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1. Introduction

F# is a scalable, succinct, type-safe, type-inferred, efficiently executing functional/imperative/object-
oriented programming language. It aims to be the premier typed functional programming language
for the .NET framework and other implementations of the Ecma 335 Common Language
Infrastructure (CLI) specification. F# was partly inspired by the OCaml language and shares some
common core constructs with it.

1.1 A First Program
Over the next few sections, we will look at some small F# programs, describing some important
aspects of F# along the way. As an introduction to F#, consider the following program:

let numbers = [ 1 .. 10 ]
let square x = x * X
let squares = List.map square numbers

printfn "N*2 = %A" squares

To explore this program, you can:

e Compile it as a project in a development environment such as Visual Studio.
e Manually invoke the F# command line compiler fsc.exe.

e Use F# Interactive, the dynamic compiler that is part of the F# distribution.

1.1.1 Lightweight Syntax

The F# language uses simplified, indentation-aware syntactic constructs known as lightweight
syntax. The lines of the sample program in the previous section form a sequence of declarations and
are aligned on the same column. For example, the two lines in the following code are two separate
declarations:

let squares = List.map square numbers

printfn "N~2 = %A" squares

Lightweight syntax applies to all the major constructs of the F# syntax. In the next example, the code
is incorrectly aligned. The declaration starts in the first line and continues to the second and
subsequent lines, so those lines must be indented to the same column under the first line:

let computeDerivative f x =
let p1 = f (x - 0.05)
let p2 = f (x + 0.05)



(p2 - p1) / 0.1
The following shows the correct alignment:

let computeDerivative f x =
let p1 = f (x - 0.05)
let p2 = f (x + 0.05)
(p2 - p1) / 0.1

The use of lightweight syntax is the default for all F# code in files with the extension . fs, .fsx,
.fsi,or .fsscript.

1.1.2 Making Data Simple
The first line in our sample simply declares a list of numbers from one through ten.

let numbers = [1 .. 10]

An F# list is an immutable linked list, which is a type of data used extensively in functional
programming. Some operators that are related to lists include : : to add an item to the front of a list
and @ to concatenate two lists. If we try these operators in F# Interactive, we see the following
results:

> let vowels = ['e'; 'i';
val vowels: char list = ['e'; 'i1'; 'o'; 'u']

> ['a'] @ vowels;;
val it: char Llist = ['a’'; 'e'; 'i'; 'o'; 'u']

> vowels @ ['y'];;
val it: char list = ['e'; 'i1'; 'o'; 'u'; 'y']
Note that double semicolons delimit lines in F# Interactive, and that F# Interactive prefaces the

result with val to indicate that the result is an immutable value, rather than a variable.

F# supports several other highly effective techniques to simplify the process of modeling and
manipulating data such as tuples, options, records, unions, and sequence expressions. A tuple is an
ordered collection of values that is treated as an atomic unit. In many languages, if you want to pass
around a group of related values as a single entity, you need to create a named type, such as a class
or record, to store these values. A tuple allows you to keep things organized by grouping related
values together, without introducing a new type.

To define a tuple, you separate the individual components with commas.

> let tuple = (1, false, "text");;
val tuple : int * bool * string = (1, false, "text")

> let getNumberInfo (x : int) = (x, x.ToString(), x * Xx);;
val getNumberInfo : int -> int * string * 1int

> getNumberInfo 42;;
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val it : int * string * int = (42, "42", 1764)

A key concept in F# is immutability. Tuples and lists are some of the many types in F# that are
immutable, and indeed most things in F# are immutable by default. Immutability means that once a
value is created and given a name, the value associated with the name cannot be changed.
Immutability has several benefits. Most notably, it prevents many classes of bugs, and immutable
data is inherently thread-safe, which makes the process of parallelizing code simpler.

1.1.3 Making Types Simple
The next line of the sample program defines a function called square, which squares its input.

let square x = x * X

Most statically-typed languages require that you specify type information for a function declaration.
However, F# typically infers this type information for you. This process is referred to as type
inference.

From the function signature, F# knows that square takes a single parameter named x and that the
function returns x * x. The last thing evaluated in an F# function body is the return value; hence
there is no “return” keyword here. Many primitive types support the multiplication (*) operator
(such as byte, uint64, and double); however, for arithmetic operations, F# infers the type int (a
signed 32-bit integer) by default.

Although F# can typically infer types on your behalf, occasionally you must provide explicit type
annotations in F# code. For example, the following code uses a type annotation for one of the
parameters to tell the compiler the type of the input.

> let concat (x : string) v = x + y;;
val concat : string -> string -> string

Because x is stated to be of type string, and the only version of the + operator that accepts a left-
hand argument of type string also takes a string as the right-hand argument, the F# compiler
infers that the parameter y must also be a string. Thus, the result of x + v is the concatenation of
the strings. Without the type annotation, the F# compiler would not have known which version of
the + operator was intended and would have assumed int data by default.

The process of type inference also applies automatic generalization to declarations. This
automatically makes code generic when possible, which means the code can be used on many types
of data. For example, the following code defines a function that returns a new tuple in which the
two values are swapped:

> let swap (x, y) = (y, X);;
val swap : 'a * 'b -> 'b * 'a

> swap (1, 2);;
val it : int * int = (2, 1)

> swap ("you", true);;
val it : bool * string = (true, "you")
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Here the function swap is generic, and 'a and 'b represent type variables, which are placeholders
for types in generic code. Type inference and automatic generalization greatly simplify the process
of writing reusable code fragments.

1.1.4 Functional Programming

Continuing with the sample, we have a list of integers named numbers, and the square function,
and we want to create a new list in which each item is the result of a call to our function. This is
called mapping our function over each item in the list. The F# library function List.map does just
that:

let squares = List.map square numbers
Consider another example:

> List.map (fun x -> x % 2 =0) [1 .. 5];;

val it : bool Llist
= [false; true; false; true; false]

The code (fun x -> x % 2 = 0) defines an anonymous function, called a function expression,
that takes a single parameter x and returns the result x % 2 = 0, which is a Boolean value that
indicates whether x is even. The - > symbol separates the argument list (x) from the function body
(x % 2 = 0).

Both of these examples pass a function as a parameter to another function—the first parameter to
List.map is itself another function. Using functions as function values is a hallmark of functional
programming.

Another tool for data transformation and analysis is pattern matching. This powerful switch
construct allows you to branch control flow and to bind new values. For example, we can match an
F# list against a sequence of list elements.

let checkList alist =
match alist with

| [] ->0

I[ -> 1

| [a, b] -> 2

| [a; b; c] -> 3

| - Fa11w1th "List is too big!"

In this example, alist is compared with each potentially matching pattern of elements. When
alist matches a pattern, the result expression is evaluated and is returned as the value of the
match expression. Here, the - > operator separates a pattern from the result that a match returns.
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Pattern matching can also be used as a control construct—for example, by using a pattern that
performs a dynamic type test:

let getType (x : obj) =
match x with
| :? string -> "x is a string"
| :? int -> "x is an int"
| :? System.Exception -> "x is an exception"

The : ? operator returns true if the value matches the specified type, so if x is a string, getType
returns “x is a string”.

Function values can also be combined with the pipeline operator, | >. For example, given these
functions:

let square x =X * X

let toStr (x : int) = x.ToString()

let reverse (x : string) = new System.String(Array.rev
(x.ToCharArray()))

We can use the functions as values in a pipeline:

> let result = 32 |> square |> toStr |> reverse;;
val it : string = "4201"

Pipelining demonstrates one way in which F# supports compositionality, a key concept in functional
programming. The pipeline operator simplifies the process of writing compositional code where the
result of one function is passed into the next.

1.1.5 Imperative Programming
The next line of the sample program prints text in the console window.

printfn "N*2 = %A" squares

The F# library function printfnis a simple and type-safe way to print text in the console window.
Consider this example, which prints an integer, a floating-point number, and a string:

> printfn "%d * %f = %s" 5 0.75 ((5.0 * ©0.75).ToString());;
5 * 9.750000 = 3.75
val it : unit = ()

The format specifiers %d, %, and %s are placeholders for integers, floats, and strings. The %A format
can be used to print arbitrary data types (including lists).

The printfn function is an example of imperative programming, which means calling functions for
their side effects. Other commonly used imperative programming techniques include arrays and
dictionaries (also called hash tables). F# programs typically use a mixture of functional and
imperative techniques.
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1.1.6 .NET Interoperability and CLI Fidelity
The Common Language Infrastructure (CLI) function System.Console.ReadKey to pause the
program before the console window closes.

System.Console.ReadKey(true)

Because F# is built on top of CLI implementations, you can call any CLI library from F#. Furthermore,
other CLI languages can easily use any F# components.

1.1.7 Parallel and Asynchronous Programming

F# is both a parallel and a reactive language. During execution, F# programs can have multiple
parallel active evaluations and multiple pending reactions, such as callbacks and agents that wait to
react to events and messages.

One way to write parallel and reactive F# programs is to use F# async expressions. For example, the
code below is similar to the original program in §1.1 except that it computes the Fibonacci function
(using a technique that will take some time) and schedules the computation of the numbers in
parallel:

let rec fib x = if x < 2 then 1 else fib(x-1) + fib(x-2)

let fibs =
Async.Parallel [ for i in 0..40 -> async { return fib(i) } ]
| > Async.RunSynchronously

printfn "The Fibonacci numbers are %A" fibs

System.Console.ReadKey(true)
The preceding code sample shows multiple, parallel, CPU-bound computations.

F# is also a reactive language. The following example requests multiple web pages in parallel, reacts
to the responses for each request, and finally returns the collected results.

open System
open System.IO
open System.Net

let http url =
async { let req = WebRequest.Create(Uri url)
use! resp = req.AsyncGetResponse()
use stream = resp.GetResponseStream()
use reader new StreamReader(stream)
let contents = reader.ReadToEnd()
return contents }

let sites = ["http://www.bing.com"; "http://www.google.com";
"http://www.yahoo.com"; "http://www.search.com"]
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let htmlOfSites =
Async.Parallel [for site in sites -> http site ]
| > Async.RunSynchronously

By using asynchronous workflows together with other CLI libraries, F# programs can implement
parallel tasks, parallel I/O operations, and message-receiving agents.

1.1.8 Strong Typing for Floating-Point Code

F# applies type checking and type inference to floating-point-intensive domains through units of
measure inference and checking. This feature allows you to type-check programs that manipulate
floating-point numbers that represent physical and abstract quantities in a stronger way than other
typed languages, without losing any performance in your compiled code. You can think of this
feature as providing a type system for floating-point code.

Consider the following example:

[<Measure>] type kg
[<Measure>] type m
[<Measure>] type s

let gravityOnEarth = 9.81<m/s"2>
let heightOfTowerOfPisa = 55.86<m>
let speedOfImpact = sqrt(2.0 * gravityOnEarth * heightOfTowerOfPisa)

The Measure attribute tells F# that kg, s, and m are not really types in the usual sense of the word,
but are used to build units of measure. Here speedOfImpact is inferred to have type float<m/s>

1.1.9 Object-Oriented Programming and Code Organization

The sample program shown at the start of this chapter is a script. Although scripts are excellent for
rapid prototyping, they are not suitable for larger software components. F# supports the transition
from scripting to structured code through several techniques.

The most important of these is object-oriented programming through the use of class type
definitions, interface type definitions, and object expressions. Object-oriented programming is a
primary application programming interface (API) design technique for controlling the complexity of
large software projects. For example, here is a class definition for an encoder/decoder object.

open System

/// Build an encoder/decoder object that maps characters to an
/// encoding and back. The encoding is specified by a sequence
/// of character pairs, for example, [('a','Z"'); ('Z','a")]
type CharMapEncoder(symbols: seqg<char*char>) =

let swap (x, y) = (¥, x)

/// An immutable tree map for the encoding
let fwd = symbols |> Map.ofSeq
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/// An immutable tree map for the decoding
let bwd = symbols |> Seq.map swap |> Map.ofSeq

let encode (s:string)
String [| for c in s -> if fwd.ContainsKey(c) then fwd.[c] else

c |1
let decode (s:string)
String [| for c in s -> if bwd.ContainsKey(c) then bwd.[c] else

c |1

/// Encode the input string
member Xx.Encode(s) = encode s

/// Decode the given string
member x.Decode(s) = decode s

You can instantiate an object of this type as follows:

let rotl3 (c:char) =
char(int 'a' + ((int c - int 'a' + 13) % 26))
let encoder =
CharMapEncoder( [for c in 'a'..'z' -> (c, rotl3 c)])

And use the object as follows:

> "F# is fun!" |> encoder.Encode ;;
val it : string = "F# vf sha!"

> "F# is fun!" |> encoder.Encode |> encoder.Decode ;;
val it : String = "F# is fun!"

An interface type can encapsulate a family of object types:

open System

type IEncoding =
abstract Encode : string -> string
abstract Decode : string -> string

In this example, IEncoding is an interface type that includes both Encode and Decode object
types.

Both object expressions and type definitions can implement interface types. For example, here is an
object expression that implements the IEncoding interface type:

let nullEncoder =
{ new IEncoding with
member x.Encode(s)
member x.Decode(s)

]
n
-
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Modules are a simple way to encapsulate code during rapid prototyping when you do not want to
spend the time to design a strict object-oriented type hierarchy. In the following example, we place a
portion of our original script in a module.

module ApplicationLogic =
let numbers n = [1 .. n]
let square x = x * X
let squares n = numbers n |> List.map square

printfn "Squares up to 5 = %A" (ApplicationLogic.squares 5)
printfn "Squares up to 10 = %A" (ApplicationLogic.squares 10)
System.Console.ReadKey(true)

Modules are also used in the F# library design to associate extra functionality with types. For
example, List.map is a function in a module.

Other mechanisms aimed at supporting software engineering include signatures, which can be used
to give explicit types to components, and namespaces, which serve as a way of organizing the name
hierarchies for larger APIs.

1.1.10 Information-rich Programming

F# Information-rich programming addresses the trend toward greater availability of data, services,
and information. The key to information-rich programming is to eliminate barriers to working with
diverse information sources that are available on the Internet and in modern enterprise
environments. Type providers and query expressions are a significant part of F# support for
information-rich programming.

The F# Type Provider mechanism allows you to seamlessly incorporate, in a strongly typed manner,
data and services from external sources. A type provider presents your program with new types and
methods that are typically based on the schemas of external information sources. For example, an
F# type provider for Structured Query Language (SQL) supplies types and methods that allow
programmers to work directly with the tables of any SQL database:

// Add References to FSharp.Data.TypeProviders, System.Data, and
System.Data.Ling
type schema = SqglDataConnection<"Data Source=localhost;Integrated
Security=SSPI;">

let db = schema.GetDataContext()

The type provider connects to the database automatically and uses this for IntelliSense and type
information.
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Query expressions (added in F# 3.0) add the established power of query-based programming against
SQL, Open Data Protocol (OData), and other structured or relational data sources. Query expressions
provide support for Language-Integrated Query (LINQ) in F#, and several query operators enable you
to construct more complex queries. For example, we can create a query to filter the customers in the
data source:

let countOfCustomers =
query { for customer in db.Customers do
where (customer.LastName.StartsWith("N"))
select (customer.FirstName, customer.LastName) }

Now it is easier than ever to access many important data sources—including enterprise, web, and
cloud—by using a set of built-in type providers for SQL databases and web data protocols. Where
necessary, you can create your own custom type providers or reference type providers that others
have created. For example, assume your organization has a data service that provides a large and
growing number of named data sets, each with its own stable data schema. You may choose to
create a type provider that reads the schemas and presents the latest available data sets to the
programmer in a strongly typed way.

1.2 Notational Conventions in This Specification

This specification describes the F# language by using a mixture of informal and semiformal
techniques. All examples in this specification use lightweight syntax, unless otherwise specified.

Regular expressions are given in the usual notation, as shown in the table:

Notation Meaning

regexp+ One or more occurrences

regexp* Zero or more occurrences

regexp? Zero or one occurrences

[ char - char ] Range of ASCII characters

[ ~ char - char ] Any characters except those in the range

Unicode character classes are referred to by their abbreviation as used in CLI libraries for regular
expressions—for example, \ Lu refers to any uppercase letter. The following characters are referred
to using the indicated notation:

Character Name Notation

\b backspace = ASCII/UTF-8/UTF-16/UTF-32 code 08
\n newline ASCII/UTF-8/UTF-16/UTF-32 code 10
\r return ASCII/UTF-8/UTF-16/UTF-32 code 13
\t tab ASCII/UTF-8/UTF-16/UTF-32 code 09

Strings of characters that are clearly not a regular expression are written verbatim. Therefore, the
following string

abstract

matches precisely the characters abstract.
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Where appropriate, apostrophes and quotation marks enclose symbols that are used in the
specification of the grammar itself, such as '<' and ' | '. For example, the following regular
expression matches (+) or (-):

NG CIEDIDE

This regular expression matches precisely the characters #if:
"Hif"

Regular expressions are typically used to specify tokens.
token token-name = regexp

In the grammar rules, the notation e Lement-name,,: indicates an optional element. The notation
. indicates repetition of the preceding non-terminal construct and the separator token. For

example, expr ',' ... '," expr meansa sequence of one or more expr elements separated
by commas.
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2. Program Structure

The inputs to the F# compiler or the F# Interactive dynamic compiler consist of:

e Source code files, with extensions . fs, .fsi, .fsx,or .fsscript.

e  Files with extension . s must conform to grammar element implementation-filein
§12.1.

e Files with extension . fsi must conform to grammar element signature-file in §12.2.

e  Files with extension . fsx or . fsscript must conform to grammar element script-file
in §12.3.

e Script fragments (for F# Interactive). These must conform to grammar element script-
fragment. Script fragments can be separated by ; ; tokens.

e Assembly references that are specified by command line arguments or interactive directives.
e Compilation parameters that are specified by command line arguments or interactive directives.
e Compiler directives such as #time.

The COMPILED compilation symbol is defined for input that the F# compiler has processed. The
INTERACTIVE compilation symbolis defined for input that F# Interactive has processed.

Processing the source code portions of these inputs consists of the following steps:

1. Decoding. Each file and source code fragment is decoded into a stream of Unicode characters, as
described in the C# specification, sections 2.3 and 2.4. The command-line options may specify a
code page for this process.

2. Tokenization. The stream of Unicode characters is broken into a token stream by the lexical
analysis described in §3.

3. Lexical Filtering. The token stream is filtered by a state machine that implements the rules
described in §15. Those rules describe how additional (artificial) tokens are inserted into the
token stream and how some existing tokens are replaced with others to create an augmented
token stream.

4. Parsing. The augmented token stream is parsed according to the grammar specification in this
document.

5. Importing. The imported assembly references are resolved to F# or CLI assembly specifications,
which are then imported. From the F# perspective, this results in the pre-definition of numerous
namespace declaration groups (§12.1), types and type provider instances. The namespace
declaration groups are then combined to form an initial name resolution environment (§14.1).



Checking. The results of parsing are checked one by one. Checking involves such procedures as
Name Resolution (§14.1), Constraint Solving (§14.5), and Generalization (§14.6.7), as well as the
application of other rules described in this specification.

Type inference uses variables to represent unknowns in the type inference problem. The various
checking processes maintain tables of context information including a name resolution
environment and a set of current inference constraints. After the processing of a file or program
fragment is complete, all such variables have been either generalized or resolved and the type
inference environment is discarded.

Elaboration. One result of checking is an elaborated program fragment that contains elaborated
declarations, expressions, and types. For most constructs, such as constants, control flow, and
data expressions, the elaborated form is simple. Elaborated forms are used for evaluation, CLI
reflection, and the F# expression trees that are returned by quoted expressions (§6.8).

Execution. Elaborated program fragments that are successfully checked are added to a
collection of available program fragments. Each fragment has a static initializer. Static initializers
are executed as described in (§12.5).
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3. Lexical Analysis

Lexical analysis converts an input stream of Unicode characters into a stream of tokens by iteratively
processing the stream. If more than one token can match a sequence of characters in the source file,
lexical processing always forms the longest possible lexical element. Some tokens, such as block-
comment-start, are discarded after processing as described later in this section.

3.1 Whitespace

Whitespace consists of spaces and newline characters.

regexp whitespace = ' '+
| l\r\l l\nl

regexp newline "\n'
token whitespace-or-newline = whitespace | newline

Whitespace tokens whitespace-or-newline are discarded from the returned token stream.

3.2 Comments

Block comments are delimited by (* and *) and may be nested. Single-line comments begin with
two backslashes (//) and extend to the end of the line.

token block-comment-start = "(*"
token block-comment-end = "*)"
token end-of-line-comment = "//" [~'\n" '"\r']*

When the input stream matches a bLock-comment-start token, the subsequent text is tokenized
recursively against the tokens that are described in §3 until a bLock-comment -end token is found.
The intermediate tokens are discarded.

For example, comments can be nested, and strings that are embedded within comments are
tokenized by the rules for string, verbatim-string, and triple-quoted string.In
particular, strings that are embedded in comments are tokenized in their entirety, without
considering closing *) marks. As a result of this rule, the following is a valid comment:

)

However, the following construct, which was valid in F# 2.0, now produces a syntax error because a

(* Here's a code snippet: let s =

closing comment token *) followed by a triple-quoted mark is parsed as part of a string:

()

For the purposes of this specification, comment tokens are discarded from the returned lexical
stream. In practice, XML documentation tokens are end-of-Line-comments that begin with ///.
The delimiters are retained and are associated with the remaining elements to generate XML
documentation.



3.3 Conditional Compilation

The lexical preprocessing directives #1if ident/#else/#endif delimit conditional compilation
sections. The following describes the grammar for such sections:

token if-directive = "#if" whitespace if-expression-text
token else-directive = "#else"
token endif-directive = "#endif"

if-expression-term =
ident-text
"(' if-expression ')'

i1f-expression-neg =
if-expression-term
1" if-expression-term

if-expression-and =
1f-expression-neg
if-expression-and && 1if-expression-and

if-expression-or =
if-expression-and
if-expression-or [| if-expression-or

if-expression = 1if-expression-or

A preprocessing directive always occupies a separate line of source code and always begins with a #
character followed immediately by a preprocessing directive name, with no intervening whitespace.
However, whitespace can appear before the # character. A source line that contains the #if, #else,
or #endif directive can end with whitespace and a single-line comment. Multiple-line comments are
not permitted on source lines that contain preprocessing directives.

If an if-directive token is matched during tokenization, text is recursively tokenized until a
corresponding eLse-directive or endif-directive. If the evaluation of the associated 1f-
expression-text when parsed as an if-expression is true in the compilation environment
defines (where each ident-text is evaluataed according to the values given by command line
options such as —define), the token stream includes the tokens between the i1f-directive and
the corresponding eLse-directive or endif-directive. Otherwise, the tokens are discarded.
The converse applies to the text between any corresponding eLse-directive and the endif-
directive.

e Inskipped text, #if ident/#else/#endif sections can be nested.

e Strings and comments are not treated as special

3.4 Identifiers and Keywords

Identifiers follow the specification in this section.
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regexp digit-char = [0-9]

regexp letter-char = '\Lu' | "\L1' | "\Lt" | "\Lm' | '\Lo' | "\N1'
regexp connecting-char = '\Pc'
regexp combining-char = '\Mn' | "\Mc'

regexp formatting-char = '\Cf'

regexp ident-start-char =
| Letter-char

regexp ident-char =
| Letter-char
| digit-char
| connecting-char
| combining-char
| formatting-char
|
|

regexp ident-text = ident-start-char ident-char*
token ident =
| ident-text For example, myNamel
I O N N B A UNAUUAN S I T
For example, "~ “value.with odd#name’ "

Any sequence of characters that is enclosed in double-backtick marks ("~ ~ ), excluding newlines,
tabs, and double-backtick pairs themselves, is treated as an identifier. Note that when an identifier is
used for the name of a types, union type case, module, or namespace, the following characters are
not allowed even inside double-backtick marks:

l'll I-}.II ' 'l I&II I[‘I I]II I/II I\\'I '*'I '\'”I "

All input files are currently assumed to be encoded as UTF-8. See the C# specification for a list of the
Unicode characters that are accepted for the Unicode character classes \Lu, \Li, \Lt, \Lm, \Lo, \NI,
\Pc, \Mn, \Mc, and \Cf.

