The Early History of F#

DON SYME, Microsoft, United Kingdom
Shepherd: Philip Wadler, University of Edinburgh, UK

This paper describes the genesis and early history of the F# programming language. I start with the origins of
strongly-typed functional programming (FP) in the 1970s, 80s and 90s. During the same period, Microsoft
was founded and grew to dominate the software industry. In 1997, as a response to Java, Microsoft initiated
internal projects which eventually became the NET programming framework and the C# language. From 1997
the worlds of academic functional programming and industry combined at Microsoft Research, Cambridge.
The researchers engaged with the company through Project 7, the initial effort to bring multiple languages to
.NET, leading to the initiation of .NET Generics in 1998 and F# in 2002. F# was one of several responses by
advocates of strongly-typed functional programming to the “object-oriented tidal wave” of the mid-1990s. The
development of the core features of F# 1.0 happened from 2004-2007, and I describe the decision-making process
that led to the “productization” of F# by Microsoft in 2007-10 and the release of F# 2.0. The origins of F#’s
characteristic features are covered: object programming, quotations, statically resolved type parameters, active
patterns, computation expressions, async, units-of-measure and type providers. I describe key developments in
F# since 2010, including F# 3.0-4.5, and its evolution as an open source, cross-platform language with multiple
delivery channels. I conclude by examining some uses of F# and the influence F# has had on other languages
so far.

CCS Concepts: » Software and its engineering — General programming languages; - Social and pro-
fessional topics — History of programming languages.

Additional Key Words and Phrases: Programming Languages, Functional Programming, Object-oriented
Programming, Pattern Matching, Asynchronous Programming, Type Providers, Units of Measure, Dimensions,
F#

ACM Reference Format:
Don Syme. 2020. The Early History of F#. Proc. ACM Program. Lang. 4, HOPL, Article 75 (June 2020), 58 pages.
https://doi.org/10.1145/3386325

Author’s address: Don Syme, Microsoft, United Kingdom, donsyme@fastmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/6-ART75

https://doi.org/10.1145/3386325

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

https://doi.org/10.1145/3386325
https://doi.org/10.1145/3386325

75:2 Don Syme
CONTENTS
Abstract 1
Contents 2
1 Introduction 3
2 What is F# in 20207 4
3 Background: Languages, Programmability at Microsoft and the Creation of NET 4
4 Background: Strongly Typed Functional Programming through the 1990s—Calculi,
Miranda, OCaml, Haskell and Pizza 7
5 Project 7 and .NET Generics 10
6 The Decision to Create F# 13
7 Early F#—2002-2003 18
8 Early F#—Release 20
9 F# 1.0, 2004-2006—Overview 22
9.1 F# 1.0—Pipelines 23
9.2 F# 1.0—Tackling Object Programming 24
9.3 F# 1.0—Improving the Functional Core: Initialization Graphs 26
9.4 F# 1.0—Improving the Functional Core: Overloaded Arithmetic 27
9.5 F# 1.0—Improving the Functional Core: Active Patterns 28
9.6 F# 1.0—Improving the Functional Core: First-Class Events 30
9.7 F# 1.0—Improving the Functional Core: async/await 30
9.8 F# 1.0—Improving the Functional Core: Computation Expressions 32
9.9 F# 1.0—Meta-programming 35
9.10 F# 1.0—Improving the Functional Core: Indentation-Aware Syntax 36
9.11 F# 1.0—IDE Tooling 36
10 Finance and Functional: Microsoft Commits to F#, 2007 37
11 F#2.0—2007 to 2010 38
12 F# 2.0—Units of Measure 40
13 Type Providers and F# 3.0 41
14 NET, F# and the Shift to Cloud and Mobile Computing 44
15 A New Dawn for F#, C# and .NET: Open and Cross-Platform, At Last! 45
16 The F# Compiler as a Component 46
17 The F# Community and the F# Software Foundation 46
18 NET Core: Microsoft take C#, F# and .NET Cross-Platform 47
19 F# for Mobile 48
20 F#, JavaScript and Full Stack Programming 48
21 Retrospective 48
21.1 F#'s Influence 49
21.2 Mistakes and Questions 51
22 Conclusion 52
Acknowledgments 52
References 53

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:3

1 INTRODUCTION

The history of the F# programming language is an arc drawn from the 1970s to the present day.
Somewhere, back in the early 1970s, an idea was born in the mind of Robin Milner and his colleagues
Lockwood Morris and Malcolm Newey of a succinct, fully type-inferred functional programming
language suitable for manipulating structured information [Gordon 2000]. Building on the tradition
of LISP (and indeed using LISP as their implementation vehicle), this language became ML—Meta
Language—and is the root of a tradition of “strongly typed functional programming languages” that
includes Edinburgh ML, Miranda, Haskell, Standard ML, OCaml, Elm, ReasonML and PureScript.
F# is part of this family.

The history of Standard ML has been told elsewhere [MacQueen 2015]. ML-family languages
are often associated with formalism, a theme I explore later in this article. However, a primary
concern of Milner and co. from the outset was pragmatic usability. This group needed their language
for a specific purpose: to succinctly and accurately program the proof rules and transformations
(“tactics”) of a theorem proving system called LCF, at that time on PDP-10 machines. Pragmatic
choices included the use of mutable state (to allow proof state to be stored in an interactive system)
and a type inference system (later called Hindley-Milner or Damas-Milner type inference), allowing
the code for derived tactics to be both succinct and automatically generalized. A similar theme of
pragmatism ran through later ML dialects as well, including OCaml [Leroy 2014], witnessed by
both the language design and tooling such as the OCaml C Foreign Function Interface (FFI).

Rolling forward, to the present day, key ideas stemming from the 1970s are at the core of the F#
language design and central to the day-to-day experience of using the language. Like all ML-family
languages:

e The core paradigm supported by F# is still strongly typed functional programming;

e The core activity of F# is still defining types (type X) and functions (let f x = ...)and
these declarations are type-inferred and generalized automatically;

e F# still aims to support a mode of programming where the focus is on the domain being
manipulated rather than on the details of programming itself.

Today, books are published which extoll the virtues of F# for “Domain Driven Design” [Wlaschin
2018]. This is not so far removed from the early role of ML where the “domain” was the symbolic
representation of terms and theorems of the LCF logic. The “spirit” of ML is very much alive in F#,
as it was always intended to be.

The leap from 1970s to the present day spans a period of massive change in the computing
industry: we have shifted from PDP-10s to cloud systems, from punch cards to mobile phones,
from edit-line to tooling-rich IDEs, from small to massive storage, from no-network to ubiquitous
network. This article tells the story of how F# developed, the industry and academic contexts in
which this occurred, the immediate influences on the language and its distinctive contributions.
The story intersects with many other histories in programming language design, including the
complex histories of functional programming, object-oriented programming, type systems, runtime
design, operating systems and open source software, and emphasis is placed on the genesis of
F# as one of several reactions to the “object-oriented tidal wave” of the early 1990s. The story is
necessarily incomplete and told largely from the personal perspective of the author, the designer
of the language, and I apologize for that. Where references are not provided the text is offered as
source material based on the recollection of the author.!

I have started with the core idea of the ML-family of programming languages: type-safe, succinct,
accurate, domain-oriented functional programming. From my perspective, this idea has “held

! Additional historical material on F# and the ML family of languages has been collected and presented by Rachel Blasucci,
see [Blasucci 2016].

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:4 Don Syme

strong, held true” throughout this era of change. Whether that is through obstinacy, coherence or
coincidence is something I leave the reader to assess.

2 WHATIS F# IN 2020?

In 2020, F# is described on its documentation pages as “a functional programming language that
runs on .NET” The F# language guide [Carter 2020] calls out the following major features of the
language, providing useful clarity about what the language is today:

o functions and modules

e pipelines and composition

o lists, arrays, sequences

e pattern matching

active patterns

type inference

recursive functions
quotations

record types, discriminated union types
option types

units of measure

object programming
asynchronous programming
computation expressions
type providers

The documentation continues with an explanation of the main tooling and libraries available for
F# programming, including

cross-platform compilation and execution;

the primary F# and .NET libraries;

web, mobile and data programming toolkits;

editing tools from Emacs to Visual Studio, VSCode and JetBrains Rider;

how to use F# with the cloud platform of the company providing the documentation.

Other resources for F# follow a similar order of explanation, e.g. Fable is a packaging of F# for
client-side web programming compiling to JavaScript [Garcia-Caro 2018], and WebSharper [Granicz
2020] and SAFE-Stack [Abraham 2020] emphasize the use of F# as a “full-stack” language where
both client and server components are written in the same language.

That’s what F# is today: an open-source, cross-platform, strongly-typed, succinct programming
language with broad applicability to many different programming scenarios and much loved by its
users.? The language community centers around the F# Software Foundation (FSSF, a US non-profit,
page 46) and social media such as Twitter. F# has had influence—most directly on C# but also more
broadly—I discuss this in the retrospective at the end of this paper. But how did we get there?

