 A%

For example, here is a fragment of a call to a Microsoft Excel COM automation API that uses
named and optional arguments.

chartobject.Chart.ChartWizard(Source = range5,
Gallery = XIChartType.xI3DColumn,
PlotBy = XIRowCol.xIRows,
HaslLegend = true,
Title = "Sample Chart",
CategoryTitle = "Sample Category Type",
ValueTitle = "Sample Value Type")

133



CLI optional arguments are not passed as values of type Option<_> . If the optional argument is
present, its value is passed. If the optional argument is omitted, the default value from the CLI
metadata is supplied instead. The value System.Reflection.Missing.Value is supplied for any
CLI optional arguments of type System.Object that do not have a corresponding CLI default value,
and the default (zero-bit pattern) value is supplied for other CLI optional arguments of other types
that have no default value.

The compiled representation of members varies as additional optional arguments are added. The addition of
optional arguments to a member signature results in a compiled form that is not binary-compatible with the
previous compiled form.

Marking an argument as optional is equivalent to adding the Microsoft.FSharp.Core.OptionalArgument

attribute (816.1) to a required argument. This attribute is added implicitly for optional arguments. Adding the
[<OptionalArgument>]  attribute to a parameter of type 'a option  in a virtual method signature is equivalent
to using the (?x:'a)  syntax in a method definition. If the attribute is applied to an argument of a method, it
should also be applied to all subsequent arguments of the method. Otherwise, it has no effect and callers must
provide all of the arguments.

8.13.6 Type-directed Conversions at Member | nvocations

As described in Method Application Resolution (see §14.4), two type-directed conversions are applied at method
invocations.

The first type-directed conversion converts anonymous function expressions and other function-valued
arguments to delegate types. Given:

1 A formal parameter of delegate type D

1 Anactual argument farg of known typety 1 ->... ->1ty, -> rty
1 Precisely n arguments to the Invoke method of delegate type D
Then:

1 The parameter is interpreted as if it were written:

new D(fun argi: ... arg, -> farg arg: .. argn)

If the type of the formal parameter is a variable type, then F# uses the known inferred type of the argument
including instantiations to determine whether a formal parameter has delegate type. For example, if an explicit
type instantiation is given that instantiates a generic type parameter to a delegate type, the following conversion
can apply:

type GenericClass<'T>() =
static member M(arg: 'T) = ()

GenericClass<System.Action>.M(fun () ->()) /I allowed

The second type-directed conversion enables an F# reference cell to be passed where a byref< ty > is expected.
Given:

1 A formal out parameter of type byref< ty>
1  An actual argument that is not a byref type
Then:
1  The actual parameter is interpreted as if it had type re f< ty >.
For example:
type C() =

static member M1(arg: System.Action) = ()

134



static member M2(arg: byref<int>) = ()

CM1(fun() ->() /I allowed
let f = (fun () ->()) in C.M1(f) // not allowed

let result = ref O
C.M2(result) // allowed

Note: These type-directed conversions are primarily for interoperability with existing member-based
.NET libraries and do not apply at invocations of functions defined in modules or bound locally in
expressions.

A value of type ref <ty> may be passed to a function that accepts a byref parameter. The interior address of the
heap-allocated cell that is associated with such a parameter is passed as the pointer argument.

For example, consider the following C# code:

public class C

{

static public void IntegerOutParam(out int x) { x = 3; }
}
publi ¢ class D
{

virtual public void IntegerOutParam(out int X) { x = 3; }
}

This C# code can be called by the following F# code:

let resl =ref O
C.IntegerOutParam(res 1)
/I resl.contents now equals 3

Likewise, the abstract signature can be implemented as follows:

let x = {new D() with IntegerOutParam(res : byref <int> )=res< - 4}
let res2 = ref O

x.IntegerOutParam(res2);

/I res2.contents now equals 4

8.13.7 Overloading of Methods
Multiple methods that have the same name may appear in the same type definition or extension. For example:
type MyForm() =

inherit System.Windows.Forms.Form()

member x.ChangeText(text: string) =
x.Text< - text

member x.ChangeText(text: string, reason: string) =
x.Text< - text
System.Windows.Forms.MessageBox.Show ("changing text due to " + reason)

Methods must be distinct based on their name and fully inferred types, after erasure of type abbreviations and
unit-of-measure annotations.

Methods that take curried arguments may not be overloaded.

135



8.13.8 Naming Restrictions for Members
A member in a record type may not have the same name as a record field in that type.

A member may not have the same name and signature as another method in the type. This check ignores return
types except for members that are named op_Implicit  or op_Explicit

8.13.9 Members Represented as Events
Eventsar e t he CLI not i od thatis, aaonfifurable dbjeanthan hpldspa st of ¢allbacks, which
can be triggered, often by some external action such as a mouse click or timer tick.

In F#, events are first-class values; that is, they are objects that mediate the addition and removal of listeners
from a backing list of listeners. The F# library supports the type Microsoft.FSharp.Control.IEvent<_, > and
the module Microsoft.FSharp.Control.Event , Which contains operations to map, fold, create, and compose
events. The type is defined as follows:

type IDelegateEvent<'del when 'del :> System.Delegate > =

abstract AddHandler :'del - > unit
abstract RemoveHandler  :'del - > unit

type IEvent<'Del,'T when 'Del : delegate<'T,unit> and ' del ;> System.Delegate > =
abstract Add :event : (T ->unit) ->unit

inherit IDelegateEvent<'del>
type Handler<'T> = delegate of sender ;o obj*'T - > unit

type IEvent<'T> = |Event<Handler<'T>, 'T>

The following shows a sample use of events:

open System.Windows.Forms

type MyCanvas() =
inherit F orm()
let event = new Event <PaintEventArgs>()
member x.Redraw = event.Publish
override x.OnPaint(args) = event.Trigger(args)

let form = new MyCanvas()

form.Redraw.Add(funa rgs ->printf n"OnRedraw")
form.Activate()

Application.Run(form)

Events from CLI languages are revealed as object properties of type
Mcrosoft.FSharp.Control.IEvent< Y delegate , 1y args>. The F# compiler determines the type arguments,
which are derived from the CLI delegate type that is associated with the event.

Event declarations are not built into the F# language, and event is not a keyword. However, property members
that are marked with the CLIEvent attribute and whose type coerces to

Microsoft.FSharp.Control. IDelegateEvent <ty gelegae > are compiled to include extra CLI metadata and
methods that mark the property name as a CLI event. For example, in the following code, the ChannelChanged
property is currently compiled as a CLI event:

type ChannelChangedHandler = delegate of obj * int - > unit

type C() =
let channelChanged = new Event<ChannelChangedHandler,_>()
[<CLIEvent>]
member self.ChannelChanged = channelChanged.Publish

136



Similarly, the following shows the definition and implementation of an abstract event:

type | =
[<CLIEvent >]
abstract ChannelChanged : IEvent<ChannelChanged,int>

type Impli() =
let channelChanged = new Event<ChannelChanged,_>()
inter face | with
[<CLIEvent>]
member self.ChannelChanged = channelChanged.Publish

8.13.10 Members Represented as Static Members

Most members are represented as their corresponding CLI method or property. However, in certain situations an
instance member may be compiled as a static method. This happens when either of the following is true:

1  The type definition uses null as a representation by placing the
CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue) attribute on
the type that declares the member.