The following identifiers are treated as keywords of the F# language:

token ident-keyword =

abstract and as assert base begin class default delegate do
done

downcast downto elif else end exception extern false finally
for

fun function global if in inherit inline interface internal
lazy let

match member module mutable namespace new null of open or

override private public rec return sig static struct then to

true try type upcast use val void when while with yield

The following identifiers are reserved for future use:

token reserved-ident-keyword =
atomic break checked component const constraint constructor
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continue eager fixed fori functor include
measure method mixin object parallel params process protected pure
recursive sealed tailcall trait virtual volatile

A future revision of the F# language may promote any of these identifiers to be full keywords.
The following token forms are reserved, except when they are part of a symbolic keyword (§3.6).

token reserved-ident-formats =
| ident-text ( '!' | '#'")

In the remainder of this specification, we refer to the token that is generated for a keyword simply
by using the text of the keyword itself.

3.5 Strings and Characters

String literals may be specified for two types:

e Unicode strings, type string =System.String

e Unsigned byte arrays, type byte[ | =bytearray

Literals may also be specified by using C#-like verbatim forms that interpret \ as a literal character
rather than an escape sequence. In a UTF-8-encoded file, you can directly embed the following in a
string in the same way as in C#:

e Unicode characters, such as “\u0041bc”

e Identifiers, as described in the previous section, such as “abc”

e Trigraph specifications of Unicode characters, such as “\067” which represents “C”

regexp escape-char = '\' ["\'ntbrafv]
regexp non-escape-chars = '\' [*"\'ntbrafv]
regexp simple-char-char =
| (any char except '\n' '\t' '\r' '\b' "\a' '\f' "\v' "\ ")

regexp unicodegraph-short = '\' 'u' hexdigit hexdigit hexdigit
hexdigit
regexp unicodegraph-Long = '\' 'U' hexdigit hexdigit hexdigit
hexdigit

hexdigit hexdigit hexdigit
hexdigit

regexp trigraph = '\' digit-char digit-char digit-char

regexp char-char =
| simple-char-char
| escape-char
| trigraph
| unicodegraph-short

regexp string-char =
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| simple-string-char
| escape-char

| non-escape-chars

| trigraph

| unicodegraph-short
| unicodegraph-Long
| newline

regexp string-elem =
| string-char
| '"\"' newline whitespace* string-elem

token char = ' char-char '
token string = " string-char* "

regexp verbatim-string-char =
| simple-string-char
non-escape-chars

|

| newline

| \

| nn
token verbatim-string = @" verbatim-string-char* "
token bytechar = ' simple-or-escape-char 'B
token bytearray = " string-char* "B

token verbatim-bytearray = @" verbatim-string-char* "B
token simple-or-escape-char = escape-char | simple-char
token simple-char = any char except
newline,return,tab,backspace, ',\,"

token triple-quoted-string = simple-or-escape-char* """

To translate a string token to a string value, the F# parser concatenates all the Unicode characters
for the string-char elements within the string. Strings may include \n as a newline character.
However, if a line ends with \, the newline character and any leading whitespace elements on the
subsequent line are ignored. Thus, the following gives s the value "abcdef":

let s = "abc\
def"

Without the backslash, the resulting string includes the newline and whitespace characters. For
example:

let s = "abc
def"
In this case, s has the value "abc\816 def" where \016 is the embedded control character

for \n, which has Unicode UTF-16 value 10.
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Verbatim strings may be specified by using the @ symbol preceding the string as in C#. For example,
the following assigns the value "abc\def" to s.

let s = @"abc\def"

String-like and character-like literals can also be specified for unsigned byte arrays (type byte][ ]).
These tokens cannot contain Unicode characters that have surrogate-pair UTF-16 encodings or UTF-
16 encodings greater than 127.

A triple-quoted string is specified by using three quotation marks ( ) to ensure that a string that
includes one or more escaped strings is interpreted verbatim. For example, a triple-quoted string can

be used to embed XML blobs:

let catalog =
<?xml version="1.0"?>
<catalog>
<book id="book">
<author>Author</author>
<title>F#</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>»2012-10-01</publish_date>
<description>An in-depth look at creating applications in
F#</description>
</book>
</catalog>

3.6 Symbolic Keywords

The following symbolic or partially symbolic character sequences are treated as keywords:

token symbolic-keyword =
let! use! do! yield! return!
| > <- .+ ()L TI<>ITI1 111}
B S IR S L= 5y =

227 (%) <@ @ <G0 00>

The following symbols are reserved for future use:

token reserved-symbolic-sequence =

~
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3.7 Symbolic Operators
User-defined and library-defined symbolic operators are sequences of characters as shown below,
except where the sequence of characters is a symbolic keyword (§3.6).

1%&*+- . /<=>@" |~
first-op-char | ?

regexp first-op-char
regexp op-char

token quote-op-Lleft
| <@ <@@

token quote-op-right =
| @ @@>

token symbolic-op =
| ?
| ?<-
| first-op-char op-char*
| guote-op-Left
| guote-op-right

For example, &&& and | | | are valid symbolic operators. Only the operators ? and ?<- may start
with ?.

The quote-op-Leftand quote-op-right operators are used in quoted expressions (§6.8).

For details about the associativity and precedence of symbolic operators in expression forms, see
§4.4.

3.8 Numeric Literals
The lexical specification of numeric literals is as follows:

regexp digit= [0-9]
regexp hexdigit = digit | [A-F] | [a-f]

regexp octaldigit = [0-7]
regexp bitdigit = [0-1]
regexp int =
| digit+ For example, 34
regexp xint =
| @ (x|X) hexdigit+ For example, ©x22
| @ (0]|0) octaldigit+ For example, 0042
| © (b|B) bitdigit+ For example, 0b10010

(int|xint) 'y' For example, 34y
(int|xint) 'uy' For example, 34uy
(int|xint) 's' For example, 34s

(int|xint) 'us' For example, 34us
(int|xint) '1' For example, 341
(int|xint) 'ul' For example, 34ul

token sbyte
token
token intl6
token uintle
token int32
token uint32

S
<
¢-|.
n
oo
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(int|xint) 'u' For example, 34u
(int|xint) 'n' For example, 34n
(int|xint) 'un' For example, 34un
(int|xint) 'L' For example, 34L
(int|xint) 'UL' For example, 34UL
(int|xint) 'uL' For example, 34ulL

token nativeint
token unativeint
token inté64
token uinté64

token ieee32 =
| float [Ff] For example, 3.0F or 3.0f
| xint '1f' For example, ©x000000001f
token ieee64 =
| float For example, 3.0
| xint 'LF' For example, 0x0000000000000000LF

token bignum = int ('Q' | 'R" | 'z* | 'I' | 'N'" | 'G")
For example,
34742626263193832612536171N

token decimal = (float|int) [Mm]
token float =

digit+ . digit*
digit+ (. digit* )? (e|E) (+|-)? digit+

3.8.1 Post-filtering of Adjacent Prefix Tokens
Negative integers are specified using the - token; for example, - 3. The token steam is post-filtered
according to the following rules:

- and 3 becomes the single token “-3”. Otherwise, the tokens remain separate. However the “-”
token is marked as an ADJACENT_PREFIX_OP token.

grammar production expr = MINUS expr.

e Otherwise, the usual grammar rules apply to the uses of — and +, with an addition for
ADJACENT_PREFIX OP:

expr = expr MINUS expr
| MINUS expr
| ADJACENT_PREFIX_OP expr
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“w »”n

3.8.2 Post-filtering of Integers Followed by Adjacent “..
Tokens of the form

token intdotdot = int..

”

such as 34. . are post-filtered to two tokens: one int and one symbolic-keyword, “..”.

This rule allows “. .” to immediately follow an integer. This construction is used in expressions of the
form [for x in 1..2 -> x + x ].Without this rule, the longest-match rule would consider

o n
o .

this sequence to be a floating-point number followed by a

3.8.3 Reserved Numeric Literal Forms
The following token forms are reserved for future numeric literal formats:

token reserved-Literal-formats =

3.8.4 Shebang

A shebang (#!) directive may exist at the beginning of F# source files. Such a line is treated as a
comment. This allows F# scripts to be compatible with the Unix convention whereby a script
indicates the interpreter to use by providing the path to that interpreter on the first line, following
the #! directive.

#!/bin/usr/env fsharpi --exec

3.9 Line Directives

Line directives adjust the source code filenames and line numbers that are reported in error
messages, recorded in debugging symbols, and propagated to quoted expressions. F# supports the
following line directives:

token Lline-directive =
# int
# int string
# 1int verbatim-string
#line int
#line int string
#line int verbatim-string

A line directive applies to the line that immediately follows the directive. If no line directive is
present, the first line of a file is numbered 1.

3.10 Hidden Tokens

Some hidden tokens are inserted by lexical filtering (§15) or are used to replace existing tokens. See
§15 for a full specification and for the augmented grammar rules that take these into account.
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3.11 Identifier Replacements

The following table lists identifiers that are automatically replaced by expressions.

Identifier

Replacement

__ SOURCE_DIRECTORY_

__SOURCE_FILE__

_ LINE__

A literal verbatim string that specifies the name of the directory that contains the
current file. For example:
C:\source

The name of the current file is derived from the most recent line directive in the
file. If no line directive has appeared, the name is derived from the name that
was specificed to the command-line compiler in combination with
System.IO.Path.GetFullPath.
In F# Interactive, the name stdin is used. When F# Interactive is used from
tools such as Visual Studio, a line directive is implicitly added before the
interactive execution of each script fragment.
A literal verbatim string that contains the name of the current file. For example:

file.fs
A literal string that specifies the line number in the source file, after taking into
account adjustments from line directives.
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4. Basic Grammar Elements

This section defines grammar elements that are used repeatedly in later sections.

4.1 Operator Names
Several places in the grammar refer to an ident-or-op rather than an ident:

ident-or-op :=
| ident
| ( op-name )

| (*)

op-name :=
| symbolic-op
| range-op-name
| active-pattern-op-name

range-op-name :=
|
|

active-pattern-op-name :=
| | ident | ... | ident |
| | ident | ... | ident | _ |

In operator definitions, the operator name is placed in parentheses. For example:
let (+++) xy = (X, y)

This example defines the binary operator +++. The text (+++) isan ident-or-op that acts as an
identifier with associated text +++. Likewise, for active pattern definitions (§7), the active pattern
case names are placed in parentheses, as in the following example:

let (|A|B|C|) x = if x < @ then A elif x = @ then B else C

Because an ident-or-op acts as an identifier, such names can be used in expressions. For
example:

List.map ((+) 1) [ 1; 2; 3 ]
The three character token (*)defines the * operator:
let (*) xy = (x+Yy)

To define other operators that begin with *, whitespace must follow the opening parenthesis;
otherwise (* is interpreted as the start of a comment:

let ( *+* ) xy = (X +y)
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Symbolic operators and some symbolic keywords have a compiled name that is visible in the
compiled form of F# programs. The compiled names are shown below.