3 BACKGROUND: LANGUAGES, PROGRAMMABILITY AT MICROSOFT AND THE
CREATION OF .NET

The 1970s-80s saw continual, rapid expansion of the computing industry, from transistor design

and chip fabrication to software development and applications. Software development tooling both

boomed and consolidated with the development and adoption of many different programming

paradigms and languages, including BASIC, PASCAL, Prolog, Modula 2 and C. Accompanying each

2Succinctness is discussed on page 40, for user testimonials see [FSSF Contributors 2020].

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:5

were commercial variations (Visual Basic, Turbo Pascal, Borland C for example). Languages such as
Logo served to spark the imagination of a new generation that programming could be “different™
and a bold new era of “fourth generation languages” was promised.

At this time, Microsoft also saw massive expansion as an operating system and applications com-
pany. Microsoft started by building programming tools in 1975 and the importance of programmability—
both as a commercial and technical undertaking—was “in the bones” of the company and its CEO
Bill Gates [Wikipedia 2020b]. Through the 1980s his primary concern with regard to programma-
bility was commercial: how to support the creation of applications and a commercial ecosystem of
independent software vendors (ISVs) for the DOS and Windows ecosystems. What mattered most
was the sheer number of developers using these platforms, for developers would feed the growth
of these ecosystems. The company created tools such as Visual Basic to satisfy the mass-developer
market, and versions of C for more hard-core developers, a distinction that later got characterized
as tools for “Mort” (Visual Basic) and “Einstein” (C++) [Wikipedia 2019d].* Such tooling was pitted
against a myriad of rapid development environments such as HyperCard [Wikipedia 2019b] and
[Wikipedia 2019¢], and Microsoft succeeded hands-down, becoming dominant in application devel-
opment worldwide and achieving a monopoly position in operating systems. Microsoft also made
numerous other programming tools including FoxPro [Wikipedia 2000] and a FORTRAN compiler,
later discontinued [WinWorld 2016].

The late 1980s saw a new wave of thinking coalesce around “object-oriented” programming,
and this became increasingly influential in applied software development and academia. Indeed,
object-orientation moved from the margins to be central to the conceptualization of software
development. The pattern of languages with commercial toolchains repeated: examples include
the first C++ commercial compiler in 1985, Borland C++ in 1992 and IBM Smalltalk in 1993.
Foremost amongst the drivers towards OO was the rising prevalence of user interface elements
in software: applications were now interactive and made of “buttons” and other “widgets”, these
widgets were easily conceptualized as “objects” combining state and behavior, and these widgets
could be hierarchically classified. Procedurally-oriented languages were unable to express such
abstractions directly in code, and languages without subtyping found it hard to express the necessary
relationships between widgets. People assessed new languages by asking two primary questions:
“does it support inheritance?” and “is everything an object?”. Any newly proposed language that
did not meet these criteria quickly became marginalized into relative obscurity.

The prospect of an industry-shifting nexus between this new wave of software development
methodology and an operating system company drew tantalizingly near. For example, the launch
of NEXTStep 3.0 in 1993 featured heavy focus on “objects” as a concept that the NEXTStep OS
somehow supported (in practice this meant that NeXTStep application development was based on
Objective C—the OS itself, was written in C). This was used by Jobs to demonstrate its sophistication
and technical maturity. When Java was developed in 1991-95, and released in 1996, it was a deep
challenge to Microsoft in at least six ways:

e Java was object-oriented and “modern”;

e Java promised Write Once Run Anywhere software development that could in theory cut the
dependence on a particular operating system;

e Java was developed by a direct rival in the upper-end operating system market;

e Java was positioned as a web-technology at the dawn of the web, potentially capable of
delivering end-user applications via the browser;

31 recall my primary school librarian telling me about Logo on a school walk in 1981, when I was 10. It was my first exposure
to diversity in the world of programming languages.
4The term “Elvis” was used later for C# programmers.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:6 Don Syme

e Java used a set of technical devices such as a virtual machine (VM) and garbage collection
(GC)*; and

e Java was recognized as a contribution to applied academic computer science®, bringing on
board a constituency who had been largely ignored by Microsoft. As a result, Java became
embraced as a de-facto standard for typed object-orientation.

Microsoft was initially slow to respond. Internally, the company was committed to C for imple-
menting its flagship products but had plenty of assembly code as well. Given the target hardware
specs it was unrealistic to write Windows or Microsoft Word in a heap-allocating “toy” language
like Java, so Java was not going to become the major language of internal use at Microsoft quickly.
Further, external-facing RAD environments like Visual Basic didn’t immediately benefit from the
structured approach to OO found in class-oriented languages. With a tidal wave of Java hype flood-
ing the industry, Microsoft responded by embracing Java, licensed from Sun in 1996 (Microsoft J++),
but subsequently faced legal action for extending the language. This formed part of the background
to United States v. Microsoft Corp, a legal case running from formally from 1998 to 2001 though
with its roots in earlier actions. In this case the U.S. government accused Microsoft of illegally
maintaining its monopoly position in the PC market, through restrictions on PC manufacturers
relating to internet browser software and other programs such as Netscape and Java. The initial
trial recommendations were to break-up Microsoft as a company, later settled to lesser remedies.

In 1997, Microsoft changed tack and started the internal development of a new programmability
platform which could address the fundamental challenge of Java, while also addressing the needs
specific to Windows programmability. Initially called COM+ 2.0 or Lightning, and eventually .NET,
the founding principles of the runtime environment were as follows:

e It would support multiple programming languages, including Visual Basic, C++ and Java.
Additionally, a new language was started, under the design of Anders Hejlsberg, initially
called COOL and later C#.

e It would support a bytecode, garbage collection, JIT compilation and “middleware” features
such as stack-based security checks and remoting. Additionally, the runtime would support
unsigned integers, unboxed representations and install-time compilation.

e It would be made specifically for application development on Windows, including native
interoperability to C-based Win32 APIs and built-in support for COM. However, it would
also be sufficiently general that porting to other operating systems would be theoretically
possible.

e Its SDK would be offered free and aligned with emerging efforts in academic relations, then
managed by Microsoft Research, founded in 1992.

The decisions around Lightning were regularly reviewed by Bill Gates. Through the efforts of two
“developer evangelists”—Peter and James Plamondon’—a key decision was made: Lightning would
be a multi-language runtime rather than just a fixed set of languages decided by Microsoft. An
outreach project called “Project 7” was initiated: the aim was to bring seven commercial languages
and seven academic languages to target Lightning at launch. While in some ways this was a
marketing activity, there was also serious belief and intent. For help with defining the academic
languages James Plamondon turned to Microsoft Research (MSR).

SGarbage collection was present in Visual Basic. However it was not present in the highly influential Microsoft COM
programming architecture, which used reference counting for memory management.

®For example, [Alves-Foss 1999].

"Known as “The Flying Plamondon Brothers”

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:7

From the perspective of the history of F#, this is a moment when largely unrelated traditions in
the history of computer science began to merge and intertwine: the worlds of Robin Milner and
Bill Gates began to meet.

MSR had been founded in 1992 and expanded to Cambridge UK in September 1997. Andy Gordon
(a high-profile young researcher in programming language theory) and Luca Cardelli (author of
one of the first ML implementations and prolific researcher) were hired, followed in September
1998 by Simon Peyton Jones (a leading Haskell contributor), Nick Benton (a theorist and initiator
of MLj, discussed later), Cedric Fournet (a core member of the OCaml team), Sir Tony Hoare (world
famous computer scientist) and Don Syme (the author of this paper; undergraduate student of early
ML contributor Malcolm Newey in Australia; PhD student of Mike Gordon; with a background
in functional programming, formal verification and Java). MSR eventually employed over 500
researchers and engineers in various locations.

Suddenly Microsoft was brimming with academic computer scientists, though in a separate “org”
to the “product teams”. Many were eager to make an impact on Microsoft’s product range, and there
was cultural memory from Bell Labs (Cardelli), DEC-SRC (Cardelli), Compaq (Gordon) and Intel
(Syme) that this was how such labs “paid the bills”. Each researcher was in their own way deeply
evangelical about one point-of-view or another in computer science and often held tribal allegiances
to their corresponding communities in academia, both of which shaped their interactions with
product teams and the projects they chose. Many in the formal verification and theory areas had
experience of strongly-typed functional programming. Robin Milner, the originator of the ML
family of languages, was head of department at Cambridge University “across the road” and was
held in high esteem as a pioneer in the field of research.

On the other side, Microsoft was entering a phase where it was becoming deeply committed
to a multi-language runtime and wanted to be seen to innovate positively. Lightning already had
many of the core elements of a typical functional language implementation (GC, JIT, bytecode),
and promised to unite disparate themes in programming, though initially within the confines of
the Windows operating system. The scene was set for interesting things to happen. The Lightning
effort was renamed NGWS and then finally called .NET on launch in 2000.