 The member is an extension member.

Compilation of an instance member as a static method can affect the view of the type when seen from other
languages or from System.Reflection. A member that might otherwise have a static representation can be
reverted to an instance member representation by placing the attribute
CompilationRepresentation(CompilationRepresentationFlags.Instance) on the member.

For example, consider the following type:

[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueValue)>]
type option<'T> =

| None

| Some of 'T

member x.IsNone = match x with None ->true | _ - > false
member x.IsSome = match x with Some _ ->true | _ ->fa Ise

[<CompilationRepresentation(CompilationRepresentationFlags.Instance)>]
member x.Item =
match x with
| Some x ->x
| None - > failwith "Option.ltem"
The IsNone and IsSome properties are represented as CLI static methods. The ltem property is represented as
an instance property.

8.14 Abstract Members and Interface Implementations

Abstract member definitions and interface declarations in a type definition represent promises that an object will
provide an implementation for a corresponding contract.

137



8.14.1 Abstract Members

An abstract member definition in a type definition represents a promise that an object will provide an
implementation for a dispatch slot. For example:

type IX =
abstract M : int ->int

The abstract member Mindicates that an object of type X will implement a displatch slot for a member that
returns an int .

A class definition may contain abstract member definitions, but the definition must be labeled with the
AbstractClass attribute:

[<AbstractClass>]

type X() =
abstract M : int ->int

An abstract member definition has the form
abstract accessqpr member sig
where a member signature has one of the following forms

ident typar -defns opt : curried  -sig

ident typar -defns opr :curried -sig with get

ident typar -defns op¢ :curried -sig with set

ident typar -defns opt :curried -sig with get, set
ident typar -defns opr :curried -sig with set, get

and the curried signature has the form
args-speci -> ... -> args-specn ->type

If n ©2, then args - spec, é args - spec, must all be patterns without attribute or optional argument
specifications.

If get or set is specified, the abstract member is a property member. If both get and set are specified, the
abstract member is equivalent to two abstract members, one with get and one with set .

8.14.2 Members that Implement Abstract Members
An implementation member has the form:

override ident .ident pat; .. pat, = expr
default ident .ident pati ... pat, = expr

Implementation members implement dispatch slots. For example:

[<AbstractClass>]
type BaseClass() =
abstract  AbstractMethod : int ->int

type SubClass(x: int) =
inherit BaseClass()
override obj .AbstractMethod n = n + x

let vl = BaseClass() /I not allowed Z BaseQass is abstract
let v2 = (SubClass(7) :> BaseClass)

v2.AbstractMethod 6 / / evaluates to 13

In this example, BaseClass() declares the abstract slot AbstractMethod and the SubClass type supplies an
implementation member obj.AbstractMethod , which takes an argument n and returns the sum of n and the

138



argument that was passed in the instantiation of SubClass. The v2 object instantiates SubClass with the value 7,
so v2.AbstractMethod 6 evaluates to 13.

The combination of an abstract slot declaration and a default implementation of that slot create the F# equivalent
of a fnwethaodtnsanke other languagesd that is, an abstract member that is guaranteed to have an
implementation. For example:

type BaseClass() =
abstract AbstractMethodWithDefaultimplementation tint ->int
default obj .AbstractMeth odWithDefaultimplementation n =n

type SubClass1(x: int) =
inherit BaseClass()
override obj .AbstractMethodWithDefaultimplementation n = n + x

type SubClass2() =
inherit BaseClass()

let vl = BaseClass() /I allowed -- BaseClass contains a default implementation
let v2 = (SubClassl1(7) :> BaseClass)
let v3 = (SubClass2() :> BaseClass)

v1. AbstractMethodWithDefaultimplementation 6 // evaluates to 6
v2. AbstractMethodWithDefaultimplementation 6 // evaluates to 13
v3. AbstractMethodWithDefaultimplementation 6 // evaluates to 6

Here, the BaseClass type contains a default implementation, so F# allows the instantiation of v1. The
instantiation of v2 is the same as in the previous example. The instantiation of v3 is similar to that of v1, because
SubClass2 inherits directly from BaseClass and does not override the default method.

Note: The keywords override and default are synonyms. However, it is recommended that
default be used only when the implementation is in the same class as the corresponding

abstract definition; override should be used in other cases. This records the intended role of the
member implementation.

Implementations may override methods from System.Object :

type BaseClass() =
override obj .ToString() = "I'm an instance of BaseClass"

type SubClass(x: int) =
inherit BaseClass()
override obj .ToString() = "I'm an instance of SubClass"

In this example, BaseClass inherits from System.Object and overrides the ToString method from that class.
The SubClass, in turn, inherits from BaseClass and overrides its version of the ToString method.

Implementations may include abstract property members:

[<AbstractClass>]
type BaseClass() =
let mutable datal = 0
let mutable data2 = 0
abstract AbstractPr operty : int
abstract AbstractSettableProperty : int with get, set

abstract AbstractPropertyWithDefaultimplementation : int
default obj  .AbstractPropertyWithDefaultimplementation = 3

abstract AbstractSettablePropertyWithDefaultimplementation : int with get, set

default  obj .AbstractSettablePropertyWithDefaultimplementation
with get() = data2

139



and setv = data2 < -V

type SubClass (x:int )=
inherit BaseClass()
let mutable datalb = 0
let mutable data2b = 0
override obj  .AbstractProperty = 3 + x
override obj .AbstractSettableProperty
with get() = datalb + x
and set v = datalb < - V- X
override obj  .AbstractPropertyWithDefaultimp lementation = 6 +X
override obj  .AbstractSettablePropertyWithDefaultimplementation
with get() = data2b + x
and set v = data2b < -V - X

The same rules apply to both property members and method members. In the preceding example, BaseClass
includes abstract properties named AbstractProperty , AbstractSettableProperty ,

AbstractPropertyWithDefaultimplementation , and

AbstractSettablePropertyWithDefaultimplementation and provides default implementations for the latter
two. SubClass provides implementations for AbstractProperty  and AbstractSettableProperty ,and
overrides the default implementations for AbstractPropertyWithDefaultimplementation and

AbstractSettablePropertyWithDefaultimplementation

Implementation members may also implement CLI events (8§8.13.9). In this case, the member should be marked
with the CLIEvent attribute. For example:

type ChannelChangedHa ndler = delegate of obj * int - > unit

[<AbstractClass>]
type BaseClass () =
[<CLIEvent>]
abstract ChannelChanged : IEvent<ChannelChangedHandler, int>

type SubClass() =
inherit BaseClass()
let mutable channel =7
let channelChanged = new Event<ChannelChangedHandler, int>()

[<CLIEvent>]
override self.ChannelChanged = channelChanged.Publish
member self.Channel
with get () = channel
and set v = channel < - v; channelChanged.Trigger(se If, channel)
BaseClass implements the CLI event |IEvent , so the abstract member ChannelChanged is marked with
[<CLIEvent>] as described earlier in §8.13.9. SubClass provides an implementation of the abstract member, so
the [<CLIEvent>] attribute must also precede the override declaration in SubClass.