[ op_Nil

::  op_ColonColon

+ op_Addition
op_Subtraction

* op_Multiply
op_Division

**  op_Exponentiation
op_Append

n op_Concatenate

% op_Modulus

&8& op_BitwiseAnd

||| op_BitwiseOr

ANN - op_ExclusiveOr

<< op_LeftShift

~~~ op_LogicalNot

>>> op_RightShift

~+ op_UnaryPlus

~-  op_UnaryNegation

= op_Equality
op_Inequality

<= op_LessThanOrEqual

>=  op_GreaterThanOrEqual

< op_LessThan

> op_GreaterThan

? op_Dynamic

?<- op_DynamicAssignment

|> op_PipeRight

| |> op_PipeRight2

|| |> op_PipeRight3

<| op_PipelLeft

|| op_PipeLeft2

||| op_PipeLeft3

! op_Dereference

>> op_ComposeRight

<< op_ComposelLeft

<@ @> op_Quotation

<@@ @@> op_QuotationUntyped

~% op_Splice

~%% op_SpliceUntyped

~& op_AddressOf

~&&% op_IntegerAddressOf

|| op_BooleanOr

&% op_BooleanAnd

+= op_AdditionAssignment

-= op_SubtractionAssignment

*=  op_MultiplyAssignment

/= op_DivisionAssignment
op_Range

op_RangeStep

—_ A A
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Compiled names for other symbolic operators are op _Ni...N, where N; to N, are the names for the
characters as shown in the table below. For example, the symbolic identifier <* has the compiled
name op_LessMultiply:

Greater
Less
Plus

- Minus
Multiply
= Equals
Twiddle
Percent
Dot

Amp

Bar

At

Hash
Hat
Bang
Qmark
Divide
Dot
Colon
LParen
Comma
RParen
LBrack
RBrack

* + A Vv

4

R

NV > HE®— -

[ I ) A~ e o

4.2 Long Identifiers

Long identifiers Long-ident are sequences of identifiers that are separated by .’ and optional
whitespace. Long identifiers Long-ident-or-op are long identifiers that may terminate with an
operator name.

long-ident := 1ident '.' ... '.' 1ident
long-ident-or-op :=

| Long-ident '.' ident-or-op

| ident-or-op

4.3 Constants

The constants in the following table may be used in patterns and expressions. The individual lexical
formats for the different constants are defined in §3.

const :=
| sbyte
| inti16
| int32
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| inte4 -- 8, 16, 32 and 64-bit signed integers

| byte

| uintie

| uint32

| int -- 32-bit signed integer

| uinte4 -- 8, 16, 32 and 64-bit unsigned integers

| ieee32 -- 32-bit number of type "float32"

| ieee64 -- 64-bit number of type "float"

| bignum -- User or library-defined integral
literal type

| char -- Unicode character of type "char"

| string -- String of type "string"
(System.String)

| verbatim-string -- String of type "string"
(System.String)

| triple-quoted-string -- String of type "string"
(System.String)

| bytestring -- String of type "byte[]"

| verbatim-bytearray -- String of type "byte[]"

| bytechar -- Char of type "byte"

| false | true -- Boolean constant of type "bool"

| O -- unit constant of type "unit"

4.4 Operators and Precedence

4.4.1 Categorization of Symbolic Operators

The following symbol1ic-op tokens can be used to form prefix and infix expressions. The marker OP
represents all symbolic-op tokens that begin with the indicated prefix, except for tokens that
appear elsewhere in the table.

infix-or-prefix-op :=
+, -y e, -y, B, &, &&

prefix-op :=
infix-or-prefix-op
~ o (and any repetitions of ~)
op (except !=)

infix-op :=

infix-or-prefix-op
-OP +OP || <OP >OP = |OP &0OP ~OP *OP /OP %0P !=
(or any of these preceded by one or more
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The operators +, -, +., - ., %, %%, & && can be used as both prefix and infix operators. When these
operators are used as prefix operators, the tilde character is prepended internally to generate the
operator name so that the parser can distinguish such usage from an infix use of the operator. For
example, -x is parsed as an application of the operator ~- to the identifier x. This generated name is
also used in definitions for these prefix operators. Consequently, the definitions of the following
prefix operators include the ~ character:

// To completely redefine the prefix + operator:
let (~+) x = x

// To completely redefine the infix + operator to be addition
modulo-7
let (+) ab=(a+b) %7

// To define the operator on a type:
type C(n:int) =
letn=n%7
member X.N = n
static member (~+) (x:C) = X
static member (~-) (x:C) C(-n)
static member (+) (x1:C,x2:C) = C(x1.N+x2.N)
static member (-) (x1:C,x2:C) = C(x1.N-x2.N)

The: : operator is special. It represents the union case for the addition of an element to the head of
an immutable linked list, and cannot be redefined, although it may be used to form infix expressions.
It always accepts arguments in tupled form—as do all union cases—rather than in curried form.

4.4.2 Precedence of Symbolic Operators and Pattern/Expression Constructs
Rules of precedence control the order of evaluation for ambiguous expression and pattern
constructs. Higher precedence items are evaluated before lower precedence items.

The following table shows the order of precedence, from highest to lowest, and indicates whether
the operator or expression is associated with the token to its left or right. The OP marker represents
the symbol1ic-op tokens that begin with the specified prefix, except those listed elsewhere in the
table. For example, +OP represents any token that begins with a plus sign, unless the token appears
elsewhere in the table.

Operator or expression Associativity Comments

f<types> Left High-precedence type application; see §15.3
f(x) Left High-precedence application; see §15.2
. Left

prefix-op Left Applies to prefix uses of these symbols
"| rule" Right Pattern matching rules

"f x" Left

"lazy x"

"assert x"

* QP Right

*OP /OP %0P Left

-OP +0P Left Applies to infix uses of these symbols
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Operator or expression Associativity Comments

:? Not associative
- Right

~OP Right

1=0P <OP >OP = |OP &OP $ Left

D> Right

& && Left

or || Left

) Not associative
1= Right

-> Right

if Not associative
function, fun, match, try Not associative
let Not associative
; Right

| Left

when Right

as Right

If ambiguous grammar rules (such as the rules from §6) involve tokens in the table, a construct that
appears earlier in the table has higher precedence than a construct that appears later in the table.
The associativity indicates whether the operator or construct applies to the item to the left or the
right of the operator.

For example, consider the following token stream:
a+b*c

In this expression, the expr infix-op exprruleforb * c takes precedence overthe expr
infix-op exprrulefora + b, because the * operator has higher precedence than the +
operator. Thus, this expression can be pictured as follows:

a+b*c
rather than
a+b *c
Likewise, given the tokens
a*b*c
the left associativity of * means we can picture the resolution of the ambiguity as:

a*b *c

In the preceding table, leading . characters are ignored when determining precedence for infix
operators. For example, .* has the same precedence as *. This rule ensures that operators such as
. *, which is frequently used for pointwise-operation on matrices, have the expected precedence.

4

The table entries marked as “High-precedence application” and “High-precedence type application’
are the result of the augmentation of the lexical token stream, as described in §15.2 and §15.3.
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5. Types and Type Constraints

The notion of type is central to both the static checking of F# programs and to dynamic type tests
and reflection at runtime. The word is used with four distinct but related meanings:

o Type definitions, such as the actual CLI or F# definitions of System.String or
FSharp.Collections.Map<_, »>.

e Syntactic types, such as the text option<_ > that might occur in a program text. Syntactic types
are converted to static types during the process of type checking and inference.

e Static types, which result from type checking and inference, either by the translation of syntactic
types that appear in the source text, or by the application of constraints that are related to
particular language constructs. For example, option<int> is the fully processed static type
that is inferred for an expression Some (1+1). Static types may contain type variables as
described later in this section.

o Runtime types, which are objects of type System. Type and represent some or all of the
information that type definitions and static types convey at runtime. The obj.GetType()
method, which is available on all F# values, provides access to the runtime type of an object. An
object’s runtime type is related to the static type of the identifiers and expressions that
correspond to the object. Runtime types may be tested by built-in language operators such as
:?and : ?>, the expression form downcast expr, and pattern matching type tests. Runtime
types of objects do not contain type variables. Runtime types that System.Reflection
reports may contain type variables that are represented by System. Type values.

The following describes the syntactic forms of types as they appear in programs:

type :=
( type )
type -> type -- function type
type * ... * type -- tuple type
typar -- variable type
Long-ident -- named type, such as int
long-ident<type-args> -- named type, such as list<int>
long-ident< > -- named type, such as IEnumerable< >
type long-ident -- named type, such as int list
type[ , ... , ] -- array type
type typar-defns -- type with constraints
typar :> type -- variable type with subtype constraint
#type -- anonymous type with subtype constraint
type-args := type-arg, ..., type-arg
type-arg :=
type -- type argument
measure -- unit of measure argument
static-parameter -- static parameter
atomic-type :=




type : one of
#type typar ( type ) long-ident Long-ident<type-args>

typar :=

-~ -- anonymous variable type

'ident -- type variable

~dent -- static head-type type variable
constraint :=

typar :> type -- coercion constraint

typar : null -- nullness constraint

static-typars (member-sig ) -- member "trait" constraint

typar : (new : unit -> 'T) -- CLI default constructor
constraint

typar : struct -- CLI non-Nullable struct

typar : not struct -- CLI reference type

typar : enum<type> -- enum decomposition constraint

typar : unmanaged -- unmanaged constraint

typar : delegate<type, type> -- delegate decomposition
constraint

typar : equality

typar : comparison
typar-defn := attributesq,: typar
typar-defns := < typar-defn, ..., typar-defn typar-constraintsq: >
typar-constraints := when constraint and ... and constraint
static-typars :=

~Mdent

(~dent or ... or “ident)
member-sig := <see Section 10>

In a type instantiation, the type name and the opening angle bracket must be syntactically adjacent
with no intervening whitespace, as determined by lexical filtering (§15). Specifically:

array<int>
and not
array < int >

5.1 Checking Syntactic Types
Syntactic types are checked and converted to static types as they are encountered. Static types are a
specification device used to describe

e The process of type checking and inference.
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e The connection between syntactic types and the execution of F# programs.

Every expression in an F# program is given a unique inferred static type, possibly involving one or
more explicit or implicit generic parameters.

For the remainder of this specification we use the same syntax to represent syntactic types and
static types. For example int32 * int32is used to represent the syntactic type that appears in
source code and the static type that is used during checking and type inference.

The conversion from syntactic types to static types happens in the context of a name resolution
environment (§14.1), a floating type variable environment, which is a mapping from names to type
variables, and a type inference environment (§14.5).

The phrase “fresh type” means a static type that is formed from a fresh type inference variable. Type
inference variables are either solved or generalized by type inference (§14.5). During conversion and
throughout the checking of types, expressions, declarations, and entire files, a set of current
inference constraints is maintained. That is, each static type is processed under input constraints X,
and results in output constraints X’. Type inference variables and constraints are progressively
simplified and eliminated based on these equations through constraint solving (§14.5).

5.1.1 Named Types
Named types have several forms, as listed in the following table.

Form Description

Long- Named type with one or more suffixed type arguments.

ident<tys,.., tyn>

Long-ident Named type with no type arguments

type long-ident Named type with one type argument; processed the same as Long-
ident<type>

ty: -> ty> A function type, where:

= ty1 is the domain of the function values associated with the type
=ty2 istherange.

In compiled code it is represented by the named type
FSharp.Core.FastFunc<ty;, ty.>.

Named types are converted to static types as follows:

e Name Resolution for Types (§14.1) resolves Long-ident to a type definition with formal generic
parameters <typari,.., typar,>and formal constraints C. The number of type arguments n is
used during the name resolution process to distinguish between similarly named types that take
different numbers of type arguments.

e Fresh type inference variables <ty 's,..., ty ',> are generated for each formal type parameter.
The formal constraints C are added to the current inference constraints for the new type
inference variables; and constraints ty; = ty '; are added to the current inference constraints.

5.1.2 Variable Types
A type of the form "ident is a variable type. For example, the following are all variable types:

a
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'T
'Key

During checking, Name Resolution (§14.1) is applied to the identifier.

e |f name resolution succeeds, the result is a variable type that refers to an existing declared type
parameter.

e |f name resolution fails, the current floating type variable environment is consulted, although
only in the context of a syntactic type that is embedded in an expression or pattern. If the type
variable name is assigned a type in that environment, F# uses that mapping. Otherwise, a fresh
type inference variable is created (see §14.5) and added to both the type inference environment
and the floating type variable environment.

A type of the form _is an anonymous variable type. A fresh type inference variable is created and
added to the type inference environment (see §14.5) for such a type.

A type of the form ~ident is a statically resolved type variable. A fresh type inference variable is
created and added to the type inference environment (see §14.5). This type variable is tagged with
an attribute that indicates that it can be generalized only at inline definitions (see §14.6.7). The
same restriction on generalization applies to any type variables that are contained in any type that is
equated with the “ident type in a type inference equation.

Note: this specification generally uses uppercase identifiers such as ' T or 'Key for user-
declared generic type parameters, and uses lowercase identifiers such as *a or 'b for
compiler-inferred generic parameters.

5.1.3 Tuple Types
A tuple type has the following form:

ty: * ... ¥ ty,

The elaborated form of a tuple type is shorthand for a use of the family of F# library types
System.Tuple< ,..., >.See §6.3.2 for the details of this encoding.

When considered as static types, tuple types are distinct from their encoded form. However, the
encoded form of tuple types is visible in the F# type system through runtime types. For example,
typeof<int * int> isequivalentto typeof<System.Tuple<int,int>>.

5.1.4 Array Types
Array types have the following forms:

ty[]
tyl[ , .. 5 ]

A type of the form ty[ | is a single-dimensional array type, and a type of the form ty[ , ... , |
is a multidimensional array type. For example, int[,, ] is an array of integers of rank 3.

46



Except where specified otherwise in this document, these array types are treated as named types, as
if they are an instantiation of a fictitious type definition System.Array,<ty> where n corresponds
to the rank of the array type.

Note: The type int[ ][, ] in F#is the same as the type int[, ][ ] in C# although the
dimensions are swapped. This ensures consistency with other postfix type names in F#
suchasint list list.

F# supports multidimensional array types only up to rank 4.

5.1.5 Constrained Types
A type with constraints has the following form:

type when constraints

During checking, type is first checked and converted to a static type, then constraints are
checked and added to the current inference constraints. The various forms of constraints are
described in§5.2.

A type of the form typar :> type s a type variable with a subtype constraint and is equivalent to
typar when typar :> type.

A type of the form #type is an anonymous type with a subtype constraint and is equivalent to 'a
when "a :> type, where "ais a fresh type inference variable.

5.2 Type Constraints

A type constraint limits the types that can be used to create an instance of a type parameter or type
variable. F# supports the following type constraints:
e Subtype constraints

e Nullness constraints

e Member constraints

e Default constructor constraints

e Value type constraints

o Reference type constraints

e Enumeration constraints

o Delegate constraints

e Unmanaged constraints

e Equality and comparison constraints

5.2.1 Subtype Constraints
An explicit subtype constraint has the following form:
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typar :> type

During checking, typar is first checked as a variable type, type is checked as a type, and the
constraint is added to the current inference constraints. Subtype constraints affect type coercion as
specified in §5.4.7.

Note that subtype constraints also result implicitly from:

e Expressions of the form expr :> type.

Patterns of the form pattern :> type.

The use of generic values, types, and members with constraints.

The implicit use of subsumption when using values and members (§14.4.3).

A type variable cannot be constrained by two distinct instantiations of the same named type. If two
such constraints arise during constraint solving, the type instantiations are constrained to be equal.
For example, during type inference, if a type variable is constrained by both IA<int> and
IA<string>, an error occurs when the type instantiations are constrained to be equal. This
limitation is specifically necessary to simplify type inference, reduce the size of types shown to users,
and help ensure the reporting of useful error messages.

5.2.2 Nullness Constraints
An explicit nullness constraint has the following form:
typar: null

During checking, typar is checked as a variable type and the constraint is added to the current
inference constraints. The conditions that govern when a type satisfies a nullness constraint are
specified in §5.4.8.

In addition:

e The typar must be a statically resolved type variable of the form “ident. This limitation
ensures that the constraint is resolved at compile time, and means that generic code may not
use this constraint unless that code is marked inline (§14.6.7).

Note: Nullness constraints are primarily for use during type checking and are used
relatively rarely in F# code.

Nullness constraints also arise from expressions of the form null.

5.2.3 Member Constraints
An explicit member constraint has the following form:

(typar or ... or typar) : (member-sig)
For example, the F# library defines the + operator with the following signature:

val inline (+) : "a -> b -> “c
when (“a or ~b) : (static member (+) : ~a * b -> ~c)
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This definition indicates that each use of the + operator results in a constraint on the types that
correspond to parameters "a, b, and " c. If these are named types, then either the named type for
~a or the named type for b must support a static member called + that has the given signature.

In addition:

e Each typar must be a statically resolved type variable (§5.1.2) in the form “ident. This ensures
that the constraint is resolved at compile time against a corresponding named type. It also
means that generic code cannot use this constraint unless that code is marked inline
(814.6.7).

e Themember-sig cannot be generic; that is, it cannot include explicit type parameter
definitions.

e The conditions that govern when a type satisfies a member constraint are specified in §14.5.4 .

Note: Member constraints are primarily used to define overloaded functions in the F#
library and are used relatively rarely in F# code.

Uses of overloaded operators do not result in generalized code unless definitions are
marked as inline. For example, the function

let £ x = x + X

results in a function  that can be used only to add one type of value, such as int or
float. The exact type is determined by later constraints.

A type variable may not be involved in the support set of more than one member constraint that has
the same name, staticness, argument arity, and support set (§14.5.4). If it is, the argument and
return types in the two member constraints are themselves constrained to be equal. This limitation
is specifically necessary to simplify type inference, reduce the size of types shown to users, and
ensure the reporting of useful error messages.

5.2.4 Default Constructor Constraints
An explicit default constructor constraint has the following form:
typar : (new : unit -> 'T)

During constraint solving (§14.5), the constraint type : (new : unit -> 'T)is metif type has
a parameterless object constructor.

Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

5.2.5 Value Type Constraints
An explicit value type constraint has the following form:

typar : struct

During constraint solving (§14.5), the constraint type : structis metif type is avalue type
other than the CLI type System.Nullable< >.
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Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

The restriction on System.Nullable is inherited from C# and other CLI languages,
which give this type a special syntactic status. In F#, the type option<_ > is similar to
some uses of System.Nullable<_ >. Forvarious technical reasons the two types
cannot be equated, notably because types such as
System.Nullable<System.Nullable<_ >> and System.Nullable<string> are
not valid CLI types.

5.2.6 Reference Type Constraints
An explicit reference type constraint has the following form:

typar : not struct

During constraint solving (§14.5), the constraint type : not structis metif type is areference
type.

Note: This constraint form exists primarily to provide the full set of constraints that CLI
implementations allow. It is rarely used in F# programming.

5.2.7 Enumeration Constraints
An explicit enumeration constraint has the following form:

typar : enum<underlying-type>

During constraint solving (§14.5), the constraint type : enum<underlying-type>is metif type
is a CLI or F# enumeration type that has constant literal values of type underlLying-type.

Note: This constraint form exists primarily to allow the definition of library functions
such as enum. It is rarely used directly in F# programming.

The enum constraint does not imply anything about subtypes. For example, an enum
constraint does not imply that the type is a subtype of System.Enum.

5.2.8 Delegate Constraints
An explicit delegate constraint has the following form:

typar : delegate<tupled-arg-type, return-type>

During constraint solving (§14.5), the constraint type : delegate<tupled-arg-type,
return-types>is metif type is a delegate type D with declaration type D = delegate of
object * argl * ... * argNand tupled-arg-type = argl * ... * argN.Thatis, the
delegate must match the CLI design pattern where the sender object is the first argument to the
event.

Note: This constraint form exists primarily to allow the definition of certain F# library
functions that are related to event programming. It is rarely used directly in F#
programming.
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The delegate constraint does not imply anything about subtypes. In particular, a
‘delegate’ constraint does not imply that the type is a subtype of System.Delegate.

The delegate constraint applies only to delegate types that follow the usual form for
CLI event handlers, where the first argument is a “sender” object. The reason is that the
purpose of the constraint is to simplify the presentation of CLI event handlers to the F#
programmer.

5.2.9 Unmanaged Constraints
An unmanaged constraint has the following form:

typar : unmanaged

During constraint solving (§14.5), the constraint type : unmanaged is metif type is unmanaged
as specified below:

e Types sbyte, byte, char, nativeint, unativeint, float32, float, intl6, uint16, int32, uint32,
int64, uint6e4, decimal are unmanaged.

e Type nativeptr<type> is unmanaged.

e A non-generic struct type whose fields are all unmanaged types is unmanaged.

5.2.10 Equality and Comparison Constraints
Equality constraints and comparison constraints have the following forms, respectively:

typar : equality
typar : comparison

During constraint solving (§14.5), the constraint type : equality is metif both of the following
conditions are true:

e The type is a named type, and the type definition does not have, and is not inferred to have, the
NoEquality attribute.

o The type has equality dependencies ty;, ..., tv,, each of which satisfies ty: : equality.

The constraint type : comparison isacomparison constraint. Such a constraint is met if all the
following conditions hold:

e If the type is a named type, then the type definition does not have, and is not inferred to have,
the NoComparison attribute, and the type definition implements System.IComparable oris
an array type oris System.IntPtroris System.UIntPtr.

o If the type has comparison dependencies ty;, ..., ty,, then each of these must satisfy ty:
comparison

An equality constraint is a relatively weak constraint, because with two exceptions, all CLI types
satisfy this constraint. The exceptions are F# types that are annotated with the NoEquality
attribute and structural types that are inferred to have the NoEquality attribute. The reason is
that in other CLI languages, such as C#, it possible to use reference equality on all reference types.
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A comparison constraint is a stronger constraint, because it usually implies that a type must
implement System.IComparable.

5.3 Type Parameter Definitions
Type parameter definitions can occur in the following locations:

e Value definitions in modules
e Member definitions
o Type definitions
e Corresponding specifications in signatures
For example, the following defines the type parameter ‘T in a function definition:

let id<'T> (x:'T) = x
Likewise, in a type definition:

type Funcs<'T1,'T2> =

{ Forward: 'T1 -> 'T2;
Backward : 'T2 -> 'T2 }

Likewise, in a signature file:

val id<'T> ¢ 'T -> 'T

Explicit type parameter definitions can include explicit constraint declarations. For example:

let dispose2<'T when 'T :> System.IDisposable> (x: 'T, y: 'T) =
x.Dispose()
y.Dispose()

The constraint in this example requires that ' T be a type that supports the IDisposable interface.

However, in most circumstances, declarations that imply subtype constraints on arguments can be
written more concisely:

let throw (x: Exception) = raise x
Multiple explicit constraint declarations use and:

let multipleConstraints<'T when 'T :> System.IDisposable and

'T :> System.IComparable > (x: 'T, y:
IT) —
if x.CompareTo(y) < @ then x.Dispose() else y.Dispose()
Explicit type parameter definitions can declare custom attributes on type parameter definitions
(§13.1).
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5.4 Logical Properties of Types
During type checking and elaboration, syntactic types and constraints are processed into a reduced
form composed of:

e Named types op<types>, where each op consists of a specific type definition, an operator to
form function types, an operator to form array types of a specific rank, or an operator to form
specific n-tuple types.

e Type variables 'ident.

5.4.1 Characteristics of Type Definitions
Type definitions include CLI type definitions such as System.String and types that are defined in
F# code (§8). The following terms are used to describe type definitions:

e Type definitions may be generic, with one or more type parameters; for example,
System.Collections.Generic.Dictionary<'Key, 'Value>.
e The generic parameters of type definitions may have associated formal type constraints.

o Type definitions may have custom attributes (§13.1), some of which are relevant to checking and
inference.

o Type definitions may be type abbreviations (§8.3). These are eliminated for the purposes of
checking and inference (see §5.4.2).

e Type definitions have a kind which is one of the following:

e (lass

e Interface

e Delegate
e Struct

e Record

e Union

e Fnum

e Measure
e Abstract

The kind is determined at the point of declaration by Type Kind Inference (§8.2) if it is not
specified explicitly as part of the type definition. The kind of a type refers to the kind of its
outermost named type definition, after expanding abbreviations. For example, a type is a class
type if it is a named type C<types> where C is of kind class. Thus,
System.Collections.Generic.List<int> is a class type.
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e Type definitions may be sealed. Record, union, function, tuple, struct, delegate, enum, and array
types are all sealed, as are class types that are marked with the SealedAttribute attribute.

e Type definitions may have zero or one base type declarations. Each base type declaration
represents an additional type that is supported by any values that are formed using the type
definition. Furthermore, some aspects of the base type are used to form the implementation of
the type definition.

e Type definitions may have one or more interface declarations. These represent additional
encapsulated types that are supported by values that are formed using the type.

Class, interface, delegate, function, tuple, record, and union types are all reference type definitions.