4 BACKGROUND: STRONGLY TYPED FUNCTIONAL PROGRAMMING THROUGH
THE 1990S—CALCULI, MIRANDA, OCAML, HASKELL AND PIZZA

While Microsoft was establishing its monopoly position in the early 1990s, and object-orientation
was sweeping the globe, the world of strongly typed functional programming was small and
marginalized yet active and vibrant. This world overlapped with other fields of activity, which
we would now call “PL research” but at the time included formal verification, type theory and
programming logics and an increasing dose of category theory. This world was heavily influenced
by foundational calculi, most obviously the Lambda Calculus and its variations such as System F,
followed by concurrent calculi such as CCS and the Pi Calculus [Sangiorgi and Walker 2001]. Efforts
to identify unifying object calculi were well underway [Abadi and Cardelli 1996] and workshops
such as FOOL—Foundations of Object-Oriented Languages searched for foundational formalisms for
new constructs being added to existing languages [Leavens 1995].

“Formal methods” was an overlapping field in its hey-day in the 1980s, with major government
initiatives in formalized hardware and software. Controversies [Restivo 2004] and the relatively
modest successes of formal methods in industry saw researchers in the 1990s look to more pragmatic
techniques for bug-finding including model checking and static analysis tools. Systems such as SMV,
Z, ACL, HOL88, PVS, HOL90, Isabelle and commercial offerings were used to model, formalize and
verify aspects of software and hardware designs. Functional languages were often used to implement
and script these systems, e.g. Edinburgh ML (HOL88), Standard ML (HOL90, Isabelle), OCaml (Coq,

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:8 Don Syme

NuPRL), Caml Light (HOL-Lite), LISP (ACL2, PVS). These systems thus formed a core constituency
of adoption of strongly-typed functional languages and held functional programming close to
more theoretical communities. The Formal Definition of Standard ML [Milner et al. 1990] and its
commentary were seen by some as almost holy texts, enshrining the virtues of standardization,
cooperation, formalism and theory. At the same time, some functional programming systems were
closely aligned to research on parallel programming, e.g. Parallel ML [Rabhi and Gorlatch 2003]
and parallel versions of Haskell. Together these formed the context in which I first encountered
strongly typed functional programming and ML in my undergraduate research work [Syme 1993].
The FDIV bug at Intel, discovered in 1994 [Athow 2014], led to a significant increase in formal
verification investment on the part of hardware manufacturers. Intel turned to academia for help
and among the projects brought in was Forte, led by Carl Seger, a toolchain using BDDs and theorem
proving to verify the data paths of floating point circuits with respect to an IEEE model. The Forte
toolchain was built around a strongly typed functional language called Forte FL. Although not
otherwise influential on programming language design, this is mentioned because I was employed
as an intern on this project in 1996-97 and in this context experienced the extreme effectiveness of
strongly-typed FP as a “glue language” for symbolic manipulations in applied formal verification,
an early application domain for F# [Seger et al. 2005]. Forte FL also made many pragmatic choices,
for example when interoperating with external data and the inclusion of quotations in the design
of a strongly-typed language. This experience had significant impact on the later design of F#.
Strongly-typed FP also saw significant use through Miranda, first released in 1985.% During
the 1990s the small world of strongly-typed functional programming also split and diverged in
ways typical of active research communities. Haskell 98 united the streams of lazy, pure functional
programming, precursors included HOPE and Miranda. Standard ML from 1989 remained the
unifying effort for mixed functional-imperative languages. However, the INRIA Project Cristal
group saw the standardization as premature, and instead created Caml Light and then OCaml
[Leroy 2014]. Standard ML itself was heavily associated with its innovative module system and
saw practical implementations in Poly ML, Standard ML of New Jersey and MLton.
Strongly-typed FP languages and compilers saw an ongoing trickle of interest, adoption and use.
While not enough to challenge the massive adoption of C, C++ and Java, and largely unnoticed by
industry, they were enough to sustain the languages, promote research and create small cohorts of
dedicated advocates of OCaml, Standard ML and Haskell.” People who had the good fortune to
use these languages in practice (including myself) experienced dramatic increases in productivity
as well as some frustrations. As with the original ML implementation, the domain of use was
typically symbolic programming of some kind. The experience of productivity was due to the
peculiar effectiveness of the combination of features on offer: the “magic” of Hindley-Milner type
inference (Figure 1) to support safe, compositional programming; the effectiveness of parametric
polymorphism (generics) and discriminated unions to describe and manipulate domain data; the
correctness benefits of programming without pervasive null values; the close correspondence
between code and formal models. These were in addition to the elegance and expressive power of
expression-oriented programming, well-known from LISP but newly rediscovered with joy and
delight by user after user. There was a strong feeling that these languages had the potential to be

8While the author hadn’t used Miranda, early adopters of F# (e.g. Ralf Herbrich) and internal supporters within Microsoft (e.g.
Andrew Blake, head of MSR Cambridge 2008-2016) had positive exposure to Miranda during their education. Interestingly
these people were outside the programming language theory or formal verification domain, active in machine learning and
vision, and valued Miranda for its pragmatism and productivity.

9 As a curious side note, one of those dedicated to OCaml was Julian Assange, later famous for WikiLeaks, see [Assange
2000].

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:9

used much more broadly, and that valuable programming techniques were being lost through the
widespread embrace of Java.

The tidal wave of interest in object-
orientation in the early 1990s had significant

z:0el 7=1nst(o)

impact in academia, just as in industry. By the Troz:r (Ver]
mid-1990s many in the world of FP and PL were T aem Flne oo @ s m)
genuinely shocked, bewildered, disoriented and Ty @y 80 [Apr]
in some cases disillusioned by the rise of C++, S

Java and OO in general. Reactions varied, and A P [kbs]
I now examine responses to the OO tidal wave Phyenir Tooifir)bs e ss

that are key to understanding the genesis of F#, TF, leto—egine, i 7 [Let]

Scala and other languages in the 2000s.

One response to object-orientation was to Fig. 1. A formal description of Hindley-Milner type
“give in” and work on Java implementations. inference, a core idea in ML family languages (from
Others worked on formalisms around Java, and [Wikipedia 2020a])
indeed I initially did just that for my PhD thesis
[Syme 1999a] and others formulated and published foundational object calculi. Some responded
by integrating object-oriented features into FP languages: LISP had already added CLOS, the
Common LISP object system and OCaml saw the introduction of new forms of genericity (“row-
polymorphism” and “column polymorphism”) used as the basis for a fascinating object system
[Garrigue 2001]. Around the same time the Standard ML designers and implementers started an
initiative called ML2000, whose aim was to use formal, theoretically-founded approaches to build a
language to rival object-orientation. This effort foundered and stopped in the late 1990s.

Another response was to propose to integrate specific technical features associated with strongly-
typed functional languages into “mainstream” OO languages. Wadler and Odersky led the charge
with the development of Pizza, a variation of Java that incorporated parametric polymorphism
(generics), discriminated unions and first-class function values [Bracha et al. 1998]. This was
subsequently trimmed-down to the proposal Generic Java (GJ), and later heavily influenced C#,
Scala and F#. Ultimately GJ became the basis for Java generics, though its use of “erasure” and lack
of accurate runtime type information were significant compromises.

An alternative angle was to “deconstruct” functional programming itself and examine the un-
derlying problems (as exhibited by implementations of Haskell or Standard ML for example). One
instance of this was the paper Why no one uses functional languages [Wadler 1998]. This paper
was central to my understanding of the programming language landscape as I started at Microsoft
Research in 1998. Instead of blaming the unwashed masses for their ignorance, Wadler’s paper
outlines seven problems of strongly-typed FP implementations at the time: Libraries, Portability,
Availability, Packagability, Tools, Training, Popularity. It also listed Performance and Ignorance as
non-reasons. The early development of F# was essentially an effort to address each of these.

Further, some responded by trying to compete via new commercial implementations of strongly
typed FP languages including Poly ML and Harlequin MLWorks. However, these saw little adoption
and left the community with the feeling that the support of a “big player” in the industry was
needed.

A final response was to attempt to use the JVM as a substrate for implementing established
functional programming languages, and thereby as a delivery vehicle for FP into the browser and
the web (the nascent driving force behind Java at the time). Foremost in these efforts was MLj,
a research/commercial implementation of Standard ML by Benton, Kennedy et al. at Persimmon
[Benton and Kennedy 1999]. MLj was a whole-program compiler which allowed interop with the
Java ecosystem through object programming extensions. When the research arm of Persimmon

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:10 Don Syme

folded in 1998, Benton moved to MSR Cambridge, followed later by Kennedy, bringing experience
highly relevant to .NET and later F#. Despite these various responses, there was also strong
anathema to object-orientation in theoretical communities: proponents of OO were too readily
labelled with the tar-brush of heresy: “unprincipled nonsense”, “lacking theoretical foundations”
and similar.