8.14.3 Interface Implementations
An interface implementation specifies how objects of a given type support a particular interface. An interface in a
type definition indicates that objects of the defined type support the interface. For example:

type lIncrement =
abstract M : int ->int

type IDecreme nt=
abstract M : int ->int

140



type C() =
interface lincrement with
member x.M(n)=n + 1
interface IDecrement with
member x.M(n)=n - 1

The first two definitions in the example are implementations of the interfaces lincrement and IDecrement . In
the last definition,the type Csupports these two interfaces.

No type may implement multiple different instantiations of a generic interface, either directly or through
inheritance. For example, the following is not permitted:

/I This type definition is not permitted because it implements two instantiations
/I of the same generic interface
type ClassThatTriesTolmplemenTwolnstantiations() =
interface System.IComparable<int> with
member x.CompareTo(n : int)=0
interface System.IComparable<string> with
member x.CompareTo(n : string) =1

Each member of an interface implementation is checked as follows:

 The member must be an instance member definition.
1 Dispatch Slot Inference (814.7) is applied.

T The member is checked under the assumption that
In the following example, the value x has type C

type C() =
interface lincrement with
member x.M(n)=n + 1
interface IDecrement with
member x.M(n)=n - 1

All interface implementations are made explicit. In its first implementation, every interface must be completely
implemented, even in an abstract class. However, interface implementations may be inherited from a base class.
In particular, if a class Cimplements interface | , and a base class of Cimplements interface | , then Cis not
required to implement all the methods of | ;it can implement all, some, or none of the methods instead. For
example:

type 11 =
abstract V1 : string
abstract V2 : string

type 12 =
inherit 11
abstract V3 : string

type C1() =
interface 11 with
member this.V1 ="C1"
member this.V2 = "C2"

/I This is OK
type C2() =
inherit C1()

/I This is also OK ; C3implements 12 but not 11
type C3() =

inherit C1()

interface 12 with

141

t

he



member this.V 3 ="C3"

/I This is also OK ; C4implements one method in I1
type C4() =
inherit C1()
interface 11 with
member this.V2 ="C2b"

8.15 Equality, Hashing ,and Comparison

Functional programming in F# frequently involves the use of structural equality, structural hashing, and structural
comparison. For example, the following expression evaluates to true , because tuple types support structural
equality:

1, 1+ 1)=(1, 2)
Likewise, these two function calls return identical values:

hash (1, 1 +1)

hash (1,2)

Similarly, an ordering on constituent parts of a tuple induces an ordering on tuples themselves, so all the
following evaluate to true :

1 <1, 3

1 2)<(@2 3

1 <@ 1

1 2>1 0
The same applies to lists, options, arrays, and user-defined record, union, and struct types whose constituent
field types permit structural equality, hashing, and comparison. For example, given:

type R = R of int * int
then all of the following also evaluate to true :

R(1,1 +1)=R(,2
R(1,3)<>R (1, 2)
hash (R (1,1 + 1)) =hash (R (1, 2))

R(1,2) <R(L 3)
R(1,2) <R (2 3)
R(1,2) <R (2 1)
R(1,2)>R(1,0)

To facilitate this, by default, record, union, struct, and exception type definitions, called structural types, implicitly

include compiler-generated declarations for structural equality, hashing, and comparison. These implicit
declarations consist of the following for structural equality and hashing:

override x.GetHashCode() = ...

override x.Equals(y:obj) = ...

interface System.Collections.|StructuralEquatable with
member x.Equals(yobj: obj, comparer: System.Collections.|IEqualityComparer) = ...
member x.GetHashCode(comparer: System.lEqualityComparer) = ...

The following declarations enable structural comparison:

interface System.IComparable with
member x.CompareTo(y:obj) = ...
interface System.Collections.IStructuralComparable with
member x.CompareTo(yobj: obj, comparer: System.Collections.IComparer) = ...

142



Implicit declarations are never generated for interface, delegate, class, or enum types. Enum types implicitly
derive support for equality, hashing, and comparison through their underlying representation as integers.

8.15.1 Equality Attributes

Several attributes affect the equality behavior of types:
Microsoft.FSharp.Core.NoEquality
Microsoft.FSharp.Core.ReferenceEquality

Microsoft.FSharp.Core.StructuralEquality
Microsoft.FSharp.Core.CustomEquality

The following table lists the effects of each attribute on a type:

Attrribute Effect
NoEquality ANo equality or hashing is generated for the type.

AThe type does not satisfy the ty : equality  constraint.
ReferenceEquality ANo equality or hashing is generated for the type.

AThe defaults for System.Object  will implicitly be used.
StructuralEquality AThe type must be a structural type.

AAll structural field types ty must satisfy ty : equality
CustomEquality AThe type must have an explicit implementation of

override Equals(obj: obj)

None AFor a non-structural type, the default is ReferenceEquality

AFor a structural type:
The default is NoEquality if any structural field type F fails F : equality
The default is StructuralEquality if all structural field types F satisfy
F : equality

Equality inference also determines the constraint dependencies of a generic structural type. That is:

9 If a structural type has a generic parameter 'T and T : equality is necessary to make the type default to
StructuralEquality , then the EqualityConditionalOn constraint dependency is inferred for T .

8.15.2 Comparison Attributes
The comparison behavior of types can be affected by the following attributes:

Microsoft.FSharp.Core.NoComparison
Microsoft.FSharp.Core.StructuralComparison
Microsoft.FSharp.Core.CustomComparison

The following table lists the effects of each attribute on a type.

Attribute Effect
NoComparison ANo comparisons are generated for the type.

AThe type does not satisfy the ty : comparison  constraint.
StructuralComparison AThe type must be a structural type other than an exception type.