A type is a reference type if its outermost named type definition is a reference type, after expanding
type definitions.

Struct types are value types.

5.4.2 Expanding Abbreviations and Inference Equations
Two static types are considered equivalent and indistinguishable if they are equivalent after taking
into account both of the following:

e The inference equations that are inferred from the current inference constraints (§14.5).
e The expansion of type abbreviations (§8.3).
For example, static types may refer to type abbreviations such as int, which is an abbreviation for

System.Int32andis declared by the F# library:

type int = System.Int32

This means that the types int32 and System. Int32 are considered equivalent, as are
System.Int32 -> intandint -> System.Int32.

Likewise, consider the process of checking this function:

let checkString (x:string) y =
(x = y), y.Contains("Hello")

During checking, fresh type inference variables are created for values x and y; let’s call them ty. and
ty.. Checking imposes the constraints ty: = stringand ty: = ty.. The second constraint
results from the use of the generic = operator. As a result of constraint solving, ty, = stringis
inferred, and thus the type of y is string.

All relations on static types are considered after the elimination of all equational inference
constraints and type abbreviations. For example, we say int is a struct type because
System.Int32 is a struct type.

Note: Implementations of F# should attempt to preserve type abbreviations when
reporting types and errors to users. This typically means that type abbreviations should
be preserved in the logical structure of types throughout the checking process.
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5.4.3 Type Variables and Definition Sites

Static types may be type variables. During type inference, static types may be partial, in that they
contain type inference variables that have not been solved or generalized. Type variables may also
refer to explicit type parameter definitions, in which case the type variable is said to be rigid and
have a definition site.

For example, in the following, the definition site of the type parameter 'T is the type definition of
C:

type C<'T> = 'T * 'T

Type variables that do not have a binding site are inference variables. If an expression is composed
of multiple sub-expressions, the resulting constraint set is normally the union of the constraints that
result from checking all the sub-expressions. However, for some constructs (notably function, value
and member definitions), the checking process applies generalization (§14.6.7). Consequently, some
intermediate inference variables and constraints are factored out of the intermediate constraint sets
and new implicit definition site(s) are assigned for these variables.

For example, given the following declaration, the type inference variable that is associated with the
value x is generalized and has an implicit definition site at the definition of function id:

let id x = x

Occasionally in this specification we use a more fully annotated representation of inferred and
generalized type information. For example:

1et id(’g> Xg = X'g

Here, ' a represents a generic type parameter that is inferred by applying type inference and
generalization to the original source code (§14.6.7), and the annotation represents the definition site
of the type variable.

5.4.4 Base Type of a Type
The base type for the static types is shown in the table. These types are defined in the CLI
specifications and corresponding implementation documentation.

Static Type Base Type

Abstract types System.Object

All array types System.Array

Class types The declared base type of the type definition if the type has one; otherwise,

System.Object. For generic types C<type-inst>, substitute the formal
generic parameters of C for type-inst.

Delegate types System.MulticastDelegate
Enum types System.Enum

Exception types System.Exception

Interface types System.Object

Record types System.Object

Struct types System.ValueType

Union types System.Object

Variable types System.Object
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5.4.5 Interfaces Types of a Type

The interface types of a named type C<type-inst> are defined by the transitive closure of the
interface declarations of C and the interface types of the base type of C, where formal generic
parameters are substituted for the actual type instantiation type-inst.

The interface types for single dimensional array types ty|[ | include the transitive closure that starts
from the interface System.Collections.Generic.IList<ty>, which includes
System.Collections.Generic.ICollection<ty> and
System.Collections.Generic.IEnumerable<ty>.

5.4.6 Type Equivalence
Two static types ty: and ty, are definitely equivalent (with respect to a set of current inference
constraints) if either of the following is true:

o tyihasform op<tyii, ..., tyin>, ty,hasformop<ty., ..., ty..>andeach ty;iis
definitely equivalent to ty.; forall 1 <=1 <=n.

e tyiand ty, are both variable types, and they both refer to the same definition site or are the
same type inference variable.

This means that the addition of new constraints may make types definitely equivalent where
previously they were not. For example, given X={"'a = int}, we have list<int>=1ist< "a>.

Two static types ty: and ty. are feasibly equivalent if ty1 and ty, may become definitely
equivalent if further constraints are added to the current inference constraints. Thus 1ist<int>
and 1ist<"a> are feasibly equivalent for the empty constraint set.

5.4.7 Subtyping and Coercion

A static type ty. coerces to static type ty. (with respect to a set of current inference constraints X),
if ty1is in the transitive closure of the base types and interface types of ty,. Static coercion is
written with the : > symbol:

ty, > tya,

Variable types ' T coerce to all types ty if the current inference constraints include a constraint of
the form 'T :> ty,, and ty is in the inclusive transitive closure of the base and interface types of
tyz.

A static type ty. feasibly coerces to static type ty. if ty. coerces to ty; may hold through the
addition of further constraints to the current inference constraints. The result of adding constraints
is defined in Constraint Solving (§14.5).
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5.4.8 Nullness
The design of F# aims to greatly reduce the use of null literals in common programming tasks,
because they generally result in error-prone code. However:

e The use of some null literals is required for interoperation with CLI libraries.

e The appearance of null values during execution cannot be completely precluded for technical
reasons related to the CLI and CLI libraries.

As a result, F# types differ in their treatment of the null literal and null values. All named types
and type definitions fall into one of the following categories:

o Types with the null literal. These types have null as an “extra” value. The following types are
in this category:

e All CLI reference types that are defined in other CLI languages.
o All types that are defined in F# and annotated with the AllowNullLiteral attribute.

For example, System.String and other CLI reference types satisfy this constraint, and these
types permit the direct use of the null literal.

e Types with null as an abnormal value. These types do not permit the null literal, but do have
null as an abnormal value. The following types are in this category:

e All F# list, record, tuple, function, class, and interface types.

o All F# union types except those that have null as a normal value, as discussed in the next
bullet point.

For types in this category, the use of the null literal is not directly allowed. However, strictly
speaking, it is possible to generate a null value for these types by using certain functions such
as Unchecked.defaultof<type>. For these types, null is considered an abnormal value.
Operations differ in their use and treatment of null values; for details about evaluation of
expressions that might include null values, see §6.9.

e Types with null as a representation value. These types do not permit the null literal but use
the null value as a representation.

For these types, the use of the null literal is not directly permitted. However, one or all of the
“normal” values of the type is represented by the null value. The following types are in this
category:

e The unittype. The null value is used to represent all values of this type.

e Any union type that has the
FSharp.Core.CompilationRepresentation(CompilationRepresentationFlags
.UseNullAsTrueValue) attribute flag and a single null union case. The null value
represents this case. In particular, null represents None in the F# option< > type.
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o Types without null. These types do not permit the null literal and do not have the null
value. All value types are in this category, including primitive integers, floating-point numbers,
and any value of a CLl or F# struct type.

A static type ty satisfies a nullness constraint ty : null ifit:

e Has an outermost named type that has the null literal.

e s avariable type with a typar : null constraint.

5.4.9 Default Initialization

Related to nullness is the default initialization of values of some types to zero values. This technique
is common in some programming languages, but the design of F# deliberately de-emphasizes it.
However, default initialization is allowed in some circumstances:

e Checked default initialization may be used when a type is known to have a valid and “safe”
default zero value. For example, the types of fields that are labeled with DefaultValue (true)
are checked to ensure that they allow default initialization.

e CLl libraries sometimes perform unchecked default initialization, as do the F# library primitives
Unchecked.defaultof<_> and Array.zeroCreate.

The following types permit default initialization:

e Any type that satisfies the nullness constraint.
e Primitive value types.

e Struct types whose field types all permit default initialization.

5.4.10 Dynamic Conversion Between Types
A runtime type vty dynamically converts to a static type ty if any of the following are true:

vty coerces to ty.

e vtyisint32[]and tyisuint32[ ](or conversely). Likewise for sbyte[ ]/byte[ ],
int16[ J/uint16[], int64[ ]J/uint64[], and nativeint[]/unativeint[].

o vtyisenum| | where enum has underlying type underlying, and ty is underlying[ ] (or
conversely), or the (un)signed equivalent of underlLying| | by the immediately preceding rule.

o vtyiselemty:[], tyiselemty.[], elemty;isareference type, and eLemty; converts to
elemtys.

e tyisSystem.Nullable<vty>.

Note that this specification does not define the full algebra of the conversions of runtime types to
static types because the information that is available in runtime types is implementation dependent.
However, the specification does state the conditions under which objects are guaranteed to have a
runtime type that is compatible with a particular static type.

Note: This specification covers the additional rules of CLI dynamic conversions, all of
which apply to F# types. For example:
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let x = box [| System.DayOfWeek.Monday |]
let y = x :? int32[]
printf "%b" 'y // true

In the previous code, the type System.DayOfhWeek.Monday[] does not statically
coerce to int32[ ], but the expression x :? int32[] evaluates to true.

let x = box [| 1 |]
let y = x :? uint32 []
printf "%b" 'y // true

In the previous code, the type int32[ | does not statically coerce to uint32[ |, but the
expression x :? uint32 [] evaluates to true.

let x = box [| "" |]
let y = x :? obj []
printf "%b" y // true

In the previous code, the type string[ ] does not statically coerce to obj[ ], but the
expression x :? obj [ ]evaluates to true.

let x = box 1
let y = x :? System.Nullable<int32>
printf "%b" y // true

In the previous code, the type int32 does not coerce to System.Nullable<int32>,
but the expression x :? System.Nullable<int32> evaluates to true.
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6. Expressions

The expression forms and related elements are as follows:

expr

expr

expr

expr

disp

const -- a constant value

( expr ) -- block expression

begin expr end -- block expression

Long-ident-or-op -- lookup expression

expr '.' long-ident-or-op -- dot lookup expression

expr expr -- application expression
expr(expr) -- high precedence application
expr<types> -- type application expression

expr infix-op expr -- infix application expression
prefix-op expr -- prefix application expression
expr.[expr] -- indexed lookup expression
expr.[slice-ranges] -- slice expression

expr <- expr -- assignment expression

expr , ... , expr -- tuple expression

new type expr -- simple object expression

{ new base-call object-members interface-impls } -- object
ession

{ field-initializers } -- record expression

{ expr with field-initializers } -- record cloning
ession

[ expr ; ... ; expr ] -- list expression

[| expr ; ... ; expr |]-- array expression

expr { comp-or-range-expr } -- computation expression

[ comp-or-range-expr] -- computed list expression

[| comp-or-range-expr |] -- computed array expression
lazy expr -- delayed expression

null -- the "null" value for a reference type
expr : type -- type annotation

expr :> type -- static upcast coercion

expr :? type -- dynamic type test

expr :?> type -- dynamic downcast coercion

upcast expr -- static upcast expression

downcast expr -- dynamic downcast expression

let function-defn in expr —-- function definition expression
let value-defn in expr -- value definition expression
let rec function-or-value-defns in expr -- recursive definition
ession

use ident = expr in expr -- deterministic
osal expression

fun argument-pats -> expr -- function expression
function rules -- matching function expression

expr ; expr -- sequential execution expression
match expr with rules -- match expression

try expr with rules -- try/with expression

try expr finally expr -- try/finally expression




if expr then expr elif-branches.: else-branche: -- conditional

expression

while expr do expr done-- while loop

for ident = expr to expr do expr done -- simple for
loop

for pat in expr-or-range-expr do expr done -- enumerable for
loop

assert expr -- assert expression

<@ expr @> -- quoted expression

<@@ expr @@> -- quoted expression

rexpr -- expression splice

kkexpr -- weakly typed expression splice

(static-typars : (member-sig) expr) -- static member invocation

62




Expressions are defined in terms of patterns and other entities that are discussed later in this
specification. The following constructs are also used:

exprs :=expr ',' ... ',' expr

expr-or-range-expr :=
expr
range-expr

elif-branches := elif-branch ... elif-branch
elif-branch := elif expr then expr
else-branch := else expr

function-or-value-defn :=
function-defn
value-defn

function-defn :=
inlinegpt accessqp: ident-or-op typar-defns.,: argument-pats return-

typeopt = expr

value-defn :=
mutableg,: accessopr pat typar-defnsopt return-typeopt = expr

return-type :=

¢ type
function-or-value-defns :=

function-or-value-defn and ... and function-or-value-defn
argument-pats:= atomic-pat ... atomic-pat

field-initializer :=
Long-ident = expr -~ field initialization

field-initializers := field-initializer ; ... ; field-initializer

object-construction :=

type expr -- construction expression
type -- interface construction expression
base-call :=
object-construction -- anonymous base construction
object-construction as ident -- named base construction
interface-impls := interface-impl ... interface-impl

interface-impl :=
interface type object-membersq,: -- interface implementation

object-members := with member-defns end
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member-defns := member-defn ... member-defn
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Computation and range expressions are defined in terms of the following productions:

comp-or-range-expr :=
comp-expr
short-comp-expr
range-expr

comp-expr :=
let! pat = expr in comp-expr  -- binding computation
let pat = expr in comp-expr
do! expr in comp-expr -- sequential computation
do expr in comp-expr
use! pat = expr in comp-expr  -- auto cleanup computation
use pat = expr in comp-expr
yield! expr -- yield computation
yield expr -- yield result
return! expr -- return computation
return expr -- return result
if expr then comp-expr -- control flow or imperative action
if expr then expr else comp-expr
match expr with pat -> comp-expr | .. | pat -> comp-expr
try comp-expr with pat -> comp-expr | .. | pat -> comp-expr

try comp-expr finally expr

while expr do comp-expr done

for ident = expr to expr do comp-expr done

for pat in expr-or-range-expr do comp-expr done
comp-expr ; comp-expr

expr

short-comp-expr :=
for pat in expr-or-range-expr -> expr -- yield result

range-expr :=

expr .. expr -- range sequence
expr .. expr .. expr -- range sequence with skip
slice-ranges := slice-range , .. , slice-range

slice-range :=

expr -- slice of one element of dimension
expr.. -- slice from index to end

..expr -- slice from start to index
expr..expr -- slice from index to index
R -- slice from start to end

6.1 Some Checking and Inference Terminology

The rules applied to check individual expressions are described in the following subsections. Where
necessary, these sections reference specific inference procedures such as Name Resolution (§14.1)
and Constraint Solving (§14.5).
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All expressions are assigned a static type through type checking and inference. During type checking,
each expression is checked with respect to an initial type. The initial type establishes some of the
information available to resolve method overloading and other language constructs. We also use the
following terminology:

e The phrase “the type ty; is asserted to be equal to the type ty.” or simply “ty: =tyis
asserted” indicates that the constraint “ty; = ty.” is added to the current inference
constraints.

e The phrase “ty; is asserted to be a subtype of ty.” or simply “ty; :> ty.isasserted” indicates
that the constraint ty: :> ty.is added to the current inference constraints.

e The phrase “type ty is known to ...” indicates that the initial type satisfies the given property
given the current inference constraints.

o The phrase “the expression expr has type ty” means the initial type of the expression is
asserted to be equal to ty.

Additionally:

e The addition of constraints to the type inference constraint set fails if it causes an inconsistent
set of constraints (§14.5). In this case either an error is reported or, if we are only attempting to
assert the condition, the state of the inference procedure is left unchanged and the test fails.

6.2 Elaboration and Elaborated Expressions

Checking an expression generates an elaborated expression in a simpler, reduced language that
effectively contains a fully resolved and annotated form of the expression. The elaborated
expression provides more explicit information than the source form. For example, the elaborated
form of System.Console.WritelLine("Hello") indicates exactly which overloaded method
definition the call has resolved to. Elaborated forms are underlined in this specification, for example,
let x =1 in X + X.

Except for this extra resolution information, elaborated forms are syntactically a subset of syntactic
expressions, and in some cases (such as constants) the elaborated form is the same as the source
form. This specification uses the following elaborated forms:

e (Constants

e Primitive object expressions
e Data expressions (tuples, union cases, array creation, record creation)

e Default initialization expressions
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e Applications of methods and functions (with static overloading resolved)

e The constructs required for the elaboration of pattern matching (§7).
e Null tests
e Switches on integers and other types
e Switches on union cases
e Switches on the runtime types of objects

The following constructs are used in the elaborated forms of expressions that make direct
assignments to local variables and arrays and generate “byref” pointer values. The operations are
loosely named after their corresponding primitive constructs in the CLI.

e Assigning to a byref-pointer: expr <-swpi expr

e Generating a byref-pointer by taking the address of a mutable value: &path.

e Generating a byref-pointer by taking the address of a record field: &(expr. field)

e Generating a byref-pointer by taking the address of an array element: &(expr. [expr])

Elaborated expressions form the basis for evaluation (see §6.9) and for the expression trees that
quoted expressions return(see §6.8).

By convention, when describing the process of elaborating compound expressions, we omit the
process of recursively elaborating sub-expressions.

6.3 Data Expressions

This section describes the following data expressions:

e Simple constant expressions

e Tuple expressions

e List expressions

e Array expressions

e Record expressions

e Copy-and-update record expressions

e Function expressions
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e Object expressions

e Delayed expressions

e Computation expressions

e Sequence expressions

e Range expressions

e Lists via sequence expressions

e Arrays via sequence expressions
e Null expressions

o 'printf' formats

6.3.1 Simple Constant Expressions
Simple constant expressions are numeric, string, Boolean and unit constants. For example:

3y // sbyte

32uy // byte

17s // int16

18us // uintlé

86 // int/int32

99u // uint32

99999999L // inté64

10328273UL // uinté4

1. // float/double

1.01 // float/double

1.01el0 // float/double

1.0f // float32/single

1.01f // float32/single

1.0lelof // float32/single

99999999n // nativeint (System.IntPtr)
10328273un // unativeint (System.UIntPtr)
999999991 // bigint (System.Numerics.BigInteger or user-
specified)

'a' // char (System.Char)

"3" // string (String)
"c:\\home" // string (System.String)
@"c:\home" // string (Verbatim Unicode, System.String)
"ASCII"B // byte[]

@) // unit (FSharp.Core.Unit)
false // bool (System.Boolean)
true // bool (System.Boolean)

Simple constant expressions have the corresponding simple type and elaborate to the corresponding
simple constant value.
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Integer literals with the suffixes Q, R, Z, I, N, G are processed using the following syntactic

translation:
XXXX<suffix>
For xxxx =0 > NumericLiteral<suffix>.FromZero()
For xxxx =1 - NumericLiteral<suffix>.FromOne()

For xxxx inthe Int32 range - NumericlLiteral<suffix>.FromInt32(xxxx)
For xxxx in the Int64 range - NumericlLiteral<suffix>.FromInt64(xxxx)
For other numbers > NumericLiteral<suffix>.FromString("xxxx"

For example, defining a module NumericlLiteralZ as below enables the use of the literal form 327
to generate a sequence of 32 ‘Z’ characters. No literal syntax is available for numbers outside the
range of 32-bit integers.

module NumericlLiteralZ =
let FromZero() = ""
let FromOne() = "Z"
let FromInt32 n = String.replicate n "Z"

F# compilers may optimize on the assumption that calls to numeric literal functions always
terminate, are idempotent, and do not have observable side effects.

6.3.2 Tuple Expressions
An expression of the form expr., ..., expr,isa tuple expression. For example:

let three = (1,2,"3")
let blastoff = (10,9,8,7,6,5,4,3,2,1,0)

The expression has the type (ty; * ... * ty,) forfresh types ty; .. ty,, and each individual
expression e; is checked using initial type ty:.

Tuple types and expressions are translated into applications of a family of F# library types named
System.Tuple. Tuple types ty; * ... * ty,aretranslated as follows:
e Forn<=7theelaborated formis Tuple<ty:, ..., ty,>.

e Forlarger n, tuple types are shorthand for applications of the additional F# library type
System.Tuple<_ > asfollows:

e Forn=8the elaborated formis Tuple<ty:, ..., ty,, Tuple<tys>>.

e For9<=ntheelaborated formis Tuple<ty:, ..., tys, tys> where ty;is the converted
form of the type (tys *...* ty,).

Tuple expressions (expri, . ..,expr,) are translated as follows:

e Forn<=7theelaborated form new Tuple<ty:,..,ty.>(expri,...,expry).
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e Forn=8the elaborated form new Tuple<ty:,..,ty;, Tuple<tys>>(expri,...,expry,
new Tuple<tys>(exprs).

e For 9<=ntheelaborated form new Tuple<ty;,...tys, tys,>(expri,..., expr;, new
tysn(€sn) wWhere tysg, is the type (tys*™...* ty,) and exprs, is the elaborated form of the
expression
exprs, ..., expr.

When considered as static types, tuple types are distinct from their encoded form. However, the
encoded form of tuple values and types is visible in the F# type system through runtime types. For
example, typeof<int * int> isequivalentto typeof<System.Tuple<int,int>>,and (1,2)
has the runtime type System. Tuple<int, int>. Likewise, (1,2,3,4,5,6,7,8,9) has the
runtime type Tuple<int,int,int,int,int,int,int,Tuple<int,int>>.

Note: The above encoding is invertible and the substitution of types for type variables
preserves this inversion. This means, among other things, that the F# reflection library
can correctly report tuple types based on runtime System. Type values. The inversion is
defined by:

o Forthe runtime type Tuple<ty;, ..., tyy> when n <=7, the corresponding F#
tuple typeis ty: * ... * tyy

o Fortheruntime type Tuple<ty;, ..., Tuple<tyy>>whenn =38, the
corresponding F# tuple typeis ty; * ... * tys

e Forthe runtime type Tuple<ty:, ..., tys,tys.>,if tys, corresponds to the F#
tuple type tys * ... * tyy, then the corresponding runtime typeis ty; *
* ty/v

Runtime types of other forms do not have a corresponding tuple type. In particular,
runtime types that are instantiations of the eight-tuple type
Tuple< , , , , , , , >mustalways have Tuple<_ > in the final position.
Syntactic types that have some other form of type in this position are not permitted, and
if such an instantiation occurs in F# code or CLI library metadata that is referenced by F#
code, an F# implementation may report an error.

6.3.3 List Expressions
An expression of the form [expri;...; expr,]isa list expression. The initial type of the
expression is asserted to be FSharp.Collections.List<ty> for a fresh type ty.

If ty is a named type, each expression expr; is checked using a fresh type ty ' as its initial type,
with the constraint ty " :> ty. Otherwise, each expression expr; is checked using ty as its initial

type.

List expressions elaborate to uses of FSharp.Collections.List< > as

op_Nil are the union cases with symbolic names : : and [ | respectively.
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6.3.4 Array Expressions
An expression of the form [ |expri;...; expr, |]isan array expression. The initial type of the
expression is asserted to be ty[ ] for a fresh type ty.

If this assertion determines that ty is a named type, each expression expr; is checked using a fresh
type ty ' asits initial type, with the constraint ty " :> ty. Otherwise, each expression expr; is
checked using ty as its initial type.

Array expressions are a primitive elaborated form.

Note: The F# implementation ensures that large arrays of constants of type bool,
char, byte, sbyte, intl16, uintl16, int32,uint32, int64, and uint64 are
compiled to an efficient binary representation based on a call to
System.Runtime.CompilerServices.RuntimeHelpers.InitializeArray.

6.3.5 Record Expressions
An expression of the form { field-initializer;; .. ; field-initializer, }isarecord
construction expression. For example:

type Data = { Count : int; Name : string }
let datal = { Count = 3; Name = "Hello"; }
let data2 = { Name = "Hello"; Count= 3 }

In the following example, data4 uses a long identifier to indicate the relevant field:

module M =
type Data = { Age : int; Name : string; Height : float }

let data3
let data4d

{ M.Age = 17; M.Name = "John"; M.Height = 186.0 }
{ data3 with M.Name = "Bill"; M.Height = 176.0 }

Fields may also be referenced by using the name of the containing type:

module M2 =
type Data = { Age : int; Name : string; Height : float }

let data5 = { M2.Data.Age = 17; M2.Data.Name = "John"; M2.Data.Height =
186.0 }

let data6é = { data5 with M2.Data.Name = "Bill"; M2.Data.Height=176.0 }
open M2

let data7 = { Data.Age = 17; Data.Name = "John"; Data.Height = 186.0 }

let data8 = { data5 with Data.Name = "Bill"; Data.Height=176.0 }

Each field-initializer; hasthe form field-Label; = expri.Each field-Label;isa
Long-1ident, which must resolve to a field F; in a unique record type R as follows:

e |If field-Label; is asingle identifier fLd and the initial type is known to be a record type
R<_,...,_>thathasfield Fi with name fLd, then the field label resolves to F.
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e |If field-Label; is not a single identifier or if the initial type is a variable type, then the field
label is resolved by performing Field Label Resolution (see §14.1) on field-Label;. This
procedure results in a set of fields FSeti. Each element of this set has a corresponding record
type, thus resulting in a set of record types RSet;. The intersection of all RSet; must yield a
single record type R, and each field then resolves to the corresponding field in R.

The set of fields must be complete. That is, each field in record type R must have exactly one
field definition. Each referenced field must be accessible (see §10.5), as must the type R.

After all field labels are resolved, the overall record expression is asserted to be of type
R<tyi, ..., tyn> forfreshtypes ty:, ..., tyn Each expri is then checked in turn. The initial type
is determined as follows:

1. Assume the type of the corresponding field Fi in R<ty:, ..., tyy>is fty;

2. If the type of Fi prior to taking into account the instantiation <ty:, ..., tys> is a named type,
then the initial type is a fresh type inference variable fty 'i with a constraint fty 'i :> ftyi.

3. Otherwise the initial type is fty.

Primitive record constructions are an elaborated form in which the fields appear in the same order