That completes our summary of the general surrounding context as I joined Microsoft Research
in 1998 and began precursor work leading to F#. For completeness, the background influences I am
aware of were as follows:

e [had used strongly typed functional programming, mostly in the context of theorem proving
systems (Edinburgh ML in HOL88, Standard ML of New Jersey in HOL90, Caml-Light in
HOL-Lite, ForteFL at Intel). I had come to love them, while appreciating their weaknesses.
In my undergraduate work I had been supervised by one of the originators of ML, Malcolm
Newey. Through my PhD work, the OCaml community and MSR Cambridge, I was involved
in overlapping communities that saw strongly typed functional programming as the norm.

e T had used object-oriented languages (C++, Java) including studying Java and the JVM formally
as part of my thesis work. My experience with C++ at university in 1992 had been negative,
particularly through the over-use of hierarchical classification in student projects—both as a
modelling technique and its encoding in class hierarchies.

o As a child, from 1980-87, I had used BASIC and Logo (Apple II) and Turbo Pascal (Windows).
As a student, I used Prolog, C, Scheme, Modula 2. A comparative programming languages
course provoked interest in a range of languages. In early employment I had used Prolog on
Windows for an Australian software company (SoftLaw, 1990-1993).

e [had implemented several strongly-typed language, proof and compilation systems as part of
my PhD thesis work using various ML dialects and toolchains including SMLNJ, MoscowML,
Caml-light and OCaml. Additionally, I had, somewhat unusually for the times, also imple-
mented some visual tooling for these systems, notably a graphical proof editing IDE for
HOL90 [Syme 1995] and a proof editing workbench for the theorem prover DECLARE [Syme
1999b]. I had a positive disposition to IDE tooling and understood the interaction between
IDE tooling and language design.

e In 1996-98, I had been exposed to the work of academic leaders such as Drossopoulou, Leroy,
Wadler and Odersky to synthesize OO and functional programming [Alves-Foss 1999].

o I was part of discussions trying to reimagine how we deliver strongly-typed functional
programming to “the masses”.

5 PROJECT 7 AND .NET GENERICS

When Project 7 kicked off at Microsoft, the researchers at MSR Cambridge recommended the follow-
ing languages for inclusion on the academic stream: Eiffel, Mercury, Standard ML, OCaml, Scheme,
Alice and Haskell. The biases of the research group at MSR are clear here: 6 of 7 recommendations
were strongly typed languages, and 3 of 7 were firmly “strongly typed functional languages” in a
specific sense of the term, e.g. incorporating Hindley-Milner type inference and having functions
as first-class values. Commercial languages in Project 7 included Perl, Python, Cobol and Ada.
Academic or commercial partners were found for each, funding was provided by Microsoft and
workshops were arranged at MSR Cambridge and elsewhere.

In retrospect Project 7 was flawed but not catastrophically—some of the researchers didn’t
engage, few of the language implementations saw much use, and the costs to maintain them
were high. While you can still buy and use Cobol.NET today, .NET programming is dominated by
two Microsoft-supported languages C# and F#, and the JVM has a more vibrant multi-language

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:11

ecosystem. However Project 7 did have definite technical impact: for example, at this stage, Gordon
and Peyton Jones engaged with the designers of .NET, and argued successfully for the inclusion
of tailcalls as a first class operation (the “tail” instruction in the .NET bytecode), both to support
some of these languages and as a way of differentiating the .NET bytecode from the JVM. This
started NET down a long technical path of innovation and differentiation led by the demands of
the languages being brought to the platform.'°

Project 7 also had an impact by raising the question of “language interoperability”: it was one
thing to get languages targeting a common substrate, another to get them to interoperate. In 1999,
I and colleagues wrote the internal whitepaper “Proposed Extensions to COM+ VOS” [Syme 2012]
which argued that

a primary objective of the COM+ Runtime is to deliver services and performance that
are clearly technically superior to those provided by other potential backend runtime
environments.!!

and that Microsoft should “get serious about language innovation”. Five technical features were
proposed, of which “generalized delegates” (i.e. functions as first-class values) and “enhanced
parametric polymorphism” were the more serious. The influence of Pizza and GJ is strong here
and these are explicitly mentioned as competitors. I also developed ILX, an prototype extension to
the NET bytecode incorporating these features, which I hoped might be adopted by other Project
7 languages. ILX was implemented on .NET by erasure and compilation to the existing .NET IL
[Syme 2001d].

This whitepaper served as the start of the “NET Generics” project, specifically designed to bring
a form of generics to .NET that could work for both C# and other Project 7 languages such as Eiffel,
OCaml and Haskell. .NET Generics and its history is covered elsewhere [Warren 2018] and over the
next 4 years, Syme, Kennedy and Russo worked with enormous dedication to deliver .NET Generics
in C# and .NET [Kennedy and Syme 2001]. The feature encountered enthusiasm, reluctance and
indifference from various parts of Microsoft, though a review to Gates in 2001 was well received
and started to turn things around [Syme [n.d.]b]. Anders Hejlsberg was a key decision maker and
my recollection is that much of the C# language design work involved second-guessing how to
shape the feature so it would meet approval. Ultimately the feature was delivered as part of the
2005 .NET 2.0 “Whidbey” release. At the same time, Microsoft began to make its first very tentative
steps towards embracing open source, and a “shared source” release of the NET codebase was made
called Rotor along with a corresponding extension containing the .NET Generics implementation
called Gyro. A poster from MSR’s internal tradeshow “Tech Fest” is shown in Figure 2.

The key premise of NET Generics is that generic instantiations can be “managed” by the runtime
environment, inclnuding the management of runtime type information and the JIT-compilation of
fresh code for newly encountered instantiations. This avoids the need to either tag or box integers
and other “unboxed” values—a technique normally needed when combining polymorphism and
separate compilation, because the runtime is able to specialize code on-demand.

This means the end-programming model in, say, C#, can support a form of generics that is very
complete and smooth from the programmer’s perspective: runtime type information is accurate,
the process of making and managing instantiations unobtrusive, the code for instantiations is
automatically shared based on a policy. NET Generics has been successful: it is widely adopted by
millions of C# and F# programmers; it is seen as a key differentiating factor of C# over Java; and

10Support for the “tail” instruction remained patchy in .NET implementations for many years: convincing a team to
“innovate” is one thing, but delivering and maintaining the results requires ongoing commitment and costs.

11 At this time, Project Lightning (i.e. NET) was called “COM+”. VOS is for Virtual Object System, the name of the .NET
object system at the time.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:12 Don Syme

Why should I use it?

‘ It's better than the alternative — using
Object in C#:

/1 Generic interface
- ICollection<T= {

interface [Set<T>
void Add(T item);
void Remove(T ltem), e
ool Contains(T item); | « Expressivity
! Invariants clearly expressed in source.
1/ Generic class ||/ without generics:
class ArraySer<T> - lSet<T> | int Sum(iset s}
‘private T items; |
private int nitems: = Clarity
blic ArraySet() | |
wnl!emi = 0; items = new T[10]. No ugly casts.

Without generics:
! ‘ foreach (object obj in s) { sum += (int) obj; }

1/ Generic methods | | = 5€fﬁ'}’

static void Reverse <T (T[] arr) J e
static void Son <T>(T] arr, IComparer<T> cmp} Bugs caught at compile-time.

/4 Instantiation at a primitive type [Without generics: ‘
Static int SumlSet <int> s}{+— — : |

int sum = 0;
Facesch (ing i in & 4 um += £F | = Efficiency |

Fig. 2. .NET Generics poster at TechFest 2002, Microsoft Building 33, Redmond (photo by author)

has been the basis for many later innovations delivered in F#, C# and .NET. For example, generic
collections (C# 2.0), LINQ (C# 3.0), tasks (C# 4.0), async/await (C# 5.0) and Span (C# 7.2) all use NET
Generics heavily, as do all F# features. NET Generics put .NET years ahead and even today systems
such as Java and Go struggle with the implementation of aspects of genericity such as supporting
instantiation at both reference and value types [Cox 2019; Motroc [n.d.]].!? Equally, generics is a
technical feature that imposed significant costs on Microsoft’s NET implementation going forward.
Generics is most easily implemented via a JIT and attempts to do fully static compilation of .NET
code have struggled with the feature.

From the perspective of the history of F# (which did not yet exist), the successful delivery of NET
Generics intentionally made .NET a suitable substrate for a “direct” compilation from a strongly
typed functional language into .NET bytecode: this was by design, not by accident. For example,
it allowed a simple, direct compilation of genericity inferred via Hindley-Milner type inference
into .NET Generics with little or no runtime overhead. Consider simple code such as this in some
ML-like dialect:

let keyAndData getKey x = (getKey x, x)
let data = [| 1 .. 100 |]

let add x = x + 1

let y = Array.map (keyAndData add) data

Here the generic code has been instantiated at integer type. In many systems of generics such
as GJ, values of generic type such as parameter x to keyAndData would be represented in boxed
(heap-allocated) form. Thus, in the absence of other optimizations, the code above would cause the
boxing of the integers as they enter the (generic) keyAndData function, and then unboxing as they
are passed on to the (non-generic) add function. Such implicit costs for basic collection types would
be unbearable and make any Hindley-Milner type-inferred language intrinsically low-performance
on .NET. With NET Generics these specific performance problems go away. In crucial ways .NET
Generics laid a foundation for later work on F#.