AAIl structural field types must ty satisfy ty : comparison
AAn exception type may not have the StructuralComparison  attribute.
CustomComparison AThe type must have an explicit implementation of one or both of the following:
interface System.IComparable
interface System.Collections.IStructuralComparable
AA structural type that has an explicit implementation of one or both of these
contracts must specify the CustomComparison attribute.
None AFor a non-structural or exception type, the default is NoComparison.
AFor any other structural type:
The default is NoComparison if any structural field type F fails F:  comparison .
The default is StructuralComparison  if all structural field types F satisfy
F : comparison

143



This check also determines the constraint dependencies of a generic structural type. That is:

9 If a structural type has a generic parameter 'T and T : comparison is necessary to make the type default
to StructuralComparison , then the ComparisonConditionalOn  constraint dependency is inferred for ‘T .
For example:

[<StructuralEquality; StructuralComparison>]
type X = X of (int ->int)

results in the following message:

The struct, record or union type 'X' has the 'StructuralEquality’ attribute
but the component type ‘(int - > int)' does not satisfy the 'equality’ constraint

For example, given

type R1 =
{myData : int }
static member Create() = { myData =0}

[<ReferenceEquality>]
type R2 =
{ mutable myState : int }
static member Fresh( ) ={myState =0}

[<StructuralEquality; NoComparison >]
type R3 =
{ someType : System.Type }
static member  Make() = { someType = typeof<int> }

then the following expressions all evaluate to true :
R1.Create() = R1.Create()

not (R2.Fresh() = R2.Fresh())
R3.Make() = R3.Make()

Combinations of equality and comparion attributes are restricted. If any of the following attributes are present,

they may be used only in the following combinations:

9 No attributes

T [<NoComparison>] on any type

T [<NoEquality ; NoComparison>| on any type

I [<CustomEquality; NoComparison>] on a structural type

T  [<ReferenceEquality>] on a non-struct structural type
 [<ReferenceEquality; NoComparison>] on a non-struct structural type
1  [<StructuralEquality; NoComparison>] on a structural type

T [<CustomEquality; CustomComparison>] on a structural type

1  [<StructuralEquality; CustomComparison>] on a structural type

1 [<StructuralEquality; StructuralComparison>] on a structural type

8.15.3 Behavior of the Generated Object.Equals Implemen tation

For a type definition T, the behavior of the generated override x.Equals(y:obj) = ... implementation is as

follows.

144



1. If the interface System.IComparab le has an explicit implementation, then just call
System.IComparable.CompareTo :

override x.Equals(y . obj) =
((x :> System.IComparable).CompareTo(y) = 0)

2. Otherwise:
1  Convert the y argument to type T. If the conversion fails, return false .

1 Return false if Tis a reference type and y is null.

M If Tis a struct or record type, invoke Microsoft.FSharp.Core.Operators.(=) on each corresponding
pair of fields of x and y in declaration order. This method stops at the first false result and returns
false .

1 If Tis a union type, invoke Microsoft.FSharp.Core. Operators.(=)  first on the index of the union
cases for the two values, then on each corresponding field pair of x and y for the data carried by the
union case. This method stops at the first false result and returns false .

1 If Tis an exception type, invoke Microsoft.FSharp.Core.Operators.(=) on the index of the tags for
the two values, then on each corresponding field pair for the data carried by the exception. This method
stops at the first false result and returns false .

8.15.4 Behavior of the Generated CompareTo | mplementations
For a type T, the behavior of the generated System.|Comparable.CompareTo implementation is as follows:

1 Convert the y argument to type T . If the conversion fails, raise the InvalidCastException
1 If Tis areference type and vy is null, return 1.

1 If Tis a struct or record type, invoke Microsoft.FSharp.Core.Operators.compare on each corresponding
pair of fields of x and y in declaration order, and return the first non-zero result.

M If Tis a union type, invoke Microsoft.FSharp.Core.Operators.compare first on the index of the union
cases for the two values, and then on each corresponding field pair of x and y for the data carried by the
union case. Return the first non-zero result.

The first few lines of this code can be written:

i nterface System.IComparable with
member x.CompareTo(y:obj) =
lety = (obj ?2>T)in
match obj with
| null ->1
l_ ->..

8.15.5 Behavior of the Generated GetHashCodelmplementations
For a type T, the generated System. Object. GetHashCodd) override implementd a combination hash of the
structural elements of a structural type.

8.15.6 Behavior of Hash, =, and Compare

The generated equality, hashing, and comparison declarations that are described in sections 8.15.3, 8.15.4, and
8.15.5 use the hash, = and compare functions from the F# library. The behavior of these library functions is
defined by the pseudocode later in this section. This code ensures:

1 Ordinal comparison for strings

145



9 Structural comparison for arrays

1  Natural ordering for native integers (which do not support System.IComparable )

146



8.15.6.1 Pseudocode for Microsoft.FSharp.Core.Operators.compare

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to (=) , compare,
and hash for all base types, and faster paths are used for comparing most arrays.

open System

/Il Pseudo code for code implementation of generic comparison.
let rec compare xy =

let xobj = box x

let yobj = box y

match xobj, yobj with

| null, null ->0

| null, _->-1

|, nul ->1

/I Use Ordinal comparison for strings
| (:? string as x),(:? string as y) ->

String.CompareOrdinal(x, y)

/I Special types not supporting IComparable

| (:? Array as arrl), (:? Array as arr2) ->

... compare the arrays by rank, lengths and elements ...
| (:? nativeint as x),(:? nativeint as y) ->

... compare the native integers x and y....
| (:? unativeint as x),(:? unativeint as y) ->

... compare the unsigned integers x and y....
/I Check for IComparable
| (:? IComparable as x),_ - > x.CompareTo(yobj)
| _,(:? IComparable a syc) -> -(sign(yc.CompareTo(xobj)))
/I Otherwise raise a runtime error

| _ ->raise (new ArgumentException(...))

8.15.6.2 Pseudo code for Microsoft.FSharp.Core.Operators.(=)

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to (=) , compare,
and hash for all base types, and faster paths are used for comparing most arrays

open System

/Il Pseudo code for core implementation of generic equality.

letrec (=) xy=
let xobj = box x
let yobj = box y
match xobj,yobj with
| null;null ->true
| null,_ -> false
| _,null -> false

/I Special types not supporting IComparable
| (:? Array as arrl), (:? Array as arr2) ->
... compare the arrays by rank, lengths and elements ...

/I Ensure NaN semantics on recursive calls
| (:? float as f1), (:? float as f2) ->
... IEEE equality on f1 and f2...
| (:? float32 as f1), (:? float32 as f2) ->

147



. . |[EEE equality on f1 and f2...

/I Otherwise use Object.Equals. This is reference equality

/I for reference types unless an override is provided (implicitly
/I or explicitly).

| _ ->xobj.Equals(yobj)

148



9. Units Of Measure

F# supports static checking of units of measure. Units of measure, or measures for short, are like types in that
they can appear as parameters to other types and values (as in float<kg> , vector<m/s> , add<m3, can contain
variables (as in float<'U> ), and are checked for consistency by the type-checker.