as in the record type definition. Record expressions themselves elaborate to a form that may
introduce local value definitions to ensure that expressions are evaluated in the same order that the
field definitions appear in the original expression. For example:

type R = {b : int; a : int }
{a=1+1;b=27}

Records expressions are also used for object initializations in additional object constructor
definitions (§8.6.3). For example:

type C =
val x : int
val y : int

new() = { x=1; y = 2}

Note: The following record initialization form is deprecated:
{ new type with Field; = expr: and .. and Field, = expr, }
The F# implementation allows the use of this form only with uppercase identifiers.

F# code should not use this expression form. A future version of the F# language will
issue a deprecation warning.

6.3.6 Copy-and-update Record Expressions
A copy-and-update record expression has the following form:

{ expr with field-initializers }
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where field-initializers is of the following form:
field-Llabel; = expr: ; .. ; field-label, = expry

Each field-Labeliisa Long-ident. In the following example, data2 is defined by using such an

expression:
type Data = { Age : int; Name : string; Height : float }
let datal = { Age = 17; Name = "John"; Height = 186.0 }
let data2 = { datal with Name = "Bill"; Height = 176.0 }

The expression expr is first checked with the same initial type as the overall expression. Next, the
field definitions are resolved by using the same technique as for record expressions. Each field label
must resolve to a field F; in a single record type R, all of whose fields are accessible. After all field
labels are resolved, the overall record expression is asserted to be of type R<ty:, ..., tyy> for
fresh types ty1, ..., tyn Each expri is then checked in turn with initial type that results from the
following procedure:

1. Assume the type of the corresponding field F; in R<ty:, ..., tyy> is ftyi.

2. If the type of Fi before considering the instantiation <ty:, . .., tys> is a named type, then the
initial type is a fresh type inference variable fty "; with a constraint fty 's :> fty;.

3. Otherwise, the initial type is fty.
A copy-and-update record expression elaborates as if it were a record expression written as follows:

let v = exprin { field-label; = expr:; .. ; field-label, = expr,; F1 = v.Fi;
5 Fy = V.Fp }

where F1 ... Fyare the fields of R that are not defined in field-initializers and v is a fresh

variable.

6.3.7 Function Expressions
An expression of the form fun pat; ... pat, -> exprisa function expression. For example:

(fun x -> x + 1)

(fun Xy -> X +y)

(fun [x] -> x) // note, incomplete match
(fun (x,y) (z,w) -> X +y + 2z + w)

Function expressions that involve only variable patterns are a primitive elaborated form. Function
expressions that involve non-variable patterns elaborate as if they had been written as follows:

fun vi ... vy ->
let pat: = v;
let pat, = v,
expr
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No pattern matching is performed until all arguments have been received. For example, the
following does not raise a MatchFailureException exception:

let f
let g

fun [x]y -> vy
f [1 // ok

However, if a third line is added, a MatchFailureException exception is raised
let z = g 3 // MatchFailureException is raised

6.3.8 Object Expressions

An expression of the following form is an object expression:

{ new tye args-expro.,+ object-members
interface ty: object-members;

interface ty, object-members, }

In the case of the interface declarations, the object-members are optional and are considered
empty if absent. Each set of object-members has the form:

with member-defns endopt
Lexical filtering inserts simulated $end tokens when lightweight syntax is used.

Each member of an object expression members can use the keyword member, override, or
default. The keyword member can be used even when overriding a member or implementing an
interface.

For example:

let objl1 =
{ new System.Collections.Generic.IComparer<int> with
member x.Compare(a,b) compare (a % 7) (b % 7) }

let obj2 =
{ new System.Object() with

member x.ToString () = "Hello" }
let obj3 =
{ new System.Object() with
member x.ToString () = "Hello, base.ToString() = " +

base.ToString() }

let obj4 =
{ new System.Object() with
member Xx.Finalize() = printfn "Finalize";
interface System.IDisposable with
member x.Dispose() = printfn "Dispose"”; }

74



An object expression can specify additional interfaces beyond those required to fulfill the abstract
slots of the type being implemented. For example, obj4 in the preceding examples has static type
System.Object but the object additionally implements the interface System.IDisposable. The
additional interfaces are not part of the static type of the overall expression, but can be revealed
through type tests.

Object expressions are statically checked as follows.

1. First, tysto ty, are checked to verify that they are named types. The overall type of the

expression is tye and is asserted to be equal to the initial type of the expression. However, if tys

is type equivalent to System.0Object and ty; exists, then the overall type is instead ty;.

2. The type tys must be a class or interface type. The base construction argument args-expr
must appear if and only if tys is a class type. The type must have one or more accessible
constructors; the call to these constructors is resolved and elaborated using Method Application
Resolution (see §14.4). Except for ty,, each ty; must be an interface type.

3. The F# compiler attempts to associate each member with a unique dispatch slot by using
dispatch slot inference (§14.7). If a unique matching dispatch slot is found, then the argument
types and return type of the member are constrained to be precisely those of the dispatch slot.

4. The arguments, patterns, and expressions that constitute the bodies of all implementing
members are next checked one by one to verify the following:

e For each member, the “this” value for the member is in scope and has type tyo.
e Each member of an object expression can initially access the protected members of tye.

e If the variable base-1ident appears, it must be named base, and in each member a base
variable with this name is in scope. Base variables can be used only in the member
implementations of an object expression, and are subject to the same limitations as byref
values described in §14.9.

The object must satisfy dispatch slot checking (§14.8) which ensures that a one-to-one mapping
exists between dispatch slots and their implementations.

Object expressions elaborate to a primitive form. At execution, each object expression creates an
object whose runtime type is compatible with all of the €y that have a dispatch map that is the
result of dispatch slot checking (§14.8).

The following example shows how to both implement an interface and override a method from
System.Object. The overall type of the expression is INewIdentity.

type public INewlIdentity =
abstract IsAnonymous : bool

let anon =
{ new System.Object() with
member i.ToString() = "anonymous"
interface INewIdentity with
member i.IsAnonymous = true }
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6.3.9 Delayed Expressions
An expression of the form lazy expr is a delayed expression. For example:

lazy (printfn "hello world")
is syntactic sugar for
new System.Lazy (fun () -> expr)
The behavior of the System. Lazy library type ensures that expression expr is evaluated on

demand in response to a .Value operation on the lazy value.

6.3.10 Computation Expressions
The following expression forms are all computation expressions:

expr { for ... }
expr { let ... }
expr { let! ... }
expr { use ... }
expr { while ... }
expr { yield ... }
expr { yield! ... }
expr { try ... }
expr { return ... }
expr { return! ... }

More specifically, computation expressions have the following form:
builder-expr { cexpr }

where cexpr is, syntactically, the grammar of expressions with the additional constructs that are
defined in comp-expr. Computation expressions are used for sequences and other non-standard
interpretations of the F# expression syntax. For a fresh variable b, the expression

builder-expr { cexpr }
translates to

let b = builder-expr in {| cexpr |}k

The type of b must be a named type after the checking of builder-expr. The subscript indicates that
custom operations (c) are acceptable but are not required.

If the inferred type of b has one or more of the Run, Delay, or Quote methods when builder-expr is
checked, the translation involves those methods. For example, when all three methods exist, the
same expression translates to:

let b = builder-expr in b.Run (<@ b.Delay(fun () -> {| cexpr |}) >@)
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If a Run method does not exist on the inferred type of b, the call to Run is omitted. Likewise, if no
Delay method exists on the type of b, that call and the inner lambda are omitted, so the expression
translates to the following:

let b = builder-expr in b.Run (<@ {| cexpr [} >@)

Similarly, if a Qquote method exists on the inferred type of b, at-signs <@ @> are placed around {| cexpr
[}c or b.pelay(fun () -> {| cexpr |}c) if a Delay method also exists.

The translation {| cexpr [}c, which rewrites computation expressions to core language
expressions, is defined recursively according to the following rules:

{| cexpr |}c =T (cexpr, [], fun v -> v, true)

During the translation, we use the helper function {| cexpr |}» to denote a translation that does not
involve custom operations:

{| cexpr |}o =T (cexpr, [], fun v -> v, false)

T(e, V, C, q) where e : the computation expression being translated
V : a set of scoped variables
C : continuation (or context where “e” occurs,
up to a hole to be filled by the result of

({3

translating “e”)
q : Boolean that indicates whether a custom
operator is allowed

Then, T is defined for each computation expression e:
T(let p = e in ce, V, C, q) = T(ce, V @ var(p), Av.C(let p = e in v), q)

T(let! p=e in ce, V, C, q) = T(ce, V @ var(p), iAv.C(b.Bind(src(e),fun p
-> V)J q)

T(yield e, V, C, gq) = C(b.Yield(e))

T(yield! e, V, C, q)

C(b.YieldFrom(src(e)))

T(return e, V, C, Q)

C(b.Return(e))
T(return! e, V, C, q) = C(b.ReturnFrom(src(e)))
T(use p = e in ce, V, C, q) = C(b.Using(e, fun p -> {| ce [}0))

T(use! p = e in ce, V, C, q) = C(b.Bind(src(e), fun p -> b.Using(p, fun p
-> {l ce [}))

T(match e with p; -> cei, V, C, q) = C(match e with pi -> {| cei [}o)
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T(while e do ce, V, C, q) = T(ce, V, Av.C(b.While(fun () -> e, b.Delay(fun
() ->Vv))), a)

T(try ce with p; -> cei, V, C, q) =
Assert(not q); C(b.TryWith(b.Delay(fun () -> {| ce |}o), fun pi -> {| ce;
[}e))

T(try ce finally e, V, C, q) =
Assert(not q); C(b.TryFinally(b.Delay(fun () -> {| ce [}o), fun () ->
e))

T(if e then ce, V, C, q) = T(ce, V, Av.C(if e then v else b.Zero()), q)

T(if e then ce; else cey, V, C, q)
else {| ce: |}o)

Assert(not q); C(if e then {| ce: |}o)

T(for x = e; to e, do ce, V, C, q)

T(for x in e; .. e, do ce, V, C, q)

T(for p1 in e; do joinOp p, in e; onWord (es; eop es) ce, V, C, q) =
Assert(q); T(for pat(V) in b.Join(src(ei), src(ez), Api.es, Apz.€a,
Ap1. Ap2.(p1,p2)) do ce, V, C, q)

T(for p1 in e; do groupJoinOp p, in e, onWord (es; eop es) into psce, V, C, q)

Assert(q); T(for pat(V) in b.GroupJoin(src(es,
src(ez), Api.es, Apz.es, Ap1. Aps.(pi,ps)) do ce, V , C, q)

T(for x in e do ce, V, C, q) = T(ce, V @ {x}, Av.C(b.For(src(e), fun x ->
v)), q)

T(do e in ce, V, C, q) = T(ce, V, Av.C(e; V), q)
T(do! e in ce, V, C, q) = T(let! () = e in ce, V, C, Q)

T(joinOp p2 in e, on (es; eop es ce, V, C, q) =
T(for pat(V) in C({|] yield exp(V) [}ey do join p, in e, onWord (es; eop ea
ce, V, Av.v, Q)

T(groupJoinOp p; in e; onWord (es; eop esy into psce, V, C, q) =

T(for pat(V) in C({] yield exp(V) |}y do groupJoin p, in e, on (es: eop es
into ps ce,

V, AV.v, Q)

T([<CustomOperator("Cop")>]cop arg, V, C, q) = Assert (q); [| cop arg,
C(b.Yield exp(V)) |Iv

T([<CustomOperator("Cop", MaintainsVarSpaceUsingBind=true)>]cop arg; e, V,

c, Q)=
Assert (q); CL (cop arg; e, V, C(b.Return exp(V)), false)
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T([<CustomOperator("Cop")>]cop arg; e, V, C, q) =
Assert (q); CL (cop arg; e, V, C(b.Yield exp(V)), false)

T(ce:; cey, V, C, q) = C(b.Combine({| ce: |}o, b.Delay(fun () -> {| ce:|}e)))
T(do! e;, V, C, q) = T(let! () = src(e) in b.Return(), V, C, q)

T(e;, V, C, q) = C(e;b.Zero())

The following notes apply to the translations:

e The lambda expression (fun f x -> b)is represented by ix.b.

e The auxiliary function var(p) denotes a set of variables that are introduced by a pattern p. For
example:
var(x) = {x}, var((x,y)) = {x,y}orvar(s (x,y)) = {x,y}
where s is a type constructor.

e @is an update operator for a set vV to denote extended variable spaces. It updates the existing
variables. For example, {x,y} @ var((x,z)) becomes {x,y,z} where the second x replaces the
first x.

e The auxiliary function pat (V) denotes a pattern tuple that represents a set of variables in v.
For example, pat({x,y}) becomes (x,y), where x and y represent pattern expressions.

e The auxiliary function exp (V) denotes a tuple expression that represents a set of variables in v.
For example, exp ({x,y}) becomes (x,y), where x and y represent variable expressions.

e The auxiliary function src(e) denotesb.Source(e) if the innermost ForEach is from the user
code instead of generated by the translation, and a builder b contains a Source method.
Otherwise, src(e) denotes e.

e Assert() checks whether a custom operator is allowed. If not, an error message is reported.
Custom operators may not be used within try/with, try/finally, if/then/else, use, match, or
sequential execution expressions such as (e1;e2). For example, you cannot use if/then/else in
any computation expressions for which a builder defines any custom operators, even if the
custom operators are not used.

e The operator eop denotes one of =, ?=, =? or ?=>.

e joinOp and onWord represent keywords for join-like operations that are declared in
CustomOperationAttribute. For example, [<CustomOperator("join", IsLikeJoin=true,
JoinConditionWord="on")>] declares “join” and “on™.

e Similarly, groupJoinop represents a keyword for grouploin-like operations, declared in
CustomOperationAttribute. For example, [<CustomOperator("groupJoin”,
IsLikeGroupJoin=true, JoinConditionWord="on")>] declares “groupJoin® and “on”.

e The auxiliary translation CL is defined as follows:

CL (ei1, V, e2, bind) where e::. the computation expression being
translated

V: a set of scoped variables

e;: the expression that will be translated

after e; is done
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or iterator (false).

bind: indicator if it is for Bind (true)

The following shows translations for the uses of cL in the preceding computation expressions:

CL (cop arg, V, e’, bind) = |[| cop arg, e’ |Jv

CL ([<MaintainsVariableSpaceUsingBind=true>]cop arg into p; e, V,
e’, bind) =
T(let! p =¢e’ in e, [], Av.v, true)

CL (cop arg into p; e, V, e’, bind) = T(for p in e’ do e, [], Av.v,
true)

CL ([<MaintainsVariableSpace=true>]cop arg; e, V, e’, bind) =
CL (e, V, [| cop arg, e’ |lv, true)

CL ([<MaintainsVariableSpaceUsingBind=true>]cop arg; e, V, e’, bind)

CL (e, V, [| cop arg, e’ |Jv, true)

CL (e, [], [| cop arg, e’

CL (cop arg; e, V, e’, bind) Jv, false)

CL (e, V, e’, true) = T(let! pat(V) = e’ in e, V, Av.v, true)

CL (e, V, e’, false) = T(for pat(V) in e’ do e, V, Av.v, true)

e The auxiliary translation [ | el, e2 |]yis defined as follows:

[[[ el, e2 |lv where e;. the custom operator available in a build

custom operator

e,: the context argument that will be passed to a

V: a list of bound variables

[|[[<CustomOperator(" Cop")>] cop [<ProjectionParameter>] arg, e |v =
b.Cop (e, fun pat(V) -> arg)

[|[ <CustomOperator("Cop")>] cop arg, e |lv = b.Cop (e, arg)

e The final two translation rules (for do! e; and do! e;) apply only for the final expression in the
computation expression. The semicolon (;) can be omitted.

The following attributes specify custom operations:

e CustomOperationAttribute indicates that a member of a builder type implements a custom

operation in a computation expression. The attribute has one parameter: the name of the

custom operation. The operation can have the following properties:

MaintainsVariableSpace indicates that the custom operation maintains the variable space of
a computation expression.
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® MaintainsVariableSpaceUsingBind indicates that the custom operation maintains the
variable space of a computation expression through the use of a bind operation.

e AllowIntoPattern indicates that the custom operation supports the use of ‘into’ immediately
following the operation in a computation expression to consume the result of the operation.

e IslikeJoin indicates that the custom operation is similar to a join in a sequence
computation, which supports two inputs and a correlation constraint.

e IslikeGroupJoin indicates that the custom operation is similar to a group join in a sequence
computation, which support two inputs and a correlation constraint, and generates a group.

e JoinConditionWord indicates the names used for the ‘on’ part of the custom operator for
join-like operators.

e ProjectionParameterAttribute indicates that, when a custom operation is used in a
computation expression, a parameter is automatically parameterized by the variable space of
the computation expression.

The following examples show how the translation works. Assume the following simple sequence
builder:

type SimpleSequenceBuilder() =
member __ .For (source : seq<'a>, body a -> seq<'by) =
seq { for v in source do yield! body v }
member _ .Yield (item:'a) : seq<'a> = seq { yield item }

let myseq = SimpleSequenceBuilder()

Then, the expression

myseq A{
for 1 in 1 .. 10 do
yield i*i

}

translates to

let b = myseq
b.For([1..10], fun i ->
b.Yield(i*i))

CustomOperationAttribute allows us to define custom operations. For example, the simple sequence
builder can have a custom operator, “where”:

type SimpleSequenceBuilder() =
member __ .For (source : seqg<'a>, body a -> seg<'by) =
seq { for v in source do yield! body v }
member __ .Yield (item:'a) : seq<'a> = seq { yield item }
[<CustomOperation("where")>]
member _ .Where (source : seg<'a>, f:

a -> bool) : seg<'a> =
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Seq.filter f source

let myseq = SimpleSequenceBuilder()

Then, the expression

myseq {
for i in 1 .. 10 do
where (fun x -> x > 5)

}

translates to

let b = myseq
b.Where(
b.For([1..10], fun i ->
b.vield (i)),
fun x -> x > 5)

ProjectionParameterAttribute automatically adds a parameter from the variable space of the
computation expression. For example, ProjectionParameterAttribute can be attached to the second
argument of the where operator:

type SimpleSequenceBuilder() =
member __ .For (source : seq<'a>, body : 'a -> seq<'b>) =
seq { for v in source do yield! body v }
member __ .Yield (item:'a) : seg<'a> = seq { yield item }
[<CustomOperation("where")>]
member __ .Where (source: seqg<'a>, [<ProjectionParameter>]f: 'a ->
bool) : seg<'a> =
Seq.filter f source

let myseq = SimpleSequenceBuilder()

Then, the expression

myseq A{
for i in 1 .. 10 do
where (i > 5)

}

translates to

let b = myseq
b.Where(
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b.For([1..10], fun i ->
b.Yield (i)),
fun i -> i > 5)

ProjectionParameterAttribute is useful when a let binding appears between ForEach and the
custom operators. For example, the expression

myseq {
for i in 1 .. 10 do
let j=1*1
where (i > 5 & j < 49)
}

translates to

let b = myseq
b.Where(
b.For([1..10], fun i ->
let j =1 *1
b.vield (i,3j)),
fun (i,j) -> 1 > 5 && j < 49)

Without ProjectionParameterAttribute, a user would be required to write “fun (i,j) ->” explicitly.

Now, assume that we want to write the condition “where (i > 5 && j < 49)” in the following
syntax:

where (i > 5)
where (j < 49)

To support this style, the where custom operator should produce a computation that has the same
variable space as the input computation. That is, j should be available in the second where. The

following example uses the MaintainsvariableSpace property on the custom operator to specify this
behavior

type SimpleSequenceBuilder() =
member __ .For (source : seq<'a>, body : 'a -> seqg<'b>) =
seq { for v in source do yield! body v }
member __ .Yield (item:'a) : seg<'a> = seq { yield item }
[<CustomOperation("where", MaintainsVariableSpace=true)>]
member __ .Where (source: seq<'a>, [<ProjectionParameter>]f: 'a ->
bool) : seg<'a> =
Seq.filter f source

let myseq = SimpleSequenceBuilder()
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Then, the expression

myseq A{
for i in 1 .. 10 do
let j=1*1
where (i > 5)
where (j < 49)

}

translates to

let b = myseq
b.Where(
b.Where(
b.For([1..10], fun i ->
let j =1 *1
b.vield (i,j)),
fun (i,j) -> i > 5),
fun (i,j) -> j < 49)

When we may not want to produce the variable space but rather want to explicitly express the chain
of the where operator, we can design this simple sequence builder in a slightly different way. For
example, we can express the same expression in the following way:

myseq {
for 1 in 1 .. 10 do
where (i > 5) into j
where (j*j < 49)
}

In this example, instead of having a let-binding (for j in the previous example) and passing variable
space (including ) down to the chain, we can introduce a special syntax that captures a value into a
pattern variable and passes only this variable down to the chain, which is arguably more readable.
For this case, AllowIntoPattern allows the custom operation to have an into syntax:

type SimpleSequenceBuilder() =

member __ .For (source : seq<'a>, body : 'a -> seq<'b>) =
seq { for v in source do yield! body v }
member _ .Yield (item:'a) : seq<'a> = seq { yield item }

[<CustomOperation("where", AllowIntoPattern=true)>]
member _ .Where (source: seqg<'a>, [<ProjectionParameter>]f: 'a ->
bool) : seq<'a> =
Seq.filter f source

let myseq = SimpleSequenceBuilder()
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Then, the expression

myseq A{
for i in 1 .. 10 do
where (i > 5) into j
where (j*j < 49)
}

translates to

let b = myseq
b.Where(
b.For(
b.Where(
b.For([1..10], fun i -> b.Yield (i))
fun i -> i>5),
fun j -> b.vield (3)),
fun j -> j*j < 49)

Note that the into keyword is not customizable, unlike join and on.

In addition to MaintainsvariableSpace, MaintainsVariableSpaceUsingBind is provided to pass
variable space down to the chain in a different way. For example:

type SimpleSequenceBuilder() =

member _ .For (source : seq<'a>, body : 'a -> seq<'b>) =
seq { for v in source do yield! body v }

member __ .Return (item:'a) : seq<'a> = seq { yield item }

member _ .Bind (value , cont) = cont value

[<CustomOperation("where", MaintainsVariableSpaceUsingBind=true,
AllowIntoPattern=true)>]
member _ .Where (source: seq<'a>, [<ProjectionParameter>]f: 'a ->
bool) : seq<'a> =
Seq.filter f source

let myseq = SimpleSequenceBuilder()

The presence of MaintainsVariableSpaceUsingBindAttribute requires Return and Bind methods
during the translation.

Then, the expression

myseq A{
for i in 1 .. 10 do
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where (i > 5 & & i*i < 49) into j
return j

}

translates to

let b = myseq
b.Bind(
b.Where(B.For([1..10], fun i -> b.Return (i)),
fun i -> i > 5 && i*i < 49),
fun j -> b.Return (j))

where Bind is called to capture the pattern variable j. Note that For and Yield are called to capture

the pattern variable when MaintainsvariableSpace is used.

Certain properties on the CustomOperationAttribute introduce join-like operators. The following
example shows how to use the IsLikeJoin property.

type SimpleSequenceBuilder() =
member __ .For (source : seq<'a>, body : 'a -> seq<'b>) =
seq { for v in source do yield! body v }
member _ .Yield (item:'a) : seq<'a> = seq { yield item }

[<CustomOperation("merge", IsLikeJoin=true,
JoinConditionWord="whenever")>]
member _ .Merge (srcl:seq<'a>, src2:seq<'a>, ksl, ks2, ret) =
seq { for a in srcl do
for b in src2 do
if ksl a = ks2 b then yield((ret a ) b)

let myseq = SimpleSequenceBuilder()

IsLikeJoin indicates that the custom operation is similar to a join in a sequence computation; that
is, it supports two inputs and a correlation constraint.

The expression

myseq {
for 1 in 1 .. 10 do
merge j in [5 .. 15] whenever (i = j)
yield j
}

translates to

let b = myseq
b.For(
b.Merge([1..10], [5..15],
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fun i -> i, fun j -> 5,
fun i -> fun j -> (i,9)),
fun § -> b.vield (j))

This translation implicitly places type constraints on the expected form of the builder methods. For
example, for the async builder found in the FSharp.Control library, the translation phase
corresponds to implementing a builder of a type that has the following member signatures:

type AsyncBuilder with

member For: seqg<'T> * ('T -> Async<unit>) -> Async<unit>
member Zero : unit -> Async<unit>
member Combine : Async<unit> * Async<'T> -> Async<'T>
member While : (unit -> bool) * Async<unit> -> Async<unit>
member Return : 'T -> Async<'T>
member Delay : (unit -> Async<'T>) -> Async<'T>
member Using: 'T * ('T -> Async<'U>») -> Async<'U>

when 'U :> System.IDisposable
member Bind: Async<'T> * ('T -> Async<'U>) -> Async<'U>
member TryFinally: Async<'T> * (unit -> unit) -> Async<'T>
member TryWith: Async<'T> * (exn -> Async<'T>) -> Async<'T>

The following example shows a common approach to implementing a new computation expression
builder for a monad. The example uses computation expressions to define computations that can be
partially run by executing them step-by-step, for example, up to a time limit.

/// Computations that can cooperatively yield by returning a

continuation
type Eventually<'T> =
| Done of 'T

| NotYetDone of (unit -> Eventually<'T>)

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix

)>]

module Eventually =

/// The bind for the computations. Stitch 'k' on to the end of the
computation.
/// Note combinators like this are usually written in the reverse
way,
/// for example,
/// e |> bind k
let rec bind k e =
match e with
| Done x -> NotYetDone (fun () -> k x)
| NotYetDone work -> NotYetDone (fun () -> bind k (work()))

/// The return for the computations.
let result x = Done Xx
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type OkOrException<'T> =
| ok of 'T
| Exception of System.Exception

/// The catch for the computations. Stitch try/with throughout
/// the computation and return the overall result as an
OkOrException.
let rec catch e =
match e with
| Done x -> result (Ok x)
| NotYetDone work ->
NotYetDone (fun () ->
let res = try Ok(work()) with | e -> Exception e
match res with
| Ok cont -> catch cont // note, a tailcall
| Exception e -> result (Exception e))

/// The delay operator.
let delay f = NotYetDone (fun () -> f())

/// The stepping action for the computations.

let step c =
match c with
| Done _ -> ¢

| NotYetDone f -> f ()
// The rest of the operations are boilerplate.

/// The tryFinally operator.
/// This is boilerplate in terms of "result", "catch" and "bind".
let tryFinally e compensation =
catch (e)
|> bind (fun res -> compensation();
match res with
| Ok v -> result v
| Exception e -> raise e)

/// The tryWith operator.
/// This is boilerplate in terms of "result", "catch" and "bind".
let tryWith e handler =

catch e

|> bind (function Ok v -> result v | Exception e -> handler e)

/// The whilelLoop operator.
/// This is boilerplate in terms of "result" and "bind".
let rec whilelLoop gd body =
if gd() then body |> bind (fun v -> whilelLoop gd body)
else result ()
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/// The sequential composition operator
/// This is boilerplate in terms of "result" and "bind".
let combine el e2 =

el |> bind (fun () -> e2)

/// The using operator.
let using (resource: #System.IDisposable) f =
tryFinally (f resource) (fun () -> resource.Dispose())

/// The forlLoop operator.
/// This is boilerplate in terms of "catch", "result" and "bind".
let forLoop (e:seq<_>) f =
let ie = e.GetEnumerator()
tryFinally (whileLoop (fun () -> ie.MoveNext())
(delay (fun () -> let v = ie.Current in f

v)))
(fun () -> ie.Dispose())

// Give the mapping for F# computation expressions.
type EventuallyBuilder() =

member x.Bind(e,k) = Eventually.bind k e

member Xx.Return(v) = Eventually.result v

member Xx.ReturnFrom(v) = vV

member x.Combine(el,e2) = Eventually.combine el e2

member x.Delay(f) = Eventually.delay f

member x.Zero() = Eventually.result ()

member x.TryWith(e,handler) = Eventually.tryWith e handler

member Xx.TryFinally(e,compensation) = Eventually.tryFinally e
compensation

member x.For(e:seq<_>,f)
member x.Using(resource,e)

Eventually.forLoop e f
Eventually.using resource e

let eventually = new EventuallyBuilder()
After the computations are defined, they can be built by using eventually { ... }:

let comp =
eventually { for x in 1 .. 2 do
printfn " x = %d" x
return 3 + 4 }

These computations can now be stepped. For example:

let step x = Eventually.step x
comp |> step
// returns "NotYetDone <closure>"

comp |> step |> step
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// prints "x = 1"
// returns "NotYetDone <closure>"

comp |> step |> step |> step |> step |> step |> step
// prints "x = 1"
// prints "x = 2"
// returns “NotYetDone <closure>”

comp |> step |> step |> step |> step |> step |> step |> step |> step
// prints "x = 1"
// prints "x = 2"
// returns "Done 7"

6.3.11 Sequence Expressions
An expression in one of the following forms is a sequence expression:

seq { comp-expr }
seq { short-comp-expr }

For example:

seq { for x in [ 1; 2; 3 ] do for y in [5; 6] do yield x + vy }
seq { for x in [ 1; 2; 3 ] do yield x + x }
seq { for x in [ 1; 2; 3 ] -> x + x }

J

)

J

Logically speaking, sequence expressions can be thought of as computation expressions with a
builder of type FSharp.Collections.SeqBuilder. This type can be considered to be defined as
follows:

type SeqBuilder() =
member x.Yield (v) = Seq.singleton v