121n Alsh [2019] the designer of Go, Rob Pike, is quoted The time has come to change Go, given what we have learned over the
past decade of using it in production. It’s going to take a long time to sort this out. It could be years before anything is really
resolved so...Please be patient.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:13

6 THE DECISION TO CREATE F#

At MSR, Project 7 also led to the SML.NET project [Benton et al. 2004]. SML.NET was a continuation
of MLj, mentioned earlier, retargeted to .NET. SML.NET used a sophisticated whole-program opti-
mizer and was a faithful implementation of Standard ML with extensions for object programming.
The system was of high quality but didn’t gain significant external mindshare. During 2001, I grew
frustrated with SML.NET, which was not yet released even though .NET itself was now public.
While respecting the research goals of my colleagues, I was keen to see strongly typed FP delivered
in a way that could be readily adopted by large numbers of programmers, and on a path to address-
ing the seven major themes identified by Wadler in 1998 [Wadler 1998]. The implementation of
OCaml was influential on me here: OCaml used a relatively direct and simple compilation strategy,
and it was not clear that a whole-program compilation strategy was needed to achieve acceptable
and reliable performance. Further, SML.NET didn’t target .NET Generics, and there was no definite
plan to make it do so: the compiler was predicated on the benefits of whole-program compilation
and pervasive monomorphization, with the aim of recovering performance and compact code. As
commonly happens in research labs, a divergence of opinion occurred.

Initially, in late 2000, in conjunction with Reuben Thomas, I attempted an implementation of
Haskell for .NET, using a direct translation from the “Core” intermediate representation of the
Glasgow Haskell Compiler (GHC) to the .NET bytecode. This experience was partly successful:
small programs ran. However, the advice of Simon Peyton Jones led me to believe that HaskelLNET
couldn’t be successful for several technical and cultural reasons:'?

e As with other Project 7 languages, running Haskell on .NET “in isolation” was not enough
in itself: a primary goal was to make a functional language that was fully part of the NET
ecosystem, with full interop with .NET libraries.

e Full interop means that every .NET function would need a rendering in Haskell with a Haskell
type, so type translation is needed. The type systems were not the same, so the translation is
onerous or simply impossible in many cases.

e Moreover, to ease the translation, Haskell itself would need to be adapted to incorporate
some form of subtyping and object programming and would eventually need the ability to
extend an existing .NET class. The Haskell community was reluctant to contemplate such
substantial language changes driven by the requirements of a particular platform.

e At the time, almost all Haskell code (if you include libraries) needed technical features that
lacked corresponding .NET support, including higher-kinded type variables, lightweight
concurrency, exceptions (with Haskell’s exception semantics), ephemerons and software
transactional memory. So, even interop aside, it would be hard to claim that any Haskell
program would run well on .NET; only a subset would do so.

So, work on Haskell.NET stopped in late 2000.
The question of OCaml and JVM/.NET was also being discussed on the Caml mailing list around
this time. An example is the following message from myself, on February 6, 2001 [Syme 2001a]:

Subject: OCaml on CLR/JVM? (Was RE: OCaml <——> ODBC/SQL Server)

> What I cannot find around is a way to easily interrogate and interface
> in OCaml with an ODBC data source...

13See also the later summary Why isn’t GHC available for .NET or on the JVM? [Haskell Contributors 2017].

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:14 Don Syme

Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either Java or the .
NET Common Language Runtime seamlessly so we wouldn't have to keep facing these kinds of
questions and problems, and could just leverage existing libraries?

I'm very interested to know if there are people with some time to spare who would be keen to work
with me toward a .NET version of OCaml. I've talked this over from time to time with Xavier, and
have done a lot of foundational work for the core language when building a .NET compiler for
Haskell. If you think would be interested, or would simply like to join a mailing list devoted to
talking about getting Caml running and interoperating on .NET, then please let me know!

This was the first explicit public indication of my desire to create a version of OCaml targeting
NET. Leroy replied on February 8, 2001 [Leroy 2001]:

I've been working on and off (mostly off, lately) on an OCaml/Java interface that works by coupling
the two systems at the C level via their foreign—function interfaces (Java's JNI and OCaml's C
interface). This was strongly inspired by the work of Erik Meijer et al. on a similar Haskell/Java
interface. (These Haskell guys sure are at the bleeding edge of language interoperability. This is the
second interop idea I steal from them, after the IDL/COM binding.)

The low—level coupling is surprisingly easy, including making the two garbage collectors cooperate:
both the INI and OCaml's C interface provide enough functionality to get the coupling to work
without =any+ modification on either of the implementations. How nice! The only limitation is that a
cross—heap cycle (a Java object pointing to a Caml block pointing back to the Java object) can never
be reclaimed... (Thanks to Martin Odersky for pointing this out.)

Of course, the low—level interface is type—unsafe, so the real fun is to build a type—safe view of Java
classes and objects as Caml classes and objects, and conversely. I'm still struggling with some of the
issues involved. For instance, it turns out to be much simpler (for the implementation, not for the
final user!) to map Java objects to values of abstract Caml types, and treat methods as functions over
these abstract types, than mapping Java objects to Caml objects. That was quite unexpected!

One thing I learnt is that the real problem with language interoperability is not how to compile
language X to virtual machine Y (this can always be done, albeit more or less efficiently), but rather
how to map between X's data structures and objects and those of all other languages Z1 ... Zn that
also compile down to Y. This is obvious in retrospect, but I think many (myself included) often
overlook this point and believe that compiling to the same virtual machine is necessary and sufficient
for interoperability. It is actually neither necessary nor sufficient...

While this work started with the JVM, I'm pretty sure it can be made to work with the NET CLR, as
soon as it will have a foreign—function interface with features comparable to those of the JNI. (And I'
m sure this will happen eventually, not only because it makes sense, but also because Java has it, so .

NET must too -—)

Stay tuned for further developments.

This lays out the basic question many languages have faced since: should a language have its own
runtime and interoperate indirectly with .NET and/or the JVM, or should it target those runtimes

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:15

directly?!* Leroy’s response represented a divergence of opinion: Project 7 had envisaged very
close interoperability, sharing one virtual machine including memory, code, reflection, JIT, GC
and library capabilities, and potentially bringing the object system of the host ecosystem into
the language. The approach described by Leroy was, technically, highly sensible for the existing
OCaml implementation, however it didn’t feel right once .NET could be assumed. To me, it would
intrinsically run into performance, interoperability, tooling and other issues at boundaries between
the languages, and adoption would be limited to the intersection of those willing to rely on both
the NET and OCaml implementations.

The discussion also brought contributions from Dave Berry, based on his prior experience of
implementing Harlequin’s MLWorks [Wikipedia 2019a], a proprietary implementation of Standard
ML (Dave later contracted with MSR Cambridge on an open source version of .NET Generics), on
February 9, 2001 [Berry 2001a]:

>> Now I have to say the obvious: wouldn't it be wonderful if Caml interfaced with either
> > Java or the NET Common Language Runtime seamlessly so we wouldn't have to

> > keep facing these kinds of questions and problems, and could just leverage existing

> > libraries?

Although this view is understandable, I think it is rather naive. ... To look at it another way, OCaml
already shares a platform with C (at least with the native—code compiler), so all the C libraries are
already available... Yet it can still be a lot of effort to link with a C library. Why should Java and .
NET be any easier? Also, look at the effort that went into making an ML/Java system with MLj...
Threads are another area of potential problems. In fact they can be a total minefield.

To which I replied on February 10, 2001 [Syme 2001b]:

There's hard work to be done to realise this vision, but in principle a clean interop story sure beats the
endless rehashing of other people's code in language X as a library in language Y. Myself and others
involved in the Project 7 are working on one approach to achieve this interop, i.e. compiling
languages directly to NET MS—IL, in the style of MLj, often adding extensions to the language in
order to improve the interop. We are also working on improving the .NET infrastructure, proposing
support for features such as parametric polymorphism in MS—IL.

Xavier is also working on a solution for OCaml, as he mentioned, though the problem of how to
reflect the constructs of an object model into ML, Haskell or OCaml remains similar whichever
approach you take to actually running the stuff.

There are several reasons why it is easier: exceptions, for example, can be propagated across the
interop boundary, without any effort at all if you compile to MS—IL or Java bytecode. If you're
compiling to bytecode you can also ensure more compatibilities of representations, e.g. make sure ML
int64's are exactly representationally equivalent to C's int64s. Note if you don't compile to a bytecode
then you even have to marshal integers across the interop boundary in Caml, though this could be
automated.

You can also transfer objects more consistently, as the semantics of the object models of Java and .
NET are fairly simple in contrast to C, e.g. no need to have an IDL to help interpret pointers as "in—

"o

out", "in", "out" parameters.

1nterestingly, this discussion arose directly in the context of data integration, an area that would drive much of the C# and
F# design work in the 2000s.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:16 Don Syme

While at a certain level I like Xavier's approach, i.e. maintaining two runtimes, garbage collectors etc
., I have troubles seeing it scaling to the multi—language component programming envisioned as part
of .NET approach (and indeed currently in practice with C\#, C++, VB.NET and other .NET
languages). Two GC's are already trouble enough (performance might suck as they will both be tuned
to fill up the cache), but if you have components from 10 languages in one process? 10 GCs
competing for attention? Maybe it can be made to work, but there's a certain conceptual clarity in
Jjust accepting that a GC should form part of the computing infrastructure, and share that service.
These are the aspects of the .NET approach that I find quite compelling.