However, measures differ from types in several important ways:

1 Measures play no role at runtime; in fact, they are erased.
1 Measures obey special rules of equivalence, so that N mcan be interchanged with m N

1  Measures are supported by special syntax.

The syntax of constants (84.3) is extended to support numeric constants with units of measure. The syntax of
types is extended with measure type annotations.

measure- literal - atom :=

long -ident -- named measure e.g. kg

( measure- literal  -simp ) -- parenthesized measure ,suchas (N m)
measure- literal - power :=

measure- literal - atom

measure- literal -atom ” int32 -- power of measure ,suchas m”3
measure- literal  -seq :=

measure- literal - power

measure- literal - power measure - literal - seq

measure- literal  -simp :=

measure- literal - seq -- implicit product ,suchas msh-2

measure- literal  -simp * measure- literal - simp -- product ,suchas m*s"3
measure- literal  -simp / measure-literal - simp -- quotien t,suchas  m/s"2
/' measure- literal - simp -- reciprocal ,suchas /s

1 -- dimensionless

measure- literal :=
__-- anonymous measure

measure- literal - simp -- simple measure ,suchas Nm
const =

shyte < measure- literal > -- 8- bitinteger constant

intl6 < measure- literal > -- 16- bit integer constant

int32 < measure- literal > -- 32- bit integer constant

inté4 < measure- literal > --  64- bit integer constant

ieee32 < measure- literal > -- single - precision float32 con stant

ieee64 < measure- literal > -- double - precision float constant

decimal < measure- literal > -- decimal constant
measure- atom =

typar -- variable measur e,suchas 'U

long - ident -- named measure, such as kg

( measure-simp ) -- parenthesized measure ,suchas (N m)
measure- power :=

measure- atom

measure- atom " int32 -- power of measure ,suchas m"3

measure- seq =
measure- power
measure- power measure - seq




measure- simp =
measure- seq -- implicit product ,such as 'U'V"3
measure- simp * measure-simp -- product ,suchas 'U*'V
measure- simp / measure-simp -- quotient ,suchas 'U/'V
/  measure- simp - reciprocal ,suchas /U
1 -- dimensionless measure (no units)

measure :=
_ -- anonymous measure
measure- simp -- simple measure ,suchas 'U'V

Measure definitions use the special Measur e attribute on type definitions. Measure parameters use the syntax of
generic parameters with the same special Measure attribute to parameterize types and members by units of
measure. The primitive types sbyte , int16 , int32 , int64 , float , float32 , and decimal have non-
parameterized (dimensionless) and parameterized versions.

Here is a simple example:

[< Measure>] type m /l base measure: meters
[<Measure>] type s I/l base measure: seconds
[<Measure>] type sqm = m"2 // derived measure: square meters

let areaOfTriangle (baselLength:float<m>, height:float<m>) : float<sgm> =
baselLength*height/2.0

let distanceTravelled (speed:float<m/s>, time:float<s>) : float<m> = speed*time

As with ordinary types, F# can infer that functions are generic in their units. For example, consider the following
function definitions:

let sqr (x:float<_>) = x*x
let sumOfSquar es xy=sqrx+sqry
The inferred types are:
val sqgr : float<' u> ->float<" u ~2>

val sumOfSquares : float<' u> ->float<' u> ->float<' u *2>

Measures are type-like annotations such as kg or m/s or m"2 Their special syntax includes the use of * and / for
product and quotient of measures, juxtaposition as shorthand for product, and " for integer powers.

9.1 Measures

Measures are built from:

Atomic measures from long identifiers such as Sl.kg or MyUnits.feet

Product measures, which are written measure measure (juxtaposition ) or measure * measure.
Quotient measures, which are written measure / measure.

Integer powers of measures, which are written measure * int .

Dimensionless measures, which are written 1.

1
1
1
1
1
1

Variable measures, which are written 'u  or 'U. Variable measures can include anonymous measures _,
which indicates that the compiler can infer the measure from the context.

Dimensionless measures indicate i wi t h o u hut atemarely segdied, because non-parameterized types such
as float are aliases for the parameterized type with 1 as parameter, that is, float = float<1>

150



The precedence of operations involving measure is similar to that for floating-point expressions:

1 Products and quotients (* and /) have the same precedence, and associate to the left, but juxtaposition has
higher syntactic precedence than both * and /.

1 Integer powers (") have higher precedence than juxtaposition.

1 The/ symbol can also be used as a unary reciprocal operator.

9.2 Constants Annotated by Measures

A floating-point constant can be annotated with its measure by specifying a literal measure in angle brackets
following the constant.

Measure annotations on constants may not include measure variables.
Here are some examples of annotated constants:

let earthGravity = 9.81f<m/s"2>
let atmosphere = 101325.0<N m" - 2>
let zero = 0.0f<_>

Constants that are annotated with units of measure are assigned a corresponding numeric type with the measure
parameter that is specified in the annotation. In the example above, earthGravity is assigned the type
float32<m/s"2> |, atmosphere is assigned the type float<N/m”2> and zero is assigned the type float<'U>

9.3 Relations on Measures
After measers are parsed and checked, they are maintained in the following normalized form:

measure-int :=1| long-ident | measure-par | measure-int measure-int |/ measure-int
Powers of measures are expanded. For example, kg”3 is equivalent to kg kg kg .
Two measures are indistinguishable if they can be made equivalent by repeated application of the following rules:
1 Commutativity. measure-int 1 measure-int » is equivalent to measure-int , measure-int 1.

1 Associativity. It does not matter what grouping is used for juxtaposition (product) of measures, so
parentheses are not required. For example, kg m s can be split as the product of kg m and s, or as the
product of kg and m s.

1 Identity. 1 measure-int is equivalentto measure-int .
1 Inverses. measue-int / measure-int is equivalentto 1.

1  Abbreviation. long - ident is equivalent to measure if a measure abbreviation of the form [<Measure>|
type long -ident = measure is currently in scope.

Note that these are the laws of Abelian groups together with expansion of abbreviations.
For example, kg m /s”2 is the same as m kg / s"2

For presentation purposes (for example, in error messages), measures are presented in the normalized form that
appears at the beginning of this section, but with the following restrictions:

1 Powers are positive and greater than 1. This splits the measure into positive powers and negative powers,
separated by / .

151



1  Atomic measures are ordered as follows: measure parameters first, ordered alphabetically, followed by
measure identifiers, ordered alphabetically.

For example, the measure expression m”1 kg s* -1 would be normalized to kg m /s

This normalized form provides a convenient way to check the equality of measures: given two measure
expressions measure- int 1 and measure- int », reduce each to normalized form by using the rules of
commutativity, associativity, identity, inverses and abbreviation, and then compare the syntax.

9.3.1 Constraint Solving

The mechanism described in §14.5 is extended to support equational constraints between measure expressions.
Such expressions arise from equations between parameterized typesd that is, when type <tyarg 11,...,

tyarg 10> = type <tyarg »1,..., tyarg 2n> is reduced to a series of constraints tyarg 11 = tyarg »i. For the
arguments that are measures, rather than types, the rules listed in §9.3 are applied to obtain primitive equations
of the form 'U = measure-int where 'U is a measure variable and measure- int is a measure expression in
internal form. The variable 'U is then replaced by measure- int wherever else it occurs. For example, the
equation float<m”2/s"2> = float<'U"2> would be reduced to the constraint m"2/s"2 ='U”2 , which would
be further reduced to the primitive equation 'U = m/s

If constraints cannot be solved, a type error occurs. For example, the following expression
fun (x : float<m”2>, vy : float<s>) ->X +y

would eventually)result in the constraint m"2 = s , which cannot be solved, indicating a type error.