member Xx.YieldFrom (s:seq<_>) = s

member x.Return (():unit) = Seq.empty

member x.Combine (xsl1l,xs2) = Seq.append xsl xs2
member X.For (xs,g) = Seq.collect f xs

member Xx.While (guard,body) =
SequenceExpressionHelpers.EnumerateWhile guard body
member X.TryFinally (xs,compensation) =
SequenceExpressionHelpers.EnumerateThenFinally xs compensation
member x.Using (resource,xs) =
SequenceExpressionHelpers.EnumerateUsing resource Xxs

However, this builder type is not actually defined in the F# library. Instead, sequence expressions are
elaborated directly as follows:

{| yield expr [} - Seq.singleton expr

{| yield! expr |} -> expr

{| expr: ; expr: [} ~> Seq.append {| expr: [} {| expr: [}

{| for pat in expr: -> expr: |} - Seq.map (fun pat -> {| expr: |})
expri

{| for pat in expr: do expr: |} - Seq.collect (fun pat -> {|expr: |})
expri
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{| while expr; do expr: |} - RuntimeHelpers.EnumerateWhile
(fun () -> expri)
{l expr> [})
{| try expr; finally expr.|} > RuntimeHelpers.EnumerateThenFinally
(I exprs: [})
(fun () -> expr;)
expr: in expr: |} > let v = expr; in
RuntimeHelpers.EnumerateUsing v {| expr:

{Juse v

I}

{| let v = expr; in expr;|} > let v = expr: in {| expr; |}
{| match expr with pat; -> expri |} —>.match expr with pat: -> {| cexpr:i |}

{| expr: [} - expr: ; Seq.empty

{| if expr then exprq |} - if expr then {| expro |}c else
Seq.empty

{| if expr then exprs else expr; |} - if expr then {| expro |}c else {|
expri |k

Here the use of Seq and RuntimeHelpers refers to the corresponding functions in
FSharp.Collections.Seq and FSharp.Core.CompilerServices.RuntimeHelpers
respectively. This means that a sequence expression generates an object of type
System.Collections.Generic.IEnumerable<ty> for some type ty. Such an object has a
GetEnumerator method that returns a System.Collections.Generic.IEnumerator<ty>
whose MoveNext, Current and Dispose methods implement an on-demand evaluation of the
sequence expressions.

6.3.12 Range Expressions
Expressions of the following forms are range expressions.

{e1..e2}
{e1..e2 .. e3}

seq { el .. e2}

seq { el .. e2 .. e3}

Range expressions generate sequences over a specified range. For example:

seq {1 ..10 } // 1; 2; 3; 4; 5; 6; 7; 8; 9; 10
seq {1 ..2..10%}// 1; 3; 5; 7; 9

Range expressions involving expr; .. expr are translated to uses of the (. .) operator, and
those involving expr: .. expr: .. exprs are translated to uses of the (.. ..) operator:

seq { e1 .. e2 } > (..) e: e
seq { el .. e2 ..e3} > (.. ..) e; eres

The default definition of these operators is in FSharp.Core.Operators. The (. .) operator
generates an TEnumerable< > for the range of values between the start (expr:) and finish
(expr;) values, using an increment of 1 (as defined by
FSharp.Core.lLanguagePrimitives.GenericOne).The (.. ..) operator generatesan

IEnumerable< > for the range of values between the start (expr:) and finish (expr;) values, using

an increment of expr..
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The seq keyword, which denotes the type of computation expression, can be omitted for simple
range expressions, but this is not recommended and might be deprecated in a future release. It is
always preferable to explicitly mark the type of a computation expression.

Range expressions also occur as part of the translated form of expressions, including the following:

o [ expri .. expra ]

o [| expri .. expr: |]

e for var in expri .. expr, do exprs;

A sequence iteration expression of the form for var in expr: .. expr. do exprs doneis

sometimes elaborated as a simple for loop-expression (§6.5.7).

6.3.13 Lists via Sequence Expressions

A list sequence expression is an expression in one of the following forms
[ comp-expr ]

[ short-comp-expr ]
[ range-expr ]

For example:
let x2 = [ yield 1; yield 2 ]
let x3 = [ yield 1
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday
then

yield 2]

6.3.14 Arrays Sequence Expressions
An expression in one of the following forms is an array sequence expression:

[| comp-expr |]
[| short-comp-expr |]
[| range-expr |]

1.

For example:
let x2 = [| yield 1; yield 2 |]
let x3 = [| yield 1
if System.DateTime.Now.DayOfWeek = System.DayOfWeek.Monday
then

yield 2 |]
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6.3.15 Null Expressions

An expression in the form null is a null expression. A null expression imposes a nullness constraint
(85.2.2, §5.4.8) on the initial type of the expression. The constraint ensures that the type directly
supports the value null.

Null expressions are a primitive elaborated form.

6.3.16 'printf Formats

Format strings are strings with % markers as format placeholders. Format strings are analyzed at
compile time and annotated with static and runtime type information as a result of that analysis.
They are typically used with one of the functions printf, fprintf, sprintf, or bprintf inthe
FSharp.Core.Printf module. Format strings receive special treatment in order to type check
uses of these functions more precisely.

More concretely, a constant string is interpreted as a printf-style format string if it is expected to
have the type

FSharp.Core.PrintfFormat<'Printer, 'State, 'Residue, 'Result, 'Tuple>. The string
is statically analyzed to resolve the generic parameters of the PrintfFormat type, of which
"Printer and 'Tuple are the most interesting:

e 'Printeristhe function type that is generated by applying a printf-like function to the
format string.

e 'Tupleisthe type of the tuple of values that are generated by treating the string as a generator
(for example, when the format string is used with a function similar to scanf in other
languages).

A format placeholder has the following shape:
%[flags][width][.precision][type]
where:

flags

Are 0, -, +, and the space character. The # flag is invalid and results in a compile-time error.

width

Is an integer that specifies the minimum number of characters in the result.

precision

Is the number of digits to the right of the decimal point for a floating-point type. .
type

Is as shown in the following table.

Placeholder string Type
%b bool
%S string
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Placeholder string Type

%C char

%d, %i One of the basic integer types:
byte, sbyte, int16, uintl6, int32, uint32, int64, uint64, nativeint, or
unativeint

%u Basic integer type formatted as an unsigned integer

%X Basic integer type formatted as an unsigned hexadecimal integer with lowercase
letters a through f.

%X Basic integer type formatted as an unsigned hexadecimal integer with uppercase
letters A through F.

%0 Basic integer type formatted as an unsigned octal integer.

%e, %E, %t, %F, %g, %G float or float32

%M System.Decimal

%0 System.0Object

%A Fresh variable type 'T

%a Formatter of type 'State -> 'T -> 'Residue for a fresh variable type 'T

%t Formatter of type 'State -> 'Residue

For example, the format string "%s %d %s" is given the type PrintfFormat<(string -> int -
> string -> 'd), 'b, 'c, 'd,(string * int * string)> for fresh variable types 'b,
"c, 'd.Applying printf toityieldsa function of type string -> int -> string ->
unit.

6.4 Application Expressions

6.4.1 Basic Application Expressions
Application expressions involve variable names, dot-notation lookups, function applications, method
applications, type applications, and item lookups, as shown in the following table.

Expression Description

Long-ident-or-op Long-ident lookup expression

expr '.' long-ident-or-op Dot lookup expression

expr expr Function or member application expression

expr(expr) High precedence function or member application
expression

expr<types> Type application expression

expr< > Type application expression with an empty type list

type expr Simple object expression

The following are examples of application expressions:

System.Math.PI

System.Math.PI.ToString()

(3 + 4).ToString()
System.Environment.GetEnvironmentVariable("PATH").Length
System.Console.WriteLine("Hello World")
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Application expressions may start with object construction expressions that do not include the new
keyword:

System.Object()
System.Collections.Generic.List<int>(10)
System.Collections.Generic.KeyValuePair(3,"Three")
System.Object().GetType()
System.Collections.Generic.Dictionary<int,int>(10).[1]

If the Long-1ident-or-op starts with the special pseudo-identifier keyword global, F# resolves
the identifier with respect to the global namespace—that is, ignoring all open directives (see §14.2).
For example:

global.System.Math.PI
is resolved to System.Math.PI ignoring all open directives.

The checking of application expressions is described in detail as an algorithm in §14.2. To check an
application expression, the expression form is repeatedly decomposed into a lead expression expr
and a list of projections projs through the use of Unqualified Lookup (§14.2.1). This in turn uses
procedures such as Expression-Qualified Lookup and Method Application Resolution.

As described in §14.2, checking an application expression results in an elaborated expression that
contains a series of lookups and method calls. The elaborated expression may include:

e Uses of named values

e Uses of union cases

e Record constructions

e Applications of functions

e Applications of methods (including methods that access properties)
e Applications of object constructors

e Uses of fields, both static and instance

e Uses of active pattern result elements

Additional constructs may be inserted when resolving method calls into simpler primitives:

o The use of a method or value as a first-class function may result in a function expression.

For example, System.Environment.GetEnvironmentVariable elaborates to:
(fun v -> System.Environment.GetEnvironmentVariable(v))
for some fresh variable v.

e The use of post-hoc property setters results in the insertion of additional assignment and
sequential execution expressions in the elaborated expression.

For example, new System.Windows.Forms.Form(Text="Text") elaborates to
let v = new System.Windows.Forms.Form() in v.set_Text("Text"); v
for some fresh variable v.
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e The use of optional arguments results in the insertion of Some () and None data constructions
in the elaborated expression.

For uses of active pattern results (see §10.2.4), for result 1 in an active pattern that has N possible
results of types types, the elaborated expression form is a union case ChoiceNOf1 of type
FSharp.Core.Choice<types>.

6.4.2 Object Construction Expressions
An expression of the following form is an object construction expression:

new ty(e: ... en)

An object construction expression constructs a new instance of a type, usually by calling a
constructor method on the type. For example:

new System.Object()

new System.Collections.Generic.List<int>()

new System.Windows.Forms.Form (Text="Hello World")
new 'T()

The initial type of the expression is first asserted to be equal to ty. The type ty must not be an
array, record, union or tuple type. If Ty is a named class or struct type:

ety must not be abstract.

e If tyisastructtype, n is0, and ty does not have a constructor method that takes zero
arguments, the expression elaborates to the default “zero-bit pattern” value for ty.

e Otherwise, the type must have one or more accessible constructors. The overloading between
these potential constructors is resolved and elaborated by using Method Application Resolution
(see §14.4).

If ty is a delegate type the expression is a delegate implementation expression.

e If the delegate type has an Invoke method that has the following signature
Invoke(tyi,...,tyn) -> rtya,

then the overall expression must be in this form:
new ty(expr) where expr hastype ty: -> ... -> ty, -> rtys
If type rtyais a CLlI void type, then rtyzis unit, otherwise it is rtya.

o If any of the types ty: is a byref-type then an explicit function expression must be specified. That
is, the overall expression must be of the form new ty(fun pat: ... pat, -> exprioeay).

If Ty is a type variable:

e There must be no arguments (thatis, n = 9).
e The type variable is constrained as follows:

ty : (new : unit -> ty) -- CLI default constructor constraint
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e The expression elaborates to a call to
FSharp.Core.LanguagePrimitives.IntrinsicFunctions.CreateInstance<ty>(),
which in turn calls System.Activator.CreateInstance<ty>(), whichin turn uses CLI
reflection to find and call the null object constructor method for type ty. On return from this
function, any exceptions are wrapped by using System.TargetInvocationException.

6.4.3 Operator Expressions
Operator expressions are specified in terms of their shallow syntactic translation to other constructs.
The following translations are applied in order:

infix-or-prefix-op el - (~infix-or-prefix-op) el
prefix-op el > (prefix-op) el
el infix-op e2 > (infix-op) el e2

Note: When an operator that may be used as either an infix or prefix operator is used in
prefix position, a tilde character ~ is added to the name of the operator during the
translation process.

These rules are applied after applying the rules for dynamic operators (§6.4.4).

The parenthesized operator name is then treated as an identifier and the standard rules for
unqualified name resolution (§14.1) in expressions are applied. The expression may resolve to a
specific definition of a user-defined or library-defined operator. For example:

let (+++) a b = (a,b)
3 +++ 4

In some cases, the operator name resolves to a standard definition of an operator from the F#
library. For example, in the absence of an explicit definition of (+),

3+ 4
resolves to a use of the infix operator FSharp.Core.Operators. (+).

Some operators that are defined in the F# library receive special treatment in this specification. In
particular:

o The &expr and &&expr address-of operators (§6.4.5)

e Theexpr && exprandexpr || expr shortcut control flow operators (§6.5.4)

e The %expr and %%expr expression splice operators in quotations (§6.8.3)

e The library-defined operators, such as +, -, *, /, %, **, <<<, >>>, &&&, | | |, and *"* (§18.2).

If the operator does not resolve to a user-defined or library-defined operator, the name resolution
rules (§14.1) ensure that the operator resolves to an expression that implicitly uses a static member
invocation expression (§0) that involves the types of the operands. This means that the effective
behavior of an operator that is not defined in the F# library is to require a static member that has the
same name as the operator, on the type of one of the operands of the operator. In the following
code, the otherwise undefined operator - - > resolves to the static member on the Receiver type,
based on a type-directed resolution:
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type Receiver(latestMessage:string) =
static member (<--) (receiver:Receiver,message:string) =
Receiver(message)

static member (-->) (message,receiver:Receiver) =
Receiver(message)

let r = Receiver "no message"
r <-- "Message One"

"Message Two" -->r

6.4.4 Dynamic Operator Expressions
Expressions of the following forms are dynamic operator expressions:

expri ? expr;
expri ? expr; <- exprs

These expressions are defined by their syntactic translation:

(?) expr "ident"

(?) expri expr;

(?<-) expr; "ident" expr;
(?<-) expriexpr; exprs

expr ? ident

expr: ? (expr;)

expr: ? ident <- expr;
expr; ? (expr;) <- expr;

L R 4

Here "ident" is a string literal that contains the text of ident.

Note: The F# core library FSharp.Core.dl1 does not define the (?) and (?<-)
operators. However, user code may define these operators. For example, it is common
to define the operators to perform a dynamic lookup on the properties of an object by
using reflection.

This syntactic translation applies regardless of the definition of the (?) and (?<-) operators.
However, it does not apply to uses of the parenthesized operator names, as in the following:

(?) xy

6.4.5 The AddressOf Operators
Under default definitions, expressions of the following forms are address-of expressions, called
byref-address-of expression and nativeptr-address-of expression, respectively:

&expr
&&expr

Such expressions take the address of a mutable local variable, byref-valued argument, field, array
element, or static mutable global variable.

For &expr and &&expr , the initial type of the overall expression must be of the form byref<ty>
and nativeptr<ty> respectively, and the expression expr is checked with initial type ty.
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The overall expression is elaborated recursively by taking the address of the elaborated form of
expr, written AddressOf(expr, DefinitelyMutates), defined in §6.9.4.

Use of these operators may result in unverifiable or invalid common intermediate language (CIL)
code; when possible, a warning or error is generated. In general, their use is recommended only:
o To pass addresses where byref or nativeptr parameters are expected.

e To pass a byref parameter on to a subsequent function.

e When required to interoperate with native code.

Addresses that are generated by the && operator must not be passed to functions that are in tail call
position. The F# compiler does not check for this.

Direct uses of byref types, nativeptr types, or values in the FSharp.NativeInterop module
may result in invalid or unverifiable CIL code. In particular, byref and nativeptr types may NOT
be used within named types such as tuples or function types.

When calling an existing CLI signature that uses a CLI pointer type ty*, use a value of type
nativeptr<ty>.

Note: The rules in this section apply to the following prefix operators, which are defined
in the F# core library for use with one argument.

FSharp.Core.LanguagePrimitives.IntrinsicOperators. (~&)
FSharp.Core.LanguagePrimitives.IntrinsicOperators. (~&&)

Other uses of these operators are not permitted.

6.4.6 Lookup Expressions
Lookup expressions are specified by syntactic translation:

€es1. [eargs] -> el.ge‘t_Item(eargs)
el-[ear‘gs] <- €3 - el.set_Item(ewgS, 83)

In addition, for the purposes of resolving expressions of this form, array types of rank 1, 2, 3, and 4
are assumed to support a type extension that defines an Item property that has the following
signatures:

type 'T[] with
member arr.Item : int -> 'T

type 'T[,] with
member arr.Item : int * int -> 'T

type 'T[,,] with
member arr.Item : int * int * int -> 'T

type 'T[,,,] with
member arr.Item : int * int * int * int -> 'T
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In addition, if type checking determines that the type of e; is a named type that supports the
DefaultMember attribute, then the member name identified by the DefaultMember attribute is
used instead of Item.

6.4.7 Slice Expressions
Slice expressions are defined by syntactic translation:

el.[sliceArgl, ,,, sliceArgN] > el.GetSlice( argsli,..,argsN)
el.[sliceArgl, ,,, sliceArgN] <- expr > el.SetSlice( argsi,..,argsN,
expr)

where each sliceArgN is one of the following and translated to argsN (giving one or two args) as
indicated

* - None, None

el.. - Some el, None
.e2 - None, Some e2

el..e2 - Some el, Some e2

1dx -»> 1dx

Because this is a shallow syntactic translation, the GetS1lice and SetS1ice name may be resolved
by any of the relevant Name Resolution (§14.1) techniques, including defining the method as a type
extension for an existing type.

For example, if a matrix type has the appropriate overloads of the GetSlice method (see below), it is
possible to do the following:

matrix.[1..,*] -- get rows 1.. from a matrix (returning a matrix)
matrix.[1..3,*] -- get rows 1..3 from a matrix (returning a matrix)
matrix.[*,1..3] -- get columns 1..3from a matrix (returning a matrix)
matrix.[1..3,1,.3] -- get a 3x3 sub-matrix (returning a matrix)
matrix.[3,*] -- get row 3 from a matrix as a vector

matrix.[*,3] -- get column 3 from a matrix as a vector

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a
method GetS1ice that has the following signature:

type 'T[] with
member arr.GetSlice : ?startl:int * ?endl:int -> 'T[]

type 'T[,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int *
?end2:int -> 'T[, ]
member arr.GetSlice : idxl:int * ?start2:int * ?end2:int -> 'T[]
member arr.GetSlice : ?startl:int * ?endl:int * idx2:int -> 'T[]

type 'T[,,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int *

?end2:int *
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?start3:int * ?end3:int
-> 'T[J)]

type 'T[,,,] with
member arr.GetSlice : ?startl:int * ?endl:int * ?start2:int *
?end2:int *
?start3:int * ?end3:int * ?start4:int *
?end4:int

-> 'T[J.)J]

In addition, CIL array types of rank 1 to 4 are assumed to support a type extension that defines a
method SetS1lice that has the following signature:

type 'T[] with
member arr.SetSlice : ?startl:int * ?endl:int * values:T[] -> unit

type 'T[,] with

member arr.SetSlice : ?startl:int * ?endl:int * ?start2:int *
?end2:int *

values:T[,] -> unit

member arr.SetSlice : idx1:int * ?start2:int * ?end2:int *
values:T[] -> unit

member arr.SetSlice : ?startl:int * ?endl:int * idx2:int *
values:T[] -> unit

type 'T[,,] with
member arr.SetSlice : ?startl:int * ?endl:int * ?start2:int *
?end2:int *
?start3:int * ?end3:int * values:T[,,] ->
unit
type 'T[,,,] with
member arr.SetSlice : ?startl:int * ?endl:int * ?start2:int *
?end2:int *
?start3:int * ?end3:int * ?startd:int *
?end4:int *
values:T[,,,] -> unit

6.4.8 Member Constraint Invocation Expressions
An expression of the following form is a member constraint invocation expression:

(static-typars : (member-sig) expr)
Type checking proceeds as follows:
1. The expression is checked with initial type ty.

2. Astatically resolved member constraint is applied (§5.2.3):
static-typars : (member-sig)

3. tyisasserted to be equal to the return type of the constraint.

4. expr is checked with an initial type that corresponds to the argument types of the constraint.
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The elaborated form of the expression is a member invocation. For example:

let inline speak (a: "a) =
let x = (*a : (member Speak: unit -> string) (a))
printfn "It said: %s" x
let y = (*a : (member MakeNoise: unit -> string) (a))
printfn "Then it went: %s" y

type Duck() =

member x.Speak() = "I'm a duck"
member x.MakeNoise() = "quack"
type Dog() =
member x.Speak() = "I'm a dog"
member x.MakeNoise() = "grrrr"
let x = new Duck()
let y = new Dog()
speak x
speak y
Outputs:

It said: I'm a duck
Then it went: quack
It said: I'm a dog
Then it went: grrrr

6.4.9 Assignment Expressions
An expression of the following form is an assignment expression:
expri <- expr:

A modified version of Unqualified Lookup (§14.2.1) is applied to the expression expri using a fresh

expri must resolve to one of the following constructs:

e Aninvocation of a property with a setter method. The property may be an indexer.

Type checking incorporates expr; as the last argument in the method application resolution for
the setter method. The overall elaborated expression is a method call to this setter property and
includes the last argument.
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Type checking of expr. uses the expected result type ty and generates an elaborated

Note: Because assignments have the preceding interpretations, local values must be
mutable so that primitive field assignments and array lookups can mutate their
immediate contents. In this context, “immediate” contents means the contents of a
mutable value type. For example, given

[<Struct>]

type SA =
new(v) = { x = v }
val mutable x : int

[<Struct>]

type SB =
new(v) = { sa = v }
val mutable sa : SA

let s1 = SA(9)

let mutable s2 = SA(0Q)
let s3 = SB(9)
let mutable s4 = SB(0Q)

Then these are not permitted:

sl.x <- 3
s3.sa.X <- 3

and these are:

s2.X <- 3
s4.sa.X <- 3
s4.sa <- SA(2)
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6.5 Control Flow Expressions

6.5.1 Parenthesized and Block Expressions
A parenthesized expression has the following form:

(expr)
A block expression has the following form:
begin expr end
The expression expr is checked with the same initial type as the overall expression.
The elaborated form of the expression is simply the elaborated form of expr.
6.5.2 Sequential Execution Expressions
A sequential execution expression has the following form:
expri; expr:
For example:
printfn "Hello"; printfn "World"; 3
The ; token is optional when both of the following are true:

e The expression expr, occurs on a subsequent line that starts in the same column as expri.
e The current pre-parse context that results from the syntax analysis of the program text is a
SeqBlock (§15).

When the semicolon is optional, parsing inserts a $sep token automatically and applies an
additional syntax rule for lightweight syntax (§15.1.1). In practice, this means that code can omit the
; token for sequential execution expressions that implement functions or immediately follow
tokens such as begin and (.

The expression expri is checked with an arbitrary initial type ty. After checking expri, ty is
asserted to be equal to unit. If the assertion fails, a warning rather than an error is reported. The
expression expr- isthen checked with the same initial type as the overall expression.

Sequential execution expressions are a primitive elaborated form.

6.5.3 Conditional Expressions
A conditional expression has the following form:s

if expria then expri
elif exprs, then expra

elif expr.. then exprns
else expriast
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The elif and else branches may be omitted. For example:

if (1 +1
if (1 +1

2) then "ok" else "not ok"
2) then printfn "ok"

Conditional expressions are equivalent to pattern matching on Boolean values. For example, the
following expression forms are equivalent:

if expri then expr, else exprs
match (expri:bool) with true -> expr, | false -> exprs

If the else branch is omitted, the expression is a sequential conditional expression and is equivalent
to:

match (expri:bool) with true -> expr, | false -> ()
with the exception that the initial type of the overall expression is first asserted to be unit.
6.5.4 Shortcut Operator Expressions

Under default definitions, expressions of the following form are respectively an shortcut and
expression and a shortcut or expression:

expr && expr
expr || expr

These expressions are defined by their syntactic translation:

expr: && expr; -» if expr; then expr; else false
expr: || expr: > if expr: then true else expr;

Note: The rules in this section apply when the following operators, as defined in the F#
core library, are applied to two arguments.

FSharp.Core.LanguagePrimitives.IntrinsicOperators. (&&)
FSharp.Core.LanguagePrimitives.IntrinsicOperators.(]||)

If the operator is not immediately applied to two arguments, it is interpreted as a strict
function that evaluates both its arguments before use.

6.5.5 Pattern-Matching Expressions and Functions
A pattern-matching expressionhas the following form:

match expr with rules
Pattern matching is used to evaluate the given expression and select a rule (§7). For example:
match (3, 2) with
| 1, j -> printfn "j = %d" j

| i, 2 -> printfn "i = %d" i
| _ -> printfn "no match"
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A pattern-matching function is an expression of the following form:
function rules

A pattern-matching function is syntactic sugar for a single-argument function expression that is
followed by immediate matches on the argument. For example:

function
| 1, j -> printfn "j = %d" j
| -> printfn "no match"

is syntactic sugar for the following, where x is a fresh variable:

fun x ->
match x with
| 1, j -> printfn "j = %d" j
| -> printfn "no match"

6.5.6 Sequence Iteration Expressions
An expression of the following form is a sequence iteration expression:

for pat in expri do expr; done

The done token is optional if expr, appears on a later line and is indented from the column position
of the for token. In this case, parsing inserts a $done token automatically and applies an additional
syntax rule for lightweight syntax (§15.1.1).

For example:

for x, y in [(1, 2); (3, 4)] do
printfn "x = %d, y = %d" x vy

The expression expri is checked with a fresh initial type tyexpr, Which is then asserted to be a
subtype of type TEnumerable<ty>, for a fresh type ty. If the assertion succeeds, the expression
elaborates to the following, where v is of type TEnumerator<ty> and pat is a pattern of type ty:

let v = expri.GetEnumerator()
try
while (v.MoveNext()) do
match v.Current with
| pat -> expra
| _ >0
finally
match box(v) with
| :? System.IDisposable as d -> d.Dispose()

| _ > O

If the assertion fails, the type tye.pr may also be of any static type that satisfies the “collection
pattern” of CLlI libraries. If so, the enumerable extraction process is used to enumerate the type. In
particular, tyexp- may be any type that has an accessible GetEnumerator method that accepts zero
arguments and returns a value that has accessible MoveNext and Current properties. The type of
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pat is the same as the return type of the Current property on the enumerator value. However, if
the Current property has return type obj and the collection type ty has an Item property with a
more specific (non-object) return type ty., type ty. is used instead, and a dynamic cast is inserted
to convert v.Current to ty..

A sequence iteration of the form
for var in expri .. expr. do exprs done
where the type of expri or expr; is equivalent to int, is elaborated as a simple for-loop expression
(§6.5.7)
6.5.7 Simple for-Loop Expressions
An expression of the following form is a simple for loop expression:
for var = expri to expr, do exprs done

The done token is optional when e2 appears on a later line and is indented from the column
position of the for token. In this case, a $done token is automatically inserted, and an additional
syntax rule for lightweight syntax applies (§15.1.1). For example:

for x = 1 to 30 do
printfn "x = %d, x"2 = %d" x (x*x)

The bounds expr: and expr, are checked with initial type int. The overall type of the