As an aside, I think it would be an interesting question to say "OK, let's take it for granted that the
end purpose of our language is to produce components whose interface is expressed in terms of the
Java or .NET type systems, but which retains as many of the features and conceptual simplicity of
OCaml and ML as possible." I'm not sure exactly what you'd end up with, but whatever it was it
could be the language to take over from C\# and/or Java (if that's what you're interested in...) But
without really taking Java/NET component building seriously right from the start I feel you're
always just going to end up with a bit of a hack — an interesting, usable hack perhaps, but not a
really good language.

Probably the greatest recurring technical problem that I see in this kind of work is that of type
inference, and the way both the Java and .NET models rely on both subtyping and overloading to
help make APIs palatable. Type inference just doesn't work well with either subtyping or overloading.
This is a great, great shame, as it's obviously one of the main things ML has to offer to improve
productivity.

P.S. As for threads — I don't think the story is half as bad as you might think. After all, OCaml
threads map down to Windows threads at some point, and I just don't see that there are that many
special logical properties of typical ML and Caml threading libraries that make it semantically
ridiculous to share threads between languages (though it is true asynchronous exceptions can make
things hard when compiling to a bytecode). But I'll admit I'm not an expert on this.

Finally, there was techno-political controversy too, this time in a reply from Fabrice le Fessant on
February 12, 2001 [le Fessant 2001]:

Is the NET VM open source ? Which part is Microsoft—independent ?...

If Microsoft wants its new product to be used, it is Microsoft problem to port more languages to its
VM, and not only say: "We have ported our homemade languages to it (C\#, C++, VB.NET) [because
it was designed for them], so, you see, we have proved it's the universal VM. Now, do the same for
your languages, or your language will not be used anymore by our customers..."

So, why do we really need a .NET port of OCaml ? OCaml is working fine on Windows, and on many
other OS ...

A discussion thread followed on the merits of open source, standards, interoperability and cross-
platform execution, issues which weren’t resolved for F# for another 13 years, when F#, C# and
.NET Core were finally open source and cross-platform. A contribution by Dave Berry on February
16, 2001 was more positive [Berry 2001b]:

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:17

I think Microsoft should be congratulated on their outreach to programming language researchers. I
for one would certainly welcome a widely distributed VM that is a good target for compiling ML.
Interoperability with other languages on the same VM would be a bonus... That said, interoperability
is still hard...

There were many valid arguments and sensitivities here, and I proceeded from this point determined
to be highly respectful towards OCaml and its existing user base: I genuinely loved the language
and the approach to programming it represented.

Predicting the future trajectory of software infrastructure like NET and architecture was also an
important factor in making decisions, e.g. in this final response by Arturo Borquez on March 3,
2001 [Borquez 2001]:

Perhaps I am wrong, but let me state what I believe about this stuff.... C\# is not really important as it
will never reach the 'mass' of VB... The real issue is ... the Client/Server model ... In my opinion this
model has no future, ...clients would become minimal.... with a diverse and broad family of client
devices (terminals). My conclusion is CLR/JVM ... are not important for the future of Caml, as all will
die. Caml will need only some library updates to match the communication tech upgrades.

In hindsight, predictions like these were both right and wrong: the structure of applications evolved
extensively, and .NET and the JVM ultimately de-emphasized their role as “middleware”, but
neither .NET nor the JVM have died. Languages and runtimes seem to endure longer than software
architectures.

In mid-2001 the itch remained: how was MSR going to bring strongly typed functional program-
ming to .NET in a way that could be readily adopted by large numbers of programmers? By October
10, 2001 I felt firm enough in this conviction to reply as follows:

When time permits I plan to implement a NET CLR compiler for Caml. Initially I will implement
only the core language, and perhaps first—order modules, and then to assess things after that. I will
be coding the implementation up from scratch rather than using the sources for the existing OCaml
compiler...

My first reason for doing this is because I have an existing OCaml code base that I would like to
make available as a .NET library... Plus I love Caml, and would like to see it supported on .NET, and I
'm interested in proving that interoperability between functional languages is practical in .NET.

This implementation path would give object introspection capabilities for free. However it would no
doubt be slower than the existing native code Caml implementation: you don't get something for
nothing.

I don't know of any other active efforts to do a .NET compiler for Caml. SML.NET will, hopefully, be
available publicly soon.

So, by late 2001, a viable path appeared possible: to bring a variant of the OCaml language to target
NET itself. The Project 7 effort around OCaml had led to the above approach by Leroy and didn’t
look likely to continue. This left a space for a new Caml.NET initiative, though one targeting the
NET IL itself, and in December 2001 I decided to move ahead with an “Caml.NET”. This was later
rebranded “F#” after private discussion with Cedric Fournet and Georges Gonthier, to allow for
greater divergence from OCaml and to bring language experimentation into scope.'

15The “F” in “F#” comes from both “Functional” and “System F”, an elegant variant of simply typed lambda calculus. Today
an F# community saying “F is for Fun”.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:18 Don Syme

7 EARLY F#-2002-2003

The early conception of F# was simple: to bring the benefits of OCaml to .NET and .NET to OCaml: a
marriage between strongly typed functional programming and .NET. Here “OCaml” meant both the
core of the language itself, and the pragmatic approach to strongly-typed functional programming
it represented. The initial task was relatively well-defined: I would re-implement the core of the
OCaml language and a portion of its base library to target the NET Common Language Runtime.
The implementation would be fresh, i.e. not using any of the OCaml codebase, for legal clarity.

The first lines of the F# implementation were written in December 2001, a front-end for a re-
implementation of the core Caml syntax targeting ILX as a back end, and thus to .NET. The initial
compiler was written using OCaml (later bootstrapped using F# in 2006).

The initial design choices were subtle. By far the most wide-ranging design decision is easy to
miss in retrospect: after choosing OCaml as a starting point, the most significant design choice made
for F# was that it be a NET language. Everything else was to be subservient to that goal. In particular,
NET types are F# types, NET values are F# values, .NET exceptions (and their semantics) are F#
exceptions (and their semantics), and .NET threads are F# threads. The same was true in reverse
and “two-way interop” was always a design goal. There’s no type translation, no marshalling from
one representation to another. Strings in F# were to be strings in .NET and vice-versa. Types and
functions defined in F# could be used from other .NET languages. This decision gave F# less room
to innovate—more often than not, F# is stuck with whatever NET does—but it guaranteed two-way
interop. This was a huge reason for starting a new language design, rather than trying to map an
existing language onto .NET. This full identification of types and data goes beyond the question of
having one runtime vs two: even if you have one runtime, a language could still have chosen to use
different representations for (say) a list of integers, represented internally as .NET objects of some
kind, but marshalled when passed to a .NET method: one runtime, but two representations. F#
doesn’t do that: it uses one runtime and, where possible, identical representations. This influenced
many small decisions: for example, from the outset a function declared in F# had a guaranteed,
stable representation in .NET code as a static member of a class with a stable name, and could be
used directly from .NET languages. This also meant F# code could always be accessed via .NET
reflection. Although the first version of F# was initially presented as “Caml-for-NET”, in reality it
was always a new language, designed for .NET from day 1. F# was never fully compatible with any
version of OCaml, though it shared a compatible subset, and it took Caml-Light and OCaml as its
principal sources of design guidance and inspiration.

In addition, there was the question what not to implement. A notable omission from the design
was the functorial module system of OCaml. Functors were a key part of Standard ML and a
modified form of the feature was included with OCaml, a source of ongoing controversy amongst
theoreticians. I was positively disposed towards functors as a “gold standard” in what parame-
terization could be in a programming language, but was wary of their theoretical complexities.
Furthermore, at the time there were relatively few places where functors were used by practicing
OCaml programmers. One part of the OCaml module system—nested module definitions—was
eventually included in the design of F#. However, functors were perceived to be awkward to im-
plement in a direct way on .NET and it was hard to justify their inclusion in a language design
alongside .NET object programming. Another decision was not to include any OCaml 3.0 features,
specifically neither the object system nor the recently added “named arguments” feature. Leroy’s
email above explains the issues regarding the object system: there was sufficient disparity and
mismatch between the object systems of .NET and OCaml that the latter couldn’t be used for the
former. The OCaml pre-processor CamlP4 was also not supported, though CamlLex and CamlYacc

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:19

could be used. The question of the object system would be dealt with later. However, this meant
that F# and OCaml diverged as of the core language of OCaml 2.0.