9.3.2 Generalization of Measure Variable s

Analogous to the process of generalization of type variables described in §14.6.7, a generalization procedure
produces measure variables over which a value, function, or member can be generalized.

9.4 Measure Definitions

Measure definitions define new named units of measure by using the same syntax as for type definitions, with the
addition of the Measure attribute. For example:

[<Measure>] type kg
[<Measure>] type m
[<Measure>] type s

[<Measure>] type N = kg / m s2

A primitive measure abbreviation defines a fresh, named measure that is distinct from other measures. Measure
abbreviations, like type abbreviations, define new names for existing measures. Also like type abbreviations,
repeatedly eliminating measure abbreviations in favor of their equivalent measures must not result in infinite
measure expressions. For example, the following is not a valid measure definition because it results in the infinite
squaring of X

[<Measure>] type X = X2

Measure definitions and abbreviations may not have type or measure parameters.

152



9.5 Measure Parameter Definitions

Measure parameter definitions can appear wherever ordinary type parameter definitions can (see §5.2.9). If an
explicit parameter definition is used, the parameter name is prefixed by the special Measure attribute. For
example:

val sqr<[<Measure>] 'U> : float<'U> - > float<'Un2>

type Vector<[<Measure>] 'U> =
{ X: float<'U>;
Y: float<'U>;
Z: float<'U>}

type Sphere<[<Measure>] 'U> =
{ Center:Vector<'U>;
Radius:float<'U> }

type Disc<[<Measure>] 'U> =
{ Center:Vector<'U>;
Radius:float<'U>;
Norm:Vector<1>}

type SceneObject<[<Measure>] 'U> =
| Sphere of Sphere<'U>
| Disc of Disc<'U>
Internally, the type checker distinguishes between type parameters and measure parameters by assigning one of
two sorts (Type or Measure) to each parameter. This technique is used to check the actual arguments to types
and other parameterized definitions. The type checker rejects ill-formed types such as float<int>  and
IEnumerable<m/s> .

9.6 Measure Parameter Erasure

In contrast to type parameters on generic types, measure parameters are not exposed in the metadata that the
runtime interprets; instead, measures are erased. Erasure has several consequences:

1 Casting is with respect to erased types.
1 Method application resolution (see §14.4) is with respect to erased types.

1 Reflection is with respect to erased types.

9.7 Type Definitions with Measures in the F# Core Library
The F# core library defines the following types:

type float<[<Measure>] 'U>
type float32<[<Measure>] 'U>
type decimal<[<Measure>] 'U>
type int<[<Measure>] 'U>

type shyte<[<Measure>] 'U>
type intl6<[<Measu re>]'U>
type inté4<[<Measure>] 'U>

153



Note: These definitions are called measure-annotated base types and are marked with the
MeasureAnnotatedAbbreviation  attribute in the implementation of the library. The
MeasureAnnotatedAbbreviation  attribute is not for use in user code and in future revisions of the
language may result in a warning or error.

These type definitions have the following special properties:
1 They extend System.ValueType .

1  They explicitly implement System.|Formattable , System.IComparable , System.|Convertible , and
corresponding generic interfaces, instantiated at the given typed for example,
System.IComparable< float<'u>> and System.|Equatable<float<'u>> (so that you can invoke, for
example, CompareToafter an explicit upcast).

1 As aresult of erasure, their compiled form is the corresponding primitive type.

1  For the purposes of constraint solving and other logical operations on types, a type equivalence holds
between the unparameterized primitive type and the corresponding measured type definition that is
instantiated at <1>;

sbyte = shyte<1>
intl6 = intl6<1>

int32 = int32<1>

int64 = int64<1>

float = float<1>
float32 = float32<1>
decimal = decimal<1>

1 The measured type definitions sbyte , intl6 ,int32 , int64 , float32 , float , and decimal are assumed to
have additional static members that have the measure types that are listed in the table. Note that Nis any of
these types, and F is either float32 or float

Member Measure Type

Sqrt F<'UN2> -> F<'U>

Atan2 F<U> ->F<'U> ->F<1>
op_Addition N<'U> ->N<'U> ->N<'U>
op_Subtraction

op_Modulus

op_Multiply N<'U> ->N<'V> ->N<'U 'V>
op_Division N<'U> -> N<'V> -> N<'U/'V>
Abs N<'U> -> N<'U>

op_UnaryNegation
op_UnaryPlus

Sign N<'U> ->int

This mechanism is used to support units of measure in the following math functions of the F# library:
() (=), () () (%),(~+) ,(~-),abs, sign , atan2 and sqrt .

154



10. Namespaces and Modules

F# is primarily an expression-based language. However, F# source code units are made up of declarations,
some of which can contain further declarations. Declarations are grouped using nhamespace declaration groups,
type definitions, and module definitions. These also have corresponding forms in signatures. For example, a file
may contain multiple namespace declaration groups, each of which defines types and modules, and the types
and modules may contain member, function, and value definitions, which contain expressions.

Declaration elements are processed in the context of an environment. The definition of the elements of an
environment is found in §14.1.

namespace decl - group :=
namespace long -ident module- elems -
namespace global module- elems -

elements within a namespace
elements within no namespace

module- defn =

attributes  opt module accessqp: ident = module- defn - body

module- defn - body =
begin module- elems,: end

module- elem :=

module- function
type - defns
exception -defn
module- defn
module- abbrev
import - decl

compiler -directive -decl

- or - value - defn --

function or value definitions
-- type definitions

-- exception definitions
--module definitions

-- module abbreviations

-- import declarations

-- compiler directives

module- function -or-value -defn =

attributes ot let function -defn
attributes  opr let  value - defn
attributes ot letrec op function - or-value - defns
attributes o do expr
import -decl :=open long -ident
module- abbrev :=module ident = long -ident
compiler -directive -decl :=# ident string string

module- elems := module-elem ... module-elem
access =

private

internal

public

10.1 Namespace Declaration Groups

Modules and types in an F# program are organized into namespaces, which encompass the identifiers that are
defined in the modules and types. New components may contribute entities to existing namespaces. Each such
contribution to a namespace is called a namespace declaration group.



In the following example, the MyCompany.MyLibrary namespace contains Values and x:

namespace MyCompany.MyLibrary
module Valuesl =
letx=1
A namespace declaration group is the basic declaration unit within an F# implementation file and is of the form

namespace long - ident

module- elems

The long - ident must be fully qualified. Each such group contains a series of module and type definitions that
contribute to the indicated namespace. An implementation file may contain multiple namespace declaration
groups, as in this example:

namespace MyCompany.MyOtherLibrary

type MyType() =
letx=1
memberv.P=x + 2

module MylnnerModule =
let myValue =1

namespace MyCompany.MyOtherLibrary.Collections

type MyCollection(x . int) =
member v.P = X

Namespace declaration groups may not be nested.