expression is unit. A warning is reported if the body expr; of the for loop does not have static
type unit.

The following shows the elaborated form of a simple for-loop expression for fresh variables start
and finish:

For-loops over ranges that are specified by variables are a primitive elaborated form. When
executed, the iterated range includes both the starting and ending values in the range, with an
increment of 1.

An expression of the form
for var in expri .. expr. do exprs done
is always elaborated as a simple for-loop expression whenever the type of expri or expr, is
equivalent to int.
6.5.8 While Expressions

A while loop expression has the following form:

while expr: do expr, done
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The done token is optional when expr, appears on a subsequent line and is indented from the
column position of the while. In this case, a $done token is automatically inserted, and an
additional syntax rule for lightweight syntax applies (§15.1.1).

For example:

while System.DateTime.Today.DayOflWeek = System.DayOfWeek.Monday do
printfn "I don't like Mondays"

The overall type of the expression is unit. The expression expr: is checked with initial type bool.
A warning is reported if the body expr, of the while loop cannot be asserted to have type unit.

6.5.9 Try-with Expressions
A try-with expression has the following form:

try expr with rules
For example:
try "1" with _ -> "2"

try
failwith "fail"
with
| Failure msg -> "caught"
| :? System.InvalidOperationException -> "unexpected"

Expression expr is checked with the same initial type as the overall expression. The pattern
matching clauses are then checked with the same initial type and with input type
System.Exception.

Try-with expressions are a primitive elaborated form.

6.5.10 Reraise Expressions

A reraise expression is an application of the reraise F# library function. This function must be
applied to an argument and can be used only on the immediate right-hand side of rules in a try-
with expression.

try
failwith "fail"
with e -> printfn "Failing"; reraise()

Note: The rules in this section apply to any use of the function
FSharp.Core.Operators.reraise, which is defined in the F# core library.

When executed, reraise() continues exception processing with the original exception information.

6.5.11 Try-finally Expressions
A try-finally expression has the following form:
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try expr: finally expr;
For example:

try "1" finally printfn "Finally!"

try
failwith "fail™
finally
printfn "Finally block"

Expression expri is checked with the initial type of the overall expression. Expression exprs is
checked with arbitrary initial type, and a warning occurs if this type cannot then be asserted to be
equal tounit.

Try-finally expressions are a primitive elaborated form.

6.5.12 Assertion Expressions

An assertion expression has the following form:
assert expr

The expression assert expr is syntactic sugar for

that assertions are triggered only if the DEBUG conditional compilation symbol is
defined.

6.6 Definition Expressions

A definition expression has one of the following forms:

let function-defn in expr

let value-defn in expr

let rec function-or-value-defns in expr
use ident = expr: in expr

Such an expression establishes a local function or value definition within the lexical scope of expr
and has the same overall type as expr.

In each case, the in token is optional if expr appears on a subsequent line and is aligned with the
token let. In this case, a $in token is automatically inserted, and an additional syntax rule for
lightweight syntax applies (§15.1.1)

For example:
let x =1

X + X

109



and

let x, y = ("One", 1)
X.Length + vy

and
let id x = x in (id 3, id "Three")
and

let swap (x, y) = (y,x)
List.map swap [ (1, 2); (3, 4) ]

and
let K x y = x in List.map (K 3) [ 1; 2; 3; 4 ]

Function and value definitions in expressions are similar to function and value definitions in class
definitions (§8.6.1.3), modules (§10.2.1), and computation expressions (§6.3.10), with the following
exceptions:

e Function and value definitions in expressions may not define explicit generic parameters (§5.3).
For example, the following expression is rejected:

let f<'T> (x:'T) = x in £ 3

e Function and value definitions in expressions are not public and are not subject to arity analysis
(§14.10).

e Any custom attributes that are specified on the declaration, parameters, and/or return
arguments are ignored and result in a warning. As a result, function and value definitions in
expressions may not have the ThreadStatic or ContextStatic attribute.

6.6.1 Value Definition Expressions
A value definition expression has the following form:
let value-defn in expr
where value-defn has the form:
mutableo,r accessqr pat typar-defnsop: return-typeqt = rhs-expr
Checking proceeds as follows:

1. Checkthe value-defn (§14.6), which defines a group of identifiers ident; with inferred types
ty;

2. Add the identifiers ident; to the name resolution environment, each with corresponding type
tyj.

3. Check the body expr against the initial type of the overall expression.
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In this case, the following rules apply:

e If pat is a single value pattern ident, the resulting elaborated form of the entire expression is

let identl <typarsl> = exprl in
body-expr

where ident;, typars:and expr;are defined in §14.6.

e Otherwise, the resulting elaborated form of the entire expression is

Value definitions in expressions may be marked as mutable. For example:

let mutable v = ©
while v < 10 do
V<-vVv+1
printfn "v = %d" v

Such variables are implicitly dereferenced each time they are used.
6.6.2 Function Definition Expressions
A function definition expression has the form:
let function-defn in expr
where function-defn has the form:

inlinegt accessqpt ident-or-op typar-defnsqt pat: ... pat, return-typegpt
= rhs-expr

Checking proceeds as follows:
1. Checkthe function-defn (§14.6), which defines ident:, ty:, typars;andexpr;

2. Add the identifier ident; to the name resolution environment, each with corresponding type
tyl.

3. Check the body expr against the initial type of the overall expression.

The resulting elaborated form of the entire expression is

where ident;, typars:and expr; are as defined in §14.6.
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6.6.3 Recursive Definition Expressions
An expression of the following form is a recursive definition expression:

let rec function-or-value-defns in expr

The defined functions and values are available for use within their own definitions—that is can be
used within any of the expressions on the right-hand side of function-or-value-defns.
Multiple functions or values may be defined by using 1et rec .. and ... For example:

let test() =

let rec twoForward count =
printfn "at %d, taking two steps forward" count
if count = 1000 then "got there!"
else oneBack (count + 2)

and oneBack count =
printfn "at %d, taking one step back " count
twoForward (count - 1)

twoForward 1

test()

In the example, the expression defines a set of recursive functions. If one or more recursive values
are defined, the recursive expressions are analyzed for safety (§14.6.6). This may result in warnings
(including some reported as compile-time errors) and runtime checks.

6.6.4 Deterministic Disposal Expressions
A deterministic disposal expression has the form:

use 1ident = expr: in expr;

For example:

use inStream = System.IO.File.OpenText "input.txt
let linel = inStream.ReadlLine()

let line2 = inStream.ReadlLine()

(linel,line2)

The expression is first checked as an expression of form let ident = expr: in expr; (§Error!
eference source not found.), which results in an elaborated expression of the following form:

Only one value may be defined by a deterministic disposal expression, and the definition is not
generalized (§14.6.7). The type ty, is then asserted to be a subtype of System.IDisposable. If
the dynamic value of the expression after coercion to type ob7j is non-null, the Dispose method is
called on the value when the value goes out of scope. Thus the overall expression elaborates to this:
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6.7 Type-Related Expressions

6.7.1 Type-Annotated Expressions
A type-annotated expression has the following form, where ty indicates the static type of expr:

expr : ty
For example:

(1 : int)
let £ x = (x : string) + x

When checked, the initial type of the overall expression is asserted to be equal to ty. Expression
expr is then checked with initial type ty. The expression elaborates to the elaborated form of expr.
This ensures that information from the annotation is used during the analysis of expr itself.

6.7.2 Static Coercion Expressions
A static coercion expression—also called a flexible type constraint—has the following form:
expr :> ty

The expression upcast exprisequivalenttoexpr :> ,sothe targettype isthe same as the
initial type of the overall expression. For example:

(1 :> obj)

("Hello" :> obj)

([1;2;3] :> seg<int>).GetEnumerator()
(upcast 1 : obj)

The initial type of the overall expression is ty. Expression expr is checked using a fresh initial type
tye, with constraint ty. :> ty. Static coercions are a primitive elaborated form.
6.7.3 Dynamic Type-Test Expressions
A dynamic type-test expression has the following form:
expr :? ty
For example:

((1 :> obj) :? int)
((1 :> obj) :? string)

The initial type of the overall expression is bool. Expression expr is checked using a fresh initial
type tye. After checking:
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e The type ty. must not be a variable type.
e A warning is given if the type test will always be true and therefore is unnecessary.
e The type ty. must not be sealed.

o Iftype ty issealed, orif ty is a variable type, or if type ty. is not an interface type, then ty :>
tyeis asserted.

Dynamic type tests are a primitive elaborated form.

6.7.4 Dynamic Coercion Expressions
A dynamic coercion expression has the following form:

expr :?> ty

The expression downcast el isequivalenttoexpr :?> ,sothe targettypeisthe same asthe
initial type of the overall expression. For example:

let obj1 = (1 :> obj)
(obj1 :?> int)

(obj1 :?> string)
(downcast objl : int)

The initial type of the overall expression is ty. Expression expr is checked using a fresh initial type
tye. After these checks:

o The type ty. must not be a variable type.

e A warning is given if the type test will always be true and therefore is unnecessary.

e The type ty. must not be sealed.

o Iftype ty issealed, orif ty is a variable type, or if type ty. is not an interface type, then ty :>
ty. is asserted.

Dynamic coercions are a primitive elaborated form.

6.8 Quoted Expressions
An expression in one of these forms is a quoted expression:

<@ expr @>
<@@ expr @@>

The former is a strongly typed quoted expression, and the latter is a weakly typed quoted expression.
In both cases, the expression forms capture the enclosed expression in the form of a typed abstract
syntax tree.

The exact nodes that appear in the expression tree are determined by the elaborated form of expr
that type checking produces.
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For details about the nodes that may be encountered, see the documentation for the
FSharp.Quotations.Expr type in the F# core library. In particular, quotations may contain:

References to module-bound functions and values, and to type-bound members. For example:
let id x = x
let £ (x : int) = <@ id 1 @

In this case the value appears in the expression tree as a node of kind
FSharp.Quotations.Expr.Call.

e Atype, module, function, value, or member that is annotated with the ReflectedDefinition
attribute. If so, the expression tree that forms its definition may be retrieved dynamically using
the FSharp.Quotations.Expr.TryGetReflectedDefinition.

If the ReflectedDefinition attribute is applied to a type or module, it will be recursively
applied to all members, too.

e References to defined values, such as the following:
let £ (x : int) = <@ x + 1 @

Such a value appears in the expression tree as a node of kind
FSharp.Quotations.Expr.Value.

e References to generic type parameters or uses of constructs whose type involves a generic
parameter, such as the following:

let £ (x:'T) = <@ (x, x) : 'T* 'T @

In this case, the actual value of the type parameter is implicitly substituted throughout the type
annotations and types in the generated expression tree.

As of F# 3.1, the following limitations apply to quoted expressions:

e Quotations may not use object expressions.

e Quotations may not define expression-bound functions that are themselves inferred to be
generic. Instead, expression-bound functions should either include type annotations to refer to a
specific type or should be written by using module-bound functions or class-bound members.

6.8.1 Strongly Typed Quoted Expressions
A strongly typed quoted expression has the following form:

<@ expr @>
For example:
@1+ 1@

<@ (fun x -> x + 1) @

In the first example, the type of the expression is FSharp.Quotations.Expr<int>.In the second
example, the type of the expression is FSharp.Quotations.Expr<int -> int>.
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When checked, the initial type of a strongly typed quoted expression <@ expr @> is asserted to be
of the form FSharp.Quotations.Expr<ty> for afresh type ty. The expression expr is checked
with initial type ty.

6.8.2 Weakly Typed Quoted Expressions
A weakly typed quoted expression has the following form:

<@@ expr @@>

Weakly typed quoted expressions are similar to strongly quoted expressions but omit any type
annotation. For example:

0@ 1 + 1 @@>
<@@ (fun x -> x + 1) @@>

In both these examples, the type of the expression is FSharp.Quotations.Expr.

When checked, the initial type of a weakly typed quoted expression <@@ expr @@> is asserted to
be of the form FSharp.Quotations.Expr. The expression expr is checked with fresh initial type

ty.

6.8.3 Expression Splices
Both strongly typed and weakly typed quotations may contain expression splices in the following
forms:

rexpr
%heXpr

These are respectively strongly typed and weakly typed splicing operators.

6.8.3.1 Strongly Typed Expression Splices
An expression of the following form is a strongly typed expression splice:

rexpr
For example, given

open FSharp.Quotations
let f1 (v:Expr<int>) = <@ %v + 1 @
let expr = f1 <@ 3 @>

the identifier expr evaluates to the same expression treeas <@ 3 + 1 @>.The expression tree for
<@ 3 @> replaces the splice in the corresponding expression tree node.

A strongly typed expression splice may appear only in a quotation. Assuming that the splice
expression %expr is checked with initial type ty, the expression expr is checked with initial type
FSharp.Quotations.Expr<ty>.
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Note: The rules in this section apply to any use of the prefix operator
FSharp.Core.ExtraTopLevelOperators. (~%). Uses of this operator must be
applied to an argument and may only appear in quoted expressions.

6.8.3.2 Weakly Typed Expression Splices
An expression of the following form is a weakly typed expression splice:

»phexpr
For example, given

open FSharp.Quotations
let f1 (v:Expr) = <@ %%v + 1 @>
let tree = fl <@@ 3 @@>

the identifier tree evaluates to the same expression tree as <@ 3 + 1 @>.The expression tree
replaces the splice in the corresponding expression tree node.

A weakly typed expression splice may appear only in a quotation. Assuming that the splice
expression %%expr is checked with initial type ty, then the expression expr is checked with initial
type FSharp.Quotations.Expr. No additional constraint is placed on ty.

Additional type annotations are often required for successful use of this operator.

Note: The rules in this section apply to any use of the prefix operator
FSharp.Core.ExtraTopLevelOperators. (~%%), which is defined in the F# core
library. Uses of this operator must be applied to an argument and may only occur in
quoted expressions.

6.9 Evaluation of Elaborated Forms

At runtime, execution evaluates expressions to values. The evaluation semantics of each expression
form are specified in the subsections that follow.

6.9.1 Values and Execution Context

The execution of elaborated F# expressions results in values. Values include:
e Primitive constant values

e The special value null

e References to object values in the global heap of object values

e Values for value types, containing a value for each field in the value type

e Pointers to mutable locations (including static mutable locations, mutable fields and array
elements)

Evaluation assumes the following evaluation context:

o A global heap of object values. Each object value contains:
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e Aruntime type and dispatch map

e Aset of fields with associated values

e Forarray objects, an array of values in index order

e For function objects, an expression which is the body of the function
e An optional union case label, which is an identifier

e A closure environment that assigns values to all variables that are referenced in the method
bodies that are associated with the object

e Aglobal environment that maps runtime-type/name pairs to values.Each name identifies a static
field in a type definition or a value in a module.

e Alocal environment mapping names of variables to values.

e Alocal stack of active exception handlers, made up of a stack of try/with and try/finally handlers.

Evaluation may also raise an exception. In this case, the stack of active exception handlers is
processed until the exception is handled, in which case additional expressions may be executed (for
try/finally handlers), or an alternative expression may be evaluated (for try/with handlers), as
described below.

6.9.2 Parallel Execution and Memory Model

In a concurrent environment, evaluation may involve both multiple active computations (multiple
concurrent and parallel threads of execution) and multiple pending computations (pending
callbacks, such as those activated in response to an I/O event).

If multiple active computations concurrently access mutable locations in the global environment or
heap, the atomicity, read, and write guarantees of the underlying CLI implementation apply. The
guarantees are related to the logical sizes and characteristics of values, which in turn depend on
their type:

e F# reference types are guaranteed to map to CLI reference types. In the CLI memory model,
reference types have atomic reads and writes.

e F# value types map to a corresponding CLI value type that has corresponding fields. Reads and
writes of sizes less than or equal to one machine word are atomic.

The VolatileField attribute marks a mutable location as volatile in the compiled form of the
code.

Ordering of reads and writes from mutable locations may be adjusted according to the limitations
specified by the CLI memory model. The following example shows situations in which changes to
read and write order can occur, with annotations about the order of reads:

type ClassContainingMutableData() =
let value = (1, 2)
let mutable mutableValue = (1, 2)
[<VolatileField>]
let mutable volatileMutableValue = (1, 2)
member x.ReadValues() =
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// Two reads on an immutable value
let (a1, bl) = value

// One read on mutableValue, which may be duplicated according
// to ECMA CLI spec.
let (a2, b2) = mutableValue

// One read on volatileMutableValue, which may not be
duplicated.
let (a3, b3) = volatileMutableValue

al, bi, a2, b2, a3, b3

member X.WriteValues() =
// One read on mutableValue, which may be duplicated according
// to ECMA CLI spec.
let (a2, b2) = mutableValue

// One write on mutableValue.
mutableValue <- (a2 + 1, b2 + 1)

// One read on volatileMutableValue, which may not be
duplicated.
let (a3, b3) = volatileMutableValue

// One write on volatileMutableValue.
volatileMutableValue <- (a3 + 1, b3 + 1)

let obj = ClassContainingMutableData()
Async.Parallel [ async { return obj.WriteValues() };
async { return obj.WriteValues() };
async { return obj.ReadValues() };
async { return obj.ReadValues() } ]

6.9.3 Zero Values
Some types have a zero value. The zero value is the“default” value for the type in the CLI execution
environment. The following types have the following zero values:

e Forreference types, the null value.

e Forvalue types, the value with all fields set to the zero value for the type of the field. The zero
value is also computed by the F# library function Unchecked.defaultof<ty>

6.9.4 Taking the Address of an Elaborated Expression

When the F# compiler determines the elaborated forms of certain expressions, it must compute a
“reference” to an elaborated expression expr, written AddressOf(expr, mutation). The AddressOf
operation is used internally within this specification to indicate the elaborated forms of address-of
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expressions, assignment expressions, and method and property calls on objects of variable and value
types.

The AddressOf operation is computed as follows:

o Ifexpr hasform exprq. [expry,] where the operation is an array lookup, the elaborated form
is &(AddressOf(expra). [exprs]).

o If expr has any other form, the elaborated form is &v,where v is a fresh mutable local value that
is initialized by adding 1let v = expr to the overall elaborated form for the entire assignment
expression. This initialization is known as a defensive copy of an immutable value. If expris a
struct, expr is copied each time the AddressOf operation is applied, which results in a different
address each time. To keep the struct in place, the field that contains it should be marked as
mutable.

The AddressOf operation is computed with respect to mutation, which indicates whether the
relevant elaborated form uses the resulting pointer to change the contents of memory. This
assumption changes the errors and warnings reported.

o If mutation is DefinitelyMutates, then an error is given if a defensive copy must be created.
o If mutation is PossiblyMutates, then a warning is given if a defensive copy arises.
An F# compiler can optionally upgrade PossiblyMutates to DefinitelyMutates for calls to

property setters and methods named MoveNext and GetNextArg, which are the most common
cases of struct-mutators in CLI library design. This is done by the F# compiler.

Note:In F#, the warning “copy due to possible mutation of value type” is a level 4
warning and is not reported when using the default settings of the F# compiler. This is
because the majority of value types in CLI libraries are immutable. This is warning
number 52 in the F# implementation.

CLI libraries do not include metadata to indicate whether a particular value type is
immutable. Unless a value is held in arrays or locations marked mutable, or a value type
is known to be immutable to the F# compiler, F# inserts copies to ensure that
inadvertent mutation does not occur.

6.9.5 Evaluating Value References
At runtime, an elaborated value reference v is evaluated by looking up the value of v in the local
environment.

6.9.6 Evaluating Function Applications
At runtime, an elaborated application of a function f e; ... e, is evaluated as follows:

o The expressions f and e; ... e, are evaluated.
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e If f evaluates to a function value with closure environment E, arguments v: ... v,, and body
expr, wherem <= n,then E is extended by mapping v; ... v,to the argument values for e; ...
en. The expression expr is then evaluated in this extended environment and any remaining
arguments applied.

e If f evaluates to a function value with more than n arguments, then a new function value is
returned with an extended closure mapping n additional formal argument names to the
argument values for e; ... ey.

The result of calling the obj.GetType () method on the resulting object is under-specified (see
§6.9.24).

6.9.7 Evaluating Method Applications
At runtime an elaborated application of a method is evaluated as follows:

method.
e The (optional) es and ey,...,e, are evaluated in order.
o Ifegevaluatestonull, aNullReferenceException is raised.

e |fthe method is declared abstract—thatis, if it is a virtual dispatch slot—then the body of the
member is chosen according to the dispatch maps of the value of e, (§14.8).

e The formal parameters of the method are mapped to corresponding argument values. The body
of the method member is evaluated in the resulting environment .

6.9.8 Evaluating Union Cases

At runtime, an elaborated use of a union case Case (ej,...,e,) for a union type ty is evaluated as
follows:

e The expressions ej,...,e, are evaluated in order.

o The result of evaluation is an object value with union case label Case and fields given by the
values of ey, ...,e.

o Ifthetype ty uses null as a representation (§5.4.8) and Case is the single union case without
arguments, the generated value is null.

e The runtime type of the object is either ty or an internally generated type that is compatible
with ty.

6.9.9 Evaluating Field Lookups

At runtime, an elaborated lookup of a CLI or F# fields is evaluated as follows:

o The elaborated form is expr. F for an instance field or F for a static field.

e The(optional) expr is evaluated.

e If expr evaluatestonull,aNullReferenceException is raised.

e The value of the field is read from either the global field table or the local field table associated

with the object.
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6.9.10 Evaluating Array Expressions

e Each expression e; .. e,isevaluated in order.

e The result of evaluation is a new array of runtime type ty [ ] that contains the resulting values in
order.

6.9.11 Evaluating Record Expressions

e The result of evaluation is an object of type ty with the given field values

6.9.12 Evaluating Function Expressions

e The values in the closure are the current values of those variables in the execution environment.

o The result of calling the obj.GetType () method on the resulting object is under-specified (see
§6.9.24).

6.9.13 Evaluating Object Expressions
At runtime, elaborated object expressions

is evaluated as follows:

e The expression evaluates to an object whose runtime type is compatible with all of the ty; and
which has the corresponding dispatch map (§14.8). If present, the base construction expression

e The object is given a closure that assigns values to all variables that are referenced in expr.

e The values in the closure are the current values of those variables in the execution environment.

The result of calling the obj.GetType () method on the resulting object is under-specified (see
§6.9.24).

6.9.14 Evaluating Definition Expressions
At runtime, each elaborated definition pat = expr is evaluated as follows:

e The expression expr is evaluated.
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e The expression is then matched against pat to produce a value for each variable pattern (§7.2)
inpat.

e These mappings are added to the local environment.

6.9.15 Evaluating Integer For Loops

o If the static type of e is a value type, and ty is a reference type, v is boxed; that is, v is converted
to an object on the heap with the same field assignments as the original value. The expression
evaluates to a reference to this object.

e Otherwise, the expression evaluates to v.

6.9.18 Evaluating Dynamic Type-Test Expressions

1. Expression expr is evaluated to a value v.
2. Ifvisnull, then:

e If ty. usesnull as arepresentation (§5.4.8), the result is true.

e Otherwise the expression evaluates to false.
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3. Ifvisnotnull and has runtime type vty which dynamically converts to ty (§5.4.10), the
expression evaluates to true. However, if ty is an enumeration type, the expression evaluates
to trueif and only if ty is precisely vty.

6.9.19 Evaluating Dynamic Coercion Expressions

1. Expression expr is evaluated to a value v.
2. Ifvisnull:

o If ty. usesnull as arepresentation (§5.4.8), the result is the null value.
e Otherwise aNullReferenceException is raised.

3. Ifvisnotnull:

e If v has dynamic type vty which dynamically converts to ty (§5.4.10), the expression
evaluates to the dynamic conversion of v to ty.

o If vty isa reference type and ty is a value type, then v is unboxed; that is, v is
converted from an object on the heap to a struct value with the same field
assignments as the object. The expression evaluates to this value.

o Otherwise, the expression evaluates to v.

e Otherwise an InvalidCastException is raised.

Note: Some F# types—most notably the option< > type—use null asa
representation for efficiency reasons (§5.4.8),. For these types, boxing and unboxing can
lose type distinctions. For example, contrast the following two examples:

> (box([]:string list) :?> int list);;
System.InvalidCastException..

> (box(None:string option) :?> int option);;
val it : int option = None

In the first case, the conversion from an empty list of strings to an empty list of integers
(after first boxing) fails. In the second case, the conversion from a string option to an
integer option (after first boxing) succeeds.

6.9.20 Evaluating Sequential Execution Expressions

e The expression expr; is evaluated for its side effects and the result is discarded.

e The expression expr; is evaluated to a value v, and the result of the overall expression is v..
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6.9.21 Evaluating Try-with Expressions

e The expression expr; is evaluated to a value v;.
e If no exception occurs, the result is the value v;.
e [f an exception occurs, the pattern rules are executed against the resulting exception value.

e If no rule matches, the exception is reraised.

e Ifarulepat -> expr.matches, the mapping pat = v;isadded to the local
environment, and expr; is evaluated.

6.9.22 Evaluating Try-finally Expressions

follows:

e The expression expr; is evaluated.
o If the result of this evaluation is a value v, then expr is evaluated.
1) If this evaluation results in an exception, then the overall result is that exception.