The first release (v0.1, soon replaced by 0.5) was made near-silently on June 4 2002 as an addition
to the ILX project, making the following claims on the website [Syme 2002]:

Mixed functional/imperative programming is a fantastic paradigm for many programming tasks....
You can access hundreds of .NET libraries using F#...F# is an implementation of the core of the Caml
programming language for the NET Framework, along with cross—language extensions. ...The aim is
to have it work together seamlessly with C#, Visual Basic, SML.NET and other .NET programming
languages... Types and values in an ML program can be accessed from some significant languages (e.g.
C#) in a predictable and friendly way. ...F# provides an implementation of a subset of the OCaml
libraries as well as the ability to access .NET libraries. Using the .NET libraries is optional.... F#
supports features that are often missing from ML implementations such as Unicode strings and
dynamic linking... Tooling consists of a simple command line compiler, supporting separate
compilation, debug information and optimization... F# is, as far as I know, the first ML compiler to
have good binary—compatibility and versioning properties....

Some hurdles had been cleared along the way. MSR granted permission to allow commercial use
of programs compiled with ILX and this permission was recycled for the F# implementation. Next,
at a conference I asked Leroy for tacit approval in putting out a variant of Caml for .NET, including
making changes to the language design. Leroy approved—OCaml itself was part of a long history
of adapting and modifying the core ML—and what was research if we didn’t experiment? In a later
email reply Leroy said:

Don Syme and his Microsoft Cambridge colleagues did a great job with adding parametric
polymorphism to the .NET framework —— something that was initially overlooked in .NET ——, and I'
m very happy that they chose core Caml to demonstrate this extension in action. https://caml.inria.fr/
pub/mi—archives/cami—list/2002/06/8d07fd5058aa26127d1b7e7892698386.en.html

To which I replied [Syme 2001c]

And I'm even more grateful to Xavier and the team for doing such a great job with OCaml over the
years, and for providing a solid core language, an excellent runtime system and the very interesting
set of language features they've added to the core. Core Caml provides a great starting point for work
of all kinds: I used it in my PhD thesis, for example, as the term language for a theorem prover.

I chose to implement a core Caml compiler for .NET partly to test out generics, but also because I
want to be able to program against .NET libraries using the language I love to program in, and reuse
the libraries and techniques I've developed. I guess it's possible I'll get a bit of flak from the Caml
community about F#. Being at Microsoft Research I presume I'll be writing a fair bit of .NET code
sooner or late, and personally I'd rather do that in Caml/F# than C#... I hope the Caml community
won't mind me making that opportunity available to others via the public release of F#.

The first real design-work began with the addition of the ability to access .NET object types via the
dot-notation.:

C# and other .NET languages can be directly accessed from F#... Types are accessed using the "
Namespace.Type" notation. You may simply use "Type" if an "open Namespace" declaration has been
given. Instance members are accessed using "obj.Method(arg1,...,argN)" or "obj.Property" or "obj.Field".
Static members are accessed using "Namespace.Type.Method(arg1,...,argN)" or "Type.Method(arg]1,...,
argN)", similarly for properties and fields.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:20 Don Syme

While seemingly innocuous, this design decision broke with OCaml and a long tradition of ML
language design: it used inferred type information in name resolution. A name like M in obj.M
was now resolved immediately using the partially inferred type of obj rather than by adding a
new inference constraint. This meant that type annotations would now sometimes be needed,
compromising one of the traditional “rules” of ML (i.e. that type annotations are strictly optional),
and that inference becomes “algorithmic” or “left-to-right™:

Typing. Sometimes extra annotations are needed to get the program to typecheck, e.g. casts using "(
cast <expr> : <type>)" and type annotations to help resolve overloading.

I decided that if the inference algorithm was well-defined and kept stable, this would be sufficient
for interoperability purposes. In practice, the use of partially inferred type information in name
resolution proved effective and stable and was kept throughout the evolution of F#. Type inference
was eventually specified algorithmically in the language specification.

Another design question was about nulls. The question was not one of safety: like the JVM, the
NET runtime would itself perform null checks when values were accessed. Instead, it was a matter
of program correctness. The SML.NET system had “sanitized” all interop calls by inserting the
Standard ML “option” type with tags SOME/NONE at all relevant points. In F#, I decided not to do
this:

Null. Null objects returned by the .NET assemblies are NOT checked by the process of importing the
assemblies or by the F# type system. This may be addressed in the future, but for the moment use the
"nonnull” function from Pervasives to check if values are null and the "null" value from Obj to create
a new null value. https://web.archive.org/web/20020814185220/http://research. microsoft.com:80/
projects/ilx/fsharp— manual—import—interop.htm

Instead, the rule adopted was that NET-declared types would allow the use of “null”, while F#-
declared nominal types would not. This kept a strict approach to nullness within F#-only code, in
keeping with OCaml but allowed the use of null in interop scenarios with .NET types. This was
partly because of ergonomics: the insertion of the option type was highly intrusive on programming
and nulls were not used as pervasively in the .NET libraries as in Java, so in balance the need for a
pleasant programming experience outweighed the need for null-safety at interoperability. Further,
I felt that the topic of null-safety should be dealt with systematically across all NET languages, as
we had done with NET Generics."
Initially, early F# avoided adding object programming declarations:

Currently you cannot declare new classes or implement interfaces in F#. For the moment workaround
this by declaring a new class in C# that accepts delegate parameters to implement the virtual/
interface members, and then pass function values from F# to the C# class. You will only need to write
this C# class once.

Further, contrary to the warnings from Dave Berry and others in the email threads shown earlier,
no design work was needed for threading: F# simply assumed the same threading model as .NET
itself, which essentially mapped .NET threads to operating system threads.

8 EARLY F#—RELEASE

F# “0.5” was little noticed at first, deliberately: the initial implementation was lacking in many ways
and needed time to settle. Initially, the plan was as follows:

(1) Make the language viable for adoption and use.

16This position eventually bore fruit in 2018 when C# 9.0 finally began the transition to assuming non-nullness by default
for reference types, discussed in the retrospective.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:21

(2) Use it to stress-test NET Generics.
(3) Get it out to the public.
(4) See where things led.

I had been influenced by my time at Intel Strategic CAD Laboratories, which used a structured
“maturity model” for research projects and technology development: projects at Intel would proceed
from “concept” to “proof of concept” to “prototype” and then through a product delivery phase.
Thus there was no Microsoft “buy-in” at this stage: few at the company knew of F# apart from
those in MSR Cambridge and their NET team contacts. 6 months later, after several iterations, the
project got noticed by Internet news sites, always keen for the latest scoop, and I decided to make a
clarification on the OCaml mailing list in case things “got out of hand” before the implementation
was fully ready, and in case accusations of “embrace, extend, extinguish” emerged [Boulton 2003].

There have been some utterly speculative (and entirely off—the—mark!!) internet press reports about
this project in the last few days (e.g. see internetnews.com).... I thought it wise to add the following
clarification to the F# website and to post it to this list.

...Despite reports suggesting otherwise, F# is a relatively small research project designed to
demonstrate that it is possible to easily implement ML—like languages for use on the NET
Framework. There are no current plans to commercialize F#.... F# is public, on—going research, and
Microsoft Research regularly and openly collaborates with universities on programming languages

The fact that F# needed to be down-played initially was partly due to the sensitivities around
launching anything “product-like” at the time from MSR.!” At the time, all public software by
MSR had an awkward legal/commercial status: publication of software was primarily to support
a research/publication agenda. Despite a budget nearing $1B, the organization was not at that
stage permitted to make and release commercial products. MSR strongly encouraged open research,
but open software was more problematic. However, designing and delivering new programming
languages was an essential part of any PL research agenda, and indeed the whole rationale behind
Project 7. Further, external “proofing” of these technologies was critical to refine them.

External perceptions were also tricky to manage: from the perspective of computer science
academia and hacker culture, corporations in general—and Microsoft in particular—were often
seen as structural adversaries. Offerings from MSR were even feared, and one leading researcher
suggested that F# would “kill oft” language research. In retrospect such ideas seem laughable—PL
research has bloomed in the last 15 years and hundreds of new languages have been developed—but
these views stemmed from anti-commercial biases, fear of a perceived monopolist, and Microsoft’s
opposition to open source software at the time.

Either way, my belief was that, in the area of programming languages, you had to go public and
be commercially usable in order to influence programming practice, and to be true to both the
spirit of research and the original goals of Project 7. Later, other cutting-edge MSR projects would
not reach their full potential, because they didn’t make the commercially usable releases necessary
to proof the technologies and gain evidence of their utility in sufficient time to occupy a market
niche, examples include Accelerator and Dryad LINQ. On the other hand, MSR provided a good
“institutional home” for a language, given its concentration of expertise and its long-term mission
to change computing. Lab directors and managers such as Andrew Herbert, Andrew Blake, Luca
Cardelli and Byron Cook would be consistently supportive of the work on F# over a long period of

70ne reviewer queried whether the final statement about “no current plans to commercialize” was accurate when written.
I can confirm this was the case: there was no plan at the time to commercialize F#, either as part of Visual Studio nor any
other path. There were a vague aspirations on the part of the author (and the MSR managers who approved the release) that
it might prove commercially relevant.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:22 Don Syme

Juage for Symbolii: P%

Fig. 3. Two posters for F# 1.0 at MSR TechFest 2005 (photos by author)

time. However, doing a public, commercially usable language offering via MSR was not going to be
plain sailing, and the support of the product teams would ultimately be needed.