A namespace declaration group can contain type and module definitions, but not function or value definitions. For
example:

namespace MyCompany.MyLibrary

/I A type definition in a namespace
type MyType() =
letx=1
member v.P = x+2

/I A module definition in a namespace
module MylnnerModule =
let myValue = 1

/I The following is not allowed: value definitions are not allowed in namespaces
let addOnex=x+1

When a namespace declaration group N is checked in an environment env, the individual declarations are

checked in order and an overall namespace declaration group signature N is inferred for the module. An entry
for Nis then added to the ModulesAndNamespaces table in the environment env (see §14.1.3).

Like module declarations, namespace declaration groups are processed sequentially rather than simultaneously,
so that later namespace declaration groups are not in scope when earlier ones are processed. This prevents
invalid recursive definitions. In the following example, the declaration of x in Modulel generates an error because
the Utilities.Part2 namespace is not in scope:

156



namespace Utilities.Partl

module Modulel =
let x = Utilities.Part2.Module2.x + 1 // error (Part2 not yet declared)

namespace Utilities.Part2
module Module2 =
let x = Utilities.Part1.Modulel.x + 2

Within a namespace declaration group, the namespace itself is implicitly opened if any preceding namespace
declaration groups or referenced assemblies contribute to it. For example:

namespace MyCompany.MyLibrary

module Valuesl =
letx=1

namespace MyCompany.MyLibrary
/I Here, thei mplicit open of MyCompany.MyLibrary brings Valuesl into scope

module Values2 =
let x = Valuesl.x

10.2 Module Definitions

A module definition is a named collection of declarations such as values, types, and function values. Grouping
code in modules helps keep related code together and helps avoid name conflicts in your program. For example:

module MyModule =
letx=1
type Foo=A|B
module MyNestedModule =
letfy=y+1
type Bar=C | D
When a module definition M is checked in an environment envo, the individual declarations are checked in order
and an overall module signature M, is inferred for the module. An entry for Mis then added to the
ModulesAndNamespaces table to environment env, to form the new environment used for checking subsequent
modules.

Like namespace declaration groups, module definitions are processed sequentially rather than simultaneously,
so that later modules are not in scope when earlier ones are processed.

module Partl =
let x = Part2.StorageCache() // error (Part2 not yet declared)
module Part2 =

type StorageCache() =
member cache.Clear() = ()

No two types or modules may have identical names in the same namespace. The
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>] attribute adds the
suffix Module to the name of a module to distinguish the module name from a type of a similar name.

157



For example, this is frequently used when defining a type and a set of functions and values to manipulate values
of this type.
type Cat(kind: string) =
member x.Meow() = printfn "meow"

member x.Purr() = printfn "purr”
member x.Kind = kind

[< CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
module Cat =

let tabby = Cat "Tabby"
let purr (c:Cat) = c.Purr()
let purrTwice (c:Cat) = purr(); purr()

Cat.tabby |> Cat.purr [> Cat.purrTwice

10.2.1 Function and Value Definitio nsin Modules

Function and value definitionsin modules introduce named values and functions.
letrec opt function -or-value -defni and ... and function -or-value -defn,
The following example defines value x and functions id and fib :

module M =
letx=1
letid x = X
let rec fib x = if x <= 2 then 1 else fib (n - 1) +fib(n - 2)

Function and value definitions in modules may declare explicit type variables and type constraints:

let pair<'T>(x D 'T) = (X X)
let dispose<'T when 'T :> System.IDisposable>(x . 'T) = x.Dispose()
let convert<'T, 'U>(x) = unbox<'U>(box<'T>(x))

A value definition that has explicit type variables is called a type function (810.2.3).
Function and value definitions may specify attributes:

/I A value definition with the System.Obsolete  attribute
[<System.Obsolete("Don't use this")>]
let oneTwoPair =( 1, 2)

/I A function definition with an attribute

[<System.Obsolete("Don't use this either ")>]

let pear v = ( vV, V)
By the use of pattern matching, a value definition can define more than one value . In such cases, the attributes
apply to each value.

/I A value definition that defines two values, each with an attribute
[<System.Obsolete(" Don't use this")>]
let (a, b) = (1, 2)

Values may be declared mutable:

/I A value definition that defines a mutable value
let mutable count = 1
let freshName() = (count< - count+ 1; count)

Function and value definitions in modules are processed in the same way as function and value definitions in
expressions (814.6), with the following adjustments:

158



1 Each defined value may have an accessibility annotation (§10.5). By default, the accessibility annotation of a
function or value definition in a module is public.

1 Each defined value is externally accessible if its accessibility annotation is public and it is not hidden by an
explicit signature. Externally accessible values are guaranteed to have compiled CLI representations in
compiled CLI binaries.

1 Each defined value can be used to satisfy the requirements of any signature for the module (811.2).
1 Each defined value is subject to arity analysis (§14.10).

1 Values may have attributes, including the ThreadStatic  or ContextStatic  attribute.

10.2.2 Literal Definitions in Modules

Value definitions in modules may have the Literal  attribute. This attribute causes the value to be compiled as a
constant. For example:

[<Literal>]
let PI = 3.141592654

Literal values may be used in custom attributes and pattern matching. For example:

[<Literal>]
let StartOfWeek = System.DayOfWeek.Monday

[ <MyAttribute(StartOfWeek) >]
let feeling(day) =
match day with
| StartOfWeek - >"rough”
| _ ->"great"

A value that has the Literal  attribute is subject to the following restrictions:

1 It may not be marked mutable or inline
1 It may not also have the ThreadStatic or ContextStatic  attributes.
1  The right-hand side expression must be a literal constant expression that is made up of either:

1 A simple constant expression, with the exception of (), native integer literals, unsigned native integer
literals, byte array literals, BigInteger literals, and user-defined numeric literals.

8 ORO
9  Areference to another literal.

10.2.3 Type Function Definitions in Modules
Value definitions within modules may have explicit generic parameters. For example, p 4s a generic parameter
to the value empty:

let empty<'T> : (list<'T> * Set<'T>) = ([], Set.empty)

A value that has explicit generic parameters but has arity [| (that is, no explicit function parameters) is called a
type function. The following are some example type functions from the F# library:

val typeof<'T> . System.Type
val sizeof<'T> : int
module Set =

val empty<'T> : Set<'T>
module Map =

val empty<'Key,'Value> : Map<'Key,'Value>

159



Type functions are rarely used in F# programming, although they are convenient in certain situations. Type
functions are typically used for:

1 Pure functions that compute type-specific information based on the supplied type arguments.

1  Pure functions whose result is independent of inferred type arguments, such as empty sets and maps.

Type functions receive special treatment during generalization (814.6.7) and signature conformance (§11.2).
They typically have either the RequiresExplicitTypeArguments attribute or the GeneralizableValue
attribute. Type functions may not be defined inside types, expressions, or computation expressions.