2) If this evaluation does not result in an exception, then the overall result is v.
o [f the result of this evaluation is an exception, then expr; is evaluated.
3) If this evaluation results in an exception, then the overall result is that exception.

4) If this evaluation does not result in an exception, then the original exception is re-
raised.

6.9.23 Evaluating AddressOf Expressions
At runtime, an elaborated address-of expression is evaluated as follows. First, the expression has
one of the following forms:

e &path where path is a static field.

e &(expr.field)
o &(expra.[expre])
e &v where v is a local mutable value.

The expression evaluates to the address of the referenced local mutable value, mutable field, or
mutable static field.

Note: The underlying CIL execution machinery that F# uses supports covariant arrays, as
evidenced by the fact that the type string| | dynamically converts to ob7j[ | (§5.4.10).
Although this feature is rarely used in F#, its existence means that array assignments and
taking the address of array elements may fail at runtime with a
System.ArrayTypeMismatchException if the runtime type of the target array does
not match the runtime type of the element being assigned. For example, the following
code fails at runtime:
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let F(x: byref<obj>) = ()

let a = Array.zeroCreate<obj> 10

let b = Array.zeroCreate<string> 10

F(&a.[0])

let bb = ((b :> obj) :?> obj[])

// The next line raises a System.ArrayTypeMismatchException
exception.

F(&bb.[1])

6.9.24 Values with Underspecified Object Identity and Type Identity

The CLI and F# support operations that detect object identity—that is, whether two object
references refer to the same “physical” object. For example,
System.Object.ReferenceEquals(obji, obj,) returns true if the two object references
refer to the same object. Similarly,
System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode() returns a hash
code that is partly based on physical object identity, and the AddHandler and RemoveHandler
operations (which register and unregister event handlers) are based on the object identity of
delegate values.

The results of these operations are underspecified when used with values of the following F# types:

e Function types

e Tuple types

e Immutable record types
e Union types

e Boxed immutable value types

For two values of such types, the results of System.Object.ReferenceEquals and
System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode are underspecified;
however, the operations terminate and do not raise exceptions. An implementation of F# is not
required to define the results of these operations for values of these types.

For function values and objects that are returned by object expressions, the results of the following
operations are underspecified in the same way:

e Object.GetHashCode()
e Object.GetType()

For union types the results of the following operations are underspecified in the same way:

e Object.GetType()
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7. Patterns

Patterns are used to perform simultaneous case analysis and decomposition on values together with
the match, try...with, function, fun, and let expression and declaration constructs. Rules
are attempted in order from top to bottom and left to right. The syntactic forms of patterns are
shown in the subsequent table.

rule :=
pat pattern-guarde.: -> expr -- pattern, optional guard and
action
pattern-guard := when expr
pat :=
const -- constant pattern
Long-ident pat-paramep: patopt -- named pattern
_ -- wildcard pattern
pat as 1ident -- "as" pattern
pat '|' pat -- disjunctive pattern
pat '&' pat -- conjunctive pattern
pat :: pat -- "cons" pattern
pat : type -- pattern with type constraint
pat,...,pat -- tuple pattern
(pat) -- parenthesized pattern
list-pat -- list pattern
array-pat -- array pattern
record-pat -- record pattern
:? atomic-type -- dynamic type test pattern
:? atomic-type as 1ident -- dynamic type test pattern
null -- null-test pattern
attributes pat -- pattern with attributes
list-pat :=
[ ]
[ pat ; ... ; pat ]
array-pat :=
[l 11
[| pat ; ... ; pat |]
record-pat :=
{ field-pat ; ... ; field-pat }
atomic-pat :=
pat : one of
const Llong-ident List-pat record-pat array-pat (pat)
:? atomic-type
null
field-pat := long-ident = pat




pat-param :=

| const
Long-ident
[ pat-param ; ... ; pat-param ]
( pat-param, ..., pat-param )

|
|
|
| Long-ident pat-param
| pat-param : type

|

|

|

<@ expr @>

<@@ expr @@>

null
pats := pat , ... , pat
field-pats := field-pat ; ... ; field-pat
rules := '|'opt rulte '|' ... "|"' rule

Patterns are elaborated to expressions through a process called pattern match compilation. This
reduces pattern matching to decision trees which operate on an input value, called the pattern input.
The decision tree is composed of the following constructs:

e Conditionals on integers and other constants

e Switches on union cases

e Conditionals on runtime types

e Null tests

e Value definitions

e An array of pattern-match targets referred to by index

7.1 Simple Constant Patterns
The pattern const is a constant pattern which matches values equal to the given constant. For
example:

let rotate3 x =
match x with

| @ -> "two"
1 -> "zero"

|
| 2 -> "one
| -> failwith "rotate3"

In this example, the constant patterns are 0, 1, and 2. Any constant listed in §6.3.1 may be used as a

constant pattern except for integer literals that have the suffixes Q, R, Z, I, N, G.

Simple constant patterns have the corresponding simple type. Such patterns elaborate to a call to
the F# structural equality function FSharp.Core.Operators. (=) with the pattern input and the
constant as arguments. The match succeeds if this call returns true; otherwise, the match fails.
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Note: The use of FSharp.Core.Operators. (=) means that CLI floating-point
equality is used to match floating-point values, and CLI ordinal string equality is used to
match strings.

7.2 Named Patterns

Patterns in the following forms are named patterns:

Long-1ident
Long-ident pat
Long-ident pat-params pat

If Long-ident is a single identifier that does not begin with an uppercase character, it is
interpreted as a variable pattern. During checking, the variable is assigned the same value and type
as the pattern input.

If Long-ident is more than one-character long or begins with an uppercase character (that is, if
System.Char.IsUpperInvariantistrue andSystem.Char.IsLowerInvariantisfalse
on the first character), it is resolved by using Name Resolution in Patterns (§14.1.6). This algorithm
produces one of the following:

e A union case
e An exception label

e An active pattern case name

e Aliteral value

Otherwise, Long-ident must be a single uppercase identifier ident. In this case, pat is a variable
pattern. An F# implementation may optionally generate a warning if the identifier is uppercase. Such
a warning is recommended if the length of the identifier is greater than two.

After name resolution, the subsequent treatment of the named pattern is described in the following
sections.

7.2.1 Union Case Patterns

If Long-ident from §7.2 resolves to a union case, the pattern is a union case pattern. If Long-
ident resolves to a union case Case, then Long-1ident and Long-ident pat are patterns that
match pattern inputs that have union case label Case. The Long-ident form is used if the
corresponding case takes no arguments, and the Long-1ident pat form is used if it takes
arguments.

At runtime, if the pattern input is an object that has the corresponding union case label, the data
values carried by the union are matched against the given argument patterns.

For example:

type Data =
| Kindl of int * int
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| Kind2 of string * string
let data = Kind1(3, 2)

let result =
match data with
| Kindl (a, b) -> a + b
| Kind2 (s1, s2) -> sl.Length + s2.Length

In this case, result is given the value 5.

When a union case has named fields, these names may be referenced in a union case pattem. When
using pattern matching with multiple fields, semicolons are used to delimit the named fields. For
example

type Shape =
| Rectangle of width: float * height: float
| Square of width: float

let getArea (s: Shape)
match s with
| Rectangle (width = w; height = h) -> w*h
| Square (width = w) -> w*w

7.2.2 Literal Patterns
If Long-ident from §7.2 resolves to a literal value, the pattern is a literal pattern. The pattern is
equivalent to the corresponding constant pattern.

In the following example, the Literal attribute (§10.2.2) is first used to define two literals, and
these literals are used as identifiers in the match expression:

[<Literal>]
let Casel =1

[<Literal>]
let Case2 = 100

let result =
match 100 with
| Casel -> "Casel"
| Case2 -> "Case2"
| -> "Some other case"

In this case, result is given the value "Case2”.
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7.2.3 Active Patterns

If Long-ident from §7.2 resolves to an active pattern case name CaseName then the pattern is an
active pattern. The rules for name resolution in patterns (§14.1.6) ensure that CaseName; is
associated with an active pattern function 1 in one of the following forms:

e (|CaseName|) inp

Single case. The function accepts one argument (the value being matched) and can return any
type.

e (|CaseName| _|) inp

Partial. The function accepts one argument (the value being matched) and must return a value
of type FSharp.Core.option< >

e (|CaseName;| ...|CaseName,|) inp

Multi-case. The function accepts one argument (the value being matched), and must return a
value of type FSharp.Core.Choice< ,..., > based onthe number of case names. In F#,
the limitation n < 7 applies.

e (|CaseName|) arg: ... arg, inp

Single case with parameters. The function accepts n+1 arguments, where the last argument
(inp) is the value to match, and can return any type.

e (|CaseName| |) arg: ... arg, inp

Partial with parameters. The function accepts n+1 arguments, where the last argument (1np) is
the value to match, and must return a value of type FSharp.Core.option<_>.

Other active pattern functions are not permitted. In particular, multi-case, partial functions such as
the following are not permitted:

(|CaseNamel| ... |CaseNamen|_|)

When an active pattern function takes arguments, the pat-params are interpreted as expressions
that are passed as arguments to the active pattern function. The pat-params are converted to the
syntactically identical corresponding expression forms and are passed as arguments to the active
pattern function f.

At runtime, the function 1 is applied to the pattern input, along with any parameters. The pattern
matches if the active pattern function returns v, ChoicekROfN v, or Some v, respectively, when
applied to the pattern input. If the pattern argument pat is present, it is then matched against v.

The following example shows how to define and use a partial active pattern function:

let (|Positive|_|) inp
let (|Negative| |) inp

if inp > @ then Some(inp) else None
if inp < @ then Some(-inp) else None

match 3 with

| Positive n -> printfn "positive, n
| Negative n -> printfn "negative, n
| -> printfn "zero"

%d" n
%d" n
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The following example shows how to define and use a multi-case active pattern function:
let (|A|B|C|) inp = if inp < @ then A elif inp = © then B else C

match 3 with
| A -> "negative"
| B -> "zero"
| C -> "positive"

The following example shows how to define and use a parameterized active pattern function:
let (|MultipleOf| _|) n inp = if inp%n = @ then Some (inp / n) else None

match 16 with
| MultipleOf 4 n -> printfn "x = 4*%d" n
| _ -> printfn "not a multiple of 4"

An active pattern function is executed only if a left-to-right, top-to-bottom reading of the entire
pattern indicates that execution is required. For example, consider the following active patterns:

let (|A]_|) x =
if x = 2 then failwith "x is two"
elif x = 1 then Some()
else None

let (|B]_|) x =
if x=3 then failwith "x is three" else None

let (|C|) x = failwith "got to C"

let £ x =
match x with
| @ -> 0
| A ->1
| B -> 2
| C -> 3
| -> 4

These patterns evaluate as follows:
0
1
failwith "x is two"

/ failwith "x is three"

fo/
f1/
f2/
f3/
f 4 // failwith "got to C"

An active pattern function may be executed multiple times against the same pattern input during
resolution of a single overall pattern match. The precise number of times that the active pattern
function is executed against a particular pattern input is implementation-dependent.
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7.3 “As” Patterns

An “as” pattern is of the following form:
pat as 1ident

The “as” pattern defines ident to be equal to the pattern input and matches the pattern input
against pat. For example:

let t1 = (1, 2)
let (x, y) as t2 = t1
printfn "%d-%d-%A" x y t2 // 1-2-(1, 2)

This example binds the identifiers x, y, and t1 to the values 1, 2, and (1, 2), respectively.

7.4 Wildcard Patterns

The pattern _is a wildcard pattern and matches any input. For example:

let categorize x =
match x with

| 1 -> 0
| @ -> 1
| -> 0

In the example, if x is 0, the match returns 1. If x has any other value, the match returns 0.

7.5 Disjunctive Patterns

A disjunctive pattern matches an input value against one or the other of two patterns:
pat | pat

At runtime, the patterm input is matched against the first pattern. If that fails, the pattern input is
matched against the second pattern. Both patterns must bind the same set of variables with the
same types. For example:

type Date = Date of int * int * int

let isYearLimit date =
match date with

| (Pate (year, 1, 1) | Date (year, 12, 31)) -> Some year
| _ -> None

let result = isYearLimit (Date (2010,12,31))

In this example, result is given the value true, because the pattern input matches the second
pattern.
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7.6 Conjunctive Patterns

A conjunctive pattern matches the pattern input against two patterns.
pat: & pat;
For example:

let (|MultipleOf|_|) n inp = if inp%n = @ then Some (inp / n) else None

let result =
match 56 with
| MultipleOf 4 m & MultipleOf 7 n -> m + n
| _ -> false

In this example, result is given the value 22 (= 16 + 8), because the pattern input match matches
both patterns.

7.7 List Patterns

The pattern pat :: pat is a union case pattern that matches the “cons” union case of F# list
values.

The pattern [ | is a union case pattern that matches the “nil” union case of F# list values.

The pattern [pat; ; ... ; pat,]isshorthand for a series of : : and empty list patterns
pat; :: .. i pat, :: [].
For example:

let rec count x =
match x with
| [1->0
| h :: t ->h + count t

let resultl = count [1;2;3]
let result2 =
match [1;2;3] with
| [a;b;c] -> a +b + ¢
| ->0

In this example, both resultl and result2 are given the value 6.

7.8 Type-Annotated Patterns

A type-annotated pattern specifies the type of the value to match to a pattern.

pat : type
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For example:

let rec sum xs =
match xs with
| [1->0
| (h : dint) :: t -> h + sum t

In this example, the initial type of h is asserted to be equal to int before the pattern h is checked.
Through type inference, this in turn implies that xs and t have static type int 1ist, and sum has
static type

int list -> int.

7.9 Dynamic Type-Test Patterns

Dynamic type-test patterns have the following two forms:

:? type
:? type as ident

A dynamic type-test pattern matches any value whose runtime type is type or a subtype of type. For
example:

let message (x : System.Exception) =

match x with

| :? System.OperationCanceledException -> "cancelled"
| :? System.ArgumentException -> "invalid argument"
| -> "unknown error"

If the type-test pattern is of the form :? type as 1ident, then the value is coerced to the given
type and ident is bound to the result. For example:

let findLength (x : obj) =
match x with
| :? string as s -> s.Length
| _->0

In the example, the identifier s is bound to the value x with type string.

If the pattern input has type tyi,, pattern checking uses the same conditions as both a dynamic
type-test expression e :? type and a dynamic coercion expressione :?> type where e has type
tyin. Anerror occurs if type cannot be statically determined to be a subtype of the type of the
pattern input. A warning occurs if the type test will always succeed based on type and the static
type of the pattern input.

A warning is issued if an expression contains a redundant dynamic type-test pattern, after any
coercion is applied. For example:

match box "3" with
| :? string -> 1
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| :? string -> 1 // a warning is reported that this rule is "never
matched"
| _ ->2

match box "3" with

| :? System.IComparable -> 1

| :? string -> 1 // a warning is reported that this rule is "never
matched"

| _ > 2

At runtime, a dynamic type-test pattern succeeds if and only if the corresponding dynamic type-test
expression e :? ty would return true where e is the pattern input. The value of the pattern is
bound to the results of a dynamic coercion expression e :?> ty.

7.10 Record Patterns

The following is a record pattern:
{ long-ident; = pat:; ... ; long-ident, = patn}
For example:

type Data = { Header:string; Size: int; Names: string list }

let totalSize data =
match data with
| { Header = "TCP"; Size
names.Length * 12
| { Header = "UDP"; Size = size } -> size
| _ -> failwith "unknown header"

size; Names = names } -> size +

The Long-1ident; are resolved in the same way as field labels for record expressions and must
together identify a single, unique F# record type. Not all record fields for the type need to be
specified in the pattern.

7.11 Array Patterns

An array pattern matches an array of a partciular length:

[|pat 5 ... ; pat|]
For example:

let checkPackets data =
match data with
| [| "HeaderA"; datal; data2 |] -> (datal, data2)
| [| "HeaderB"; data2; datal |] -> (datal, data2)
| _ -> failwith "unknown packet"
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7.12 Null Patterns

The null pattern null matches values that are represented by the CLI value null. For example:

let path =
match System.Environment.GetEnvironmentVariable("PATH") with
| null -> failwith "no path set!"
| res -> res

Most F# types do not use null as a representation; consequently, the null pattern is generally used
to check values passed in by CLI method calls and properties. For a list of F# types that use null as a
representation, see §5.4.8.

7.13 Guarded Pattern Rules

Guarded pattern rules have the following form:
pat when expr
For example:

let categorize x =

match x with

| _ when x <@ -> -1
when x < @ -> 1
-> 0

The guards on a rule are executed only after the match value matches the corresponding pattern.
For example, the following evaluates to 2 with no output.

match (1, 2) with
| (3, x) when (printfn "not printed"; true) -> 0
| (1Y) >y
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8. Type Definitions

Type definitions define new named types. The grammar of type definitions is shown below.

type-defn :=

abbrev-type-defn
record-type-defn
union-type-defn
anon-type-defn
class-type-defn
struct-type-defn
interface-type-defn
enum-type-defn
delegate-type-defn
type-extension

type-name :=
attributesq: accessqpt ident typar-defnsop:

abbrev-type-defn :=
type-name = type

union-type-defn :=
type-name '=' union-type-cases type-extension-elementsopt

union-type-cases  :=
"|'opt union-type-case '|' ... '|' union-type-case

union-type-case :=
attributes,: union-type-case-data

union-type-case-data :=

ident -- null union case

ident of union-type-field * ... * union-type-field -- n-ary union
case

ident : uncurried-sig -- n-ary union case

union-type-field :
type -- unnamed union fiels
ident : type -- named union field

record-type-defn :=
type-name = '{' record-fields '}' type-extension-elementsgp:

record-fields :=
record-field ; ... ; record-field ;opt

record-field :=
attributes,: mutableg: accessq: ident : type

anon-type-defn :=




type-name primary-constr-args.: object-valo: '=' begin class-
type-body end

class-type-defn :=
type-name primary-constr-args.: object-vale: '=' class class-
type-body end
as-defn := as 1ident
class-type-body :=
class-inherits-declot class-function-or-value-defnsq: type-defn-
elementsqpt
class-inherits-decl := inherit type expropt
class-function-or-value-defn :=
attributes,: statice: let recey: function-or-value-defns
attributesq: staticetr do expr
struct-type-defn :=
type-name primary-constr-argsep: as-defnop: '=' struct struct-type-
body end
struct-type-body := type-defn-elements

interface-type-defn :=
type-name '=' interface interface-type-body end

interface-type-body := type-defn-elements

exception-defn :=

attributes,: exception union-type-case-data -- exception
definition

attributes,+ exception ident = Llong-ident -- exception
abbreviation

enum-type-defn :=

type-name '=' enum-type-cases

enum-type-cases =
"|'opt enum-type-case '|' ... '|' enum-type-case

enum-type-case :=
ident '=' const -- enum constant definition

delegate-type-defn :=

type-name '=' delegate-sig

delegate-sig :=
delegate of uncurried-sig -- CLI delegate definition

type-extension :=
type-name type-extension-elements
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type-extension-elements := with type-defn-elements end

type-defn-element :=
member-defn
interface-impl
interface-spec

type-defn-elements := type-defn-element ... type-defn-element
primary-constr-args :=

attributes.: accessopt (simple-pat, ... , simple-pat)
simple-pat :=

| ident

| simple-pat : type

additional-constr-defn :=
attributesq: accessqept new pat as-defn = additional-constr-expr

additional-constr-expr :=

stmt ';' additional-constr-expr -- sequence construction
(after)

additional-constr-expr then expr -- sequence construction
(before)

if expr then additional-constr-expr else additional-constr-expr
let function-or-value-defn in additional-constr-expr
additional-constr-init-expr

additional-constr-init-expr :=

"{' class-inherits-decl field-initializers '}'-- explicit
construction
new type expr -- delegated construction

member-defn :=

attributes,: statice,: member accessqt method-or-prop-defn -
concrete member

attributes,: abstract member.: access.,+ member-sig -- abstract
member

attributes,: override accessqt method-or-prop-defn --
override member

attributes,: default accessq,t method-or-prop-defn --
override member

attributes,: statice: val mutableg,: accessq,: ident : type -
value member

additional-constr-defn -- additional constructor

method-or-prop-defn :=

ident. ¢t function-defn -- method definition

ident.pt value-defn -- property definition

ident. o+ ident with function-or-value-defns -- property
definition via get/set methods

member 1ident = exp -- auto-implemented

property definition
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member ident = exp with get —-- auto-implemented
property definition

member 1ident = exp with set —-- auto-implemented
property definition

member 1ident = exp with get,set —-- auto-implemented
property definition

member 1ident = exp with set,get —-- auto-implemented

property definition

member-sig :=

ident typar-defns.: : curried-sig -- method or
property signature

ident typar-defnsq,: : curried-sig with get -- property
signature

ident typar-defnsq,: : curried-sig with set -- property
signature

ident typar-defns.: : curried-sig with get,set-- property
signature

ident typar-defnsq,t : curried-sig with set,get-- property
signature

curried-sig :=
args-spec -> ... -> args-spec -> type

uncurried-sig :=
args-spec -> type

args-spec :=
arg-spec * ... * arg-spec

arg-spec :=
attributes,: arg-name-specq: type

arg-name-spec =
?opt ident .

interface-spec :=
interface type

For example:

type int = System.Int32
type Color = Red | Green | Blue
type Map<'T> = { entries: 'T[] }

Type definitions can be declared in:

e Module definitions
e Namespace declaration groups

F# supports the following kinds of type definitions:

e Type abbreviations (§8.3)
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e Record type definitions (§8.4)

e Union type definitions (§8.5)

e C(Class type definitions (§8.6)

e Interface type definitions (§8.7)

e Struct type definitions (§8.8)

e Enum type definitions (§8.9)

e Delegate type definitions (§8.10)

e Exception type definitions (§8.11)

o Type extension definitions (§8.12)

e Measure type definitions (§9.4)

With the exception of type abbreviations and type extension definitions, type definitions define

fresh, named types that are distinct from other types.

A type definition group defines several type definitions or extensions simultaneously:
type ... and

For example:

type RowVector(entries: seq<int>) =
let entries = Seq.toArray entries
member X.Length = entries.Length
member Xx.Permute = ColumnVector(entries)

and ColumnVector(entries: seq<int>) =
let entries = Seq.toArray entries
member x.Length = entries.lLength
member x.Permute = RowVector(entries)

A type definition group can include any type definitions except for exception type definitions and
module definitions.

Most forms of type definitions may contain both static elements and instance elements. Static
elements are accessed by using the type definition. Within a static definition, only the static
elements are in scope. Most forms of type definitions may contain members (§8.13).

Custom attributes may be placed immediately before a type definition group, in which case they
apply to the first type definition, or immediately before the name of the type definition:

[<Obsolete>] type X1() = class end

type [<Obsolete>] X2() = class end
and [<Obsolete>] Y2() = class end
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8.1 Type Definition Group Checking and Elaboration

F# checks type definition groups by determining the basic shape of the definitions and then filling in
the details. In overview, a type definition group is checked as follows:

1. For each type definition:
e Determine the generic arguments, accessibility and kind of the type definition
e Determine whether the type definition supports equality and/or comparison
e Elaborate the explicit constraints for the generic parameters.

2. For each type definition:

e Establish type abbreviations
e Determine the base types and implemented interfaces of each new type definition
e Detect any cyclic abbreviations
e Verify the consistency of types in fields, union cases, and base types.
3. For each type definition:
e Determine the union cases, fields, and abstract members (§8.14) of each new type
definition.

e Check the union cases, fields, and abstract members themselves, as described in the
corresponding sections of this chapter.

4. For each member, add items that represent the members to the environment as a recursive

group.

5. Check the members, function, and value definitions in order and apply incremental
generalization.

In the context in which type definitions are checked, the type definition itself is in scope, as are all
members and other accessible functionality of the type. This context enables recursive references to
the accessible static content of a type. It also enables recursive references to the accessible
properties of any object that has the same type as the type definition or a related type.

In more detail, given an initial environment env, a type definition group is checked as described in
the following paragraphs.

First, check the individual type definitions. For each type definition:
1. Determine the number, names, and sorts of generic arguments of the type definition.

e For each generic argument, if a Measure attribute is present, mark the generic argument as
a measure parameter. The generic arguments are initially inference parameters, and
additional constraints may be inferred for these parameters.

e For each type definition T, the subsequent steps use an environment envr that is produced
by adding the type definitions themselves and the generic arguments for T to env.
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10.

11.

12.

13.

14.

Determine the accessibility of the type definition.

Determine and check the basic kind of the type definition, using Type Kind Inference if necessary
(88.2).

Mark the type definition as a measure type definition if a Measure attribute is present.

If the type definition is generic, infer whether the type definition supports equality and/or
comparison.

Elaborate and add the explicit constraints for the generic parameters of the type definition, and
then generalize the generic parameters. Inference of additional constraints is not permitted.

If the type definition is a type abbreviation, elaborate and establish the type being abbreviated.
Check and elaborate any base types and implemented interfaces.
If the type definition is a type abbreviation, check that the type abbreviation is not cyclic.

Check whether the type definition has a single, zero-argument constructor, and hence forms a
type that satisfies the default constructor constraint.

Recheck the following to ensure that constraints are consist:

e The type being abbreviated, if any.
e The explicit constraints for any generic parameters, if any.
e The types and constraints occurring in the base types and implemented interfaces, if any.

Determine the union cases, fields, and abstract members, if any, of the type definition. Check
and elaborate the types that the union cases, fields, and abstract members include.

Make additional checks as defined elsewhere in this chapter. For example, check that the
AbstractClass attribute does not appear on a union type.

For each type definition that is a struct, class, or interface, check that the inheritance graph and
the struct-inclusion graph are not cyclic. This check ensures that a struct does not contain itself
and that a class or interface does not inherit from itself. This check includes the following steps:

a) Create a graph with one node for each type definition.
b) Close the graph under edges.

e (T, base-type-definition)

e (T, interface-type-definition)

e (T4, T2) where Ty is a struct and T; is