9 F#1.0,2004-2006—OVERVIEW

After completing NET Generics in mid-2004, the rest of the year saw intense work on improving
F#. At this stage, .NET was on the ascendency inside Microsoft and it achieved widespread external
success on the back of a huge evangelization effort: most programming for the Windows platform
moved over to C# and .NET worldwide. A massive shift towards .NET also happened internally: the
Windows team started major initiatives, including a rewrite of the Windows “shell” and the creation
of many major .NET projects such as Windows Presentation Foundation, Windows Communication
Foundation and Windows Workflow Foundation.

On January 5, 2005, a pre-release of F# 1.0 was declared in my first MSDN (Microsoft Developer
Network) blog entry [Syme 2005].'® In March 2005, F# 1.0 was first demonstrated at “TechFest”, an
internal MSR trade-show in Redmond.

F# developed in crucial ways during 2004-06. Based on successful trials, and with the support
of Byron Cook, MSR manager Luca Cardelli agreed to add developer support to the project. On
February 10, 2005 we were able to advertise and on 24 March 2005, James Margetson joined to form
a small team with interns (Dominic Cooney, May-July 2004, Gregory Neverov June-August 2006).
Small internal and external user communities grew and trust in the project began to form. The
technical additions made to F# during this time were as follows:

(1) Completion of the core Caml-like language programming model (2004)

(2) Targeting .NET generics (2004)

(3) Addition of initialization graphs (2004)

(4) Addition of method overload resolution and object-expressions for interoperability with NET
(2004)

(5) Addition of “statically resolved type parameters” for handling overloaded arithmetic in a
way that fits with Hindley-Milner type inference (2005)

(6) Addition of class/interface constructs for object programming (2005)

(7) Addition of implicit class construction (2006)

18 At the time, individual blogging on MSDN was encouraged by management and proved a positive way for those involved
with F# to utilize Microsoft’s positive brand with developers.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:23

(8) Addition of the “light” indentation-aware syntax (2006)
(9) Addition of a treatment of subtyping within Hindley-Milner type inference (2006)
(10) Addition of runtime meta-programming via quotations (2006)
(11) Addition of F# Interactive, a REPL for F# (2006)
(12) Initial Visual Studio tooling (2006)
(13) Bootstrapping (2006)
(14) Execution on Linux using Mono (2006)

To “proof” the language we turned to some
existing OCaml codebases at MSR including the
SPiM (Stochastic Pi Machine), Static Driver Ver-
ifier and Terminator projects. These tests were
successful, for example allowing the addition
of a Windows-based GUI to SPiM. During this
time, James Margetson was responsible for per-
formance testing and supporting the internal
use of F# on these projects by Andrew Phillips,
Jakob Lichtenberg and Byron Cook. Marget-
son also implemented the first REPL for F# and
created numerous compelling demonstrations
of interactive development using F# scripting
and the REPL, including the famous “DirectX” Fig. 4. The “DirectX 3D” demo used in early F# evan-
scripting showing playful interactive construc- gelism (screenshot by author)
tion of a 3D graphics scene, see Figure 4. The
author and Margetson were responsible for documentation and releases. Andrew Herbert and Luca
Cardelli were the responsible MSR managers at this time.

During this time F# was not the result of a “meeting of minds” amongst MSR Cambridge language
researchers, but rather myself and collaborators pursuing a series of design additions to the initial
implementation, with the help of some feedback from colleagues, users, researcher networks
such as WG2.8 and an emerging worldwide community. The design conversations in the external
community on mailing lists and in blog responses were encouraging, and internal and external
adoption was growing steadily.

Bl r# surface plot

9.1 F# 1.0—Pipelines

One of the first things to become associated with F# was also one of the simplest: the “pipe-forward”
operator, added to the F# standard library in 2003:

let (|>) x f =f x

In conjunction with curried function application this allows an intermediate result to be passed
through a chain of functions, e.g.

L1..10]
|> List.map (fun x -> x *x)
|> List.filter (fun x -> x % 2 = @)

instead of

List.filter (fun x -> x % 2 = @)
(List.map (fun x => x *x) [1 .. 10 1)

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:24 Don Syme

Despite being heavily associated with F#, the use of the pipeline symbol in ML dialects actually
originates from Tobias Nipkow, in May 1994 (with obvious semiotic inspiration from UNIX pipes)
[archives 1994; Syme 2011].

... I promised to dig into my old mail folders to uncover the true story behind [> in Isabelle/ML, which
also turned out popular in F#...

In the attachment you find the original mail thread of the three of us [Larry Paulson; Tobias Nipkow;
Marius Wenzel], coming up with this now indispensable piece of ML art in April/May 1994. The mail
exchange starts as a response of Larry to my changes.

... Tobias ...came up with the actual name [> in the end...

The use of the pipeline symbol is particularly important in F# because type-inference is propagated
left-to-right and name resolution occurs based on information available earlier in the program. For
example, the following passes type checking without an explicit type annotation:

let data = ["one"; "two"; "three"]

data |> List.map (fun s -> s.Length)
In contrast the following requires an explicit type annotation:
let data = ["one"; "two"; "three"]

List.map (fun (s: string) -> s.Length) data
The F# library also defined two and three-argument pipeline operators, e.g.
let (||>) (x1, x2) f = f x1 x2

(0, data) ||> List.fold (fun count s -> count + s.Length)

9.2 F# 1.0—Tackling Object Programming

From the outset, F# consumed class and interface definitions from .NET. Being a functional language,
it was natural to begin by supporting an expression-based form of object implementations akin to
function closures. F# 1.0 described these as follows:"”

An object expression declares an implementation and/or extension of a class or interface. For example,
the following specifies an object that implements the NET IComparer interface:

{ new IComparer with Compare(a,b) = compare a b }
After attempts to allow .NET classes to be declared using OCaml-like record types, on April 27,
2005 I began the process of designing the object-programming extensions for F#, through an email
to Dominic Cooney (no longer an intern, but experienced in using F# and a sounding board for
private discussions):

We're continually coming across the need to be able to present F# APIs in a more OO way...I'm
wondering if I could run some drafts of both the language mechanisms and the API itself by you for
your comments, since you are so familiar with both the library and the standards expected of .NET
libraries.

In the next iteration of the discussion on May 19, 2005 the F# object programming syntax took its
near-final form (with the exclusion of implicit constructors, added later):

Surprisingly this feature is yet to make it into any version of C#.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

The Early History of F# 75:25

type X =
override x.ToString() = "abc

member x.InstanceProperty = "fooproperty"

member x.MutableInstanceProperty
with get() = "fooproperty"
and set(v) = System.Console.WritelLine("mutated!")

member x.Instancelndexer
with get(v) = v+1

member x.InstanceMethod(s1) = "baz"
static member StaticProperty = "fooproperty"

static member MutableStaticProperty
with get() = "fooproperty"
and set(v) = System.Console.WritelLine("mutated!")

static member StaticMethod(s1,s2) = "static method"

In this syntax, “x” is the name of the “this” or “self” parameter and its use in declarations such as
member x.InstanceProperty represent binding occurrences. The decision to use a user-defined
explicit name for this parameter was partly driven by similar decisions in the OCaml system,
and partly by the feeling of horror I had experienced while refereeing an academic paper on the
subtleties of the resolution of “this” in Java inner classes. Since nesting of such constructs would
eventually be required, and considered normal in an ML-family language, it would be better to
require an explicit name.

In retrospect, the addition of object programming to F# was a process of “deconstruction” of
object-orientation into its essential elements of roughly 20 individual features: dot-notation, classes,
method-overloading and so on. I later formalized this list in a private email as follows.

(1) Object programming features acceptable in F#:

(a) Instance properties and methods and type-directed name resolution

(b) Implicit constructors

(c) Static members, i.e. using type names as qualifiers

(d) Indexer notation arr.[x]

(e) Named and optional arguments on methods

(f) Non-hierarchical interface types

(g) Object expressions

(h) Explicit interface implementation on object, record and union types
(2) Object programming features in F# that are “ok when really necessary for performance or API

design”:

(a) Mutable data

(b) Defining events

(c) Defining operators on types

(d) Auto properties

(e) Implementing IDisposable and IEnumerable

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 75. Publication date: June 2020.

75:26 Don Syme

(f) Tasteful uses of type extensions
(g) Structs (for performance)
(h) Delegates (for interop)
(i) Enums (for interop)
(j) Method overloading
(k) Additional primary constructors (a form of overloading)
(3) Object programming features in F# that “avoid where possible”:
(a) Implementation inheritance
(b) Nulls and Unchecked.defaultof<_>
(4) Object programming features that are not supported at all:
(a) Protected members (they encourage implementation inheritance)
(b) Anything to do with aspect oriented programming

Through this process features were progressively incorporated into F# in a way that preserved the
essence of the core expression language and emphasized delegation over inheritance. I summarize
this today by stating that “F# embraces ‘object’ programming and de-emphasizes ‘object-oriented’
programming, especially implementation inheritance” [Syme 2018]. For example, the “protected”
accessibility modifier is not