In general, type functions should be used only for computations that do not have observable side effects.
However, type functions may still perform computations. In this example, r is a type function that calculates the
number of times it has been called

let mutable count =1

let r<'T> = (count < - count + 1); ref ([] : 'T list);;
/l count=1

let x1 = r<int>

/I count = 2

let x2 = r<int>

/I count = 3

let z0 = x1

/I count = 3

The elaborated form of a type function is that of a function definition that takes one argument of type unit . That
is, the elaborated form of

let ident typar -defns = expr
is the same as the compiled form for the following declaration:
let ident typar -defns ()= expr

References to type functions are elaborated to invocations of such a function.

10.2.4 Active Pattern Definitions in Modules

A value definition within a module that has an active - pattern - op- name introduces pattern-matching tags into
the environment when the module is accessed or opened. For example,

let JAIB |C|])x=ifx<0thenAelifx=0thenBelse C

introduces pattern tags A, B, and Cinto the Patltems table in the name resolution environment.

10250AT 6 OO ArOModules OO
Afido 0 s twithirrammmdule has the following form:
do expr

The expression expr is checked with an arbitrary initial type ty . After checking expr, ty is asserted to be equal
to unit . If the assertion fails, a warning rather than an error is reported. This warning is suppressed for plain
expressions without do in script files (that is, .fsx and .fsscript  files).

Afido o st mayleameattributes. In this example, the STAThread attribute specifies that main uses the
single-threaded apartment (STA) threading model of COM:

let main() =
let form = new System.Windows.Forms.Form()
System.Windows.Forms.Application.Run(form)

160



[<STAThread>]
do main()

10.3 Import Declarations
Namespace declaration groups and module definitions can include import declarations in the following form:
open long -ident

Import declarations make elements of other namespace declaration groups and modules accessible by the use of
unqualified names. For example:

open Microsoft.FSharp.Collections
open System

Import declarations can be used in:

1 Module definitions and their signatures.

1 Namespace declaration groups and their signatures.

An import declaration is processed by first resolving the long - ident to one or more namespace declaration
groups and/or modules [Fi, ..., Fn] by Name Resolution in Module and Namespace Paths (814.1.2). For example,
System.Collections.Generic may resolve to one or more namespace declaration groupsd one for each
assembly that contributes a namespace declaration group in the current environment. Next, each F is added to

the environment successively by using the technique specified in §14.1.3. An error occurs if any F is a module
that has the RequireQualifiedAccess  attribute.

10.4 Module Abbreviations

A module abbreviation defines a local name for a module long identifier, as follows:
module ident = long -ident
For example:
module Ops = Microsoft.FSharp.Core.Operators
Module abbreviations can be used in:
1  Module definitions and their signatures.
1 Namespace declaration groups and their signatures.
Module abbreviations are implicitly private to the module or namespace declaration group in which they appear.

A module abbreviation is processed by first resolving the long - ident to a list of modules by Name Resolution in
Module and Namespace Paths (see §14.1). The list is then appended to the set of names that are associated
with ident in the ModulesAndNamespaces table.

Module abbreviations may not be used to abbreviate namespaces.

10.5 Accessibility Annotations

Accessibilities may be specified on declaration elements in namespace declaration groups and modules, and on
members in types. The table lists the accessibilities that can appear in user code:

161



Accessibility Description

publi ¢ No restrictions on access.

private Access is permitted only from the enclosing type, module, or namespace
declaration group.

internal Access is permitted only from within the enclosing assembly, or from assemblies
whose name is listed using the InternalsVisibleTo attribute in the current
assembly.

The default accessibilities are public. Specifically:

1 Function definitions, value definitions, type definitions, and exception definitions in modules are public.
1 Modules, type definitions, and exception definitions in namespaces are public.

1  Members in type definitions are public.

Some function and value definitions may not be given an accessibility and, by their nature, have restricted lexical
scope. In particular:

1  Function and value definitions in classes are lexically available only within the class being defined, and only
from the point of their definition onward.

1 Module type abbreviations are lexically available only within the module or namespace declaration group
being defined, and only from their point of their definition onward.

Note that:

1 private on a member means fdAprivate 0o the enclosing type or

1 private on a function or value definition inamodule meansfipr i vate to the modul e or nami
declaration group.o

1 private onatype,module,or type representation in a module means

=24
©
—

The CLI compiled form of all non-public entities is internal

Note: The family and protected specifications are not supported in this version of the F#
language.

Accessibility modifiers can appear only in the locations summarized in the following table.

Component Location Example
Function or value definition = Precedes mutable and inline let private x = 1
in module let private inline fx =1

let private mutable x = 1

Module definition Precedes identifier module private M =
letx=1
Type definition Precedes identifier type private C=A | B

type private C<  'T>=A|B

val definition in a class Precedes identifier val private x : int
Explicit constructor Precedes identifier private new () = { inherit Base }
Implicit constructor Precedes identifier type C private() = ...

162



Component

Location

Example

Member definition

Explicit property get or set
in a class

Type representation

Precedes identifier, but cannot
appear on:

Ainherit  definitions
Ainterface  definitions

Aabstract  definitions
Alndividual union cases

Accessibility for inherit
interface , and abstract

definitions is always the same as

that of the enclosing class.

Precedes identifier

Precedes identifier

member private x.X =1

member v.ltem
with private geti=1
and private setiv = ()

type Cases =
private

| A

| B

163






11. Namespace and Module
Sgnatures

A signature file contains one or more namespace or module signatures, and specifies the functionality that is
implemented by its corresponding implementation file. It also can hide functionality that the corresponding
implementation file contains.

namespace decl - group - signature =
namespace long -ident module- signature - elements

module- signature
module ident = module- signature - body

module- signature -element :=
val mutable o curried - sig
val value - defn
type type -signature s
exception exception - signature
module- signature
module- abbrev
import - decl

value signature

literal value signature

type(s) signature

exception signature

submodule signature

local alias for amodule
locally import contents of a module

module- signature -elements := module-signature -element ... module-signature -element

module- signature -body =
begin module- signature -elements end

type - signature =
abbrev - type - signature
record -type - signature
union - type - signature
anon- type - signature
class -type - signature
struct - type - signature
interface - type - signature
enum type - signature
delegate -type - signature
type - extension - signature

type - signature s := type -signature ...and ... type - signature

type - signature -element :=

attributes  opt accessopt New : uncurried - sig -- constructor signature
attributes  opr member access opr member sig -- member signature
attributes ot abstract access ot member sig -- member signature
attributes ot override  member sig -- member signature
attributes oy default  member sig -- member signature
attributes o static member access  ox membersig -- static member signature
interface  type -- interface signature
abbrev - type - signature = type - name'=" type
union - type - signature = type -name'=" union -type - cases type -extension -elements -

signature opt

record -type -signature := type-name'=" {' record -fields }' type -extension -
elements - signature opt

anon- type - signature = type -name '="begin  type - elements - signature  end
































































































































































































































































































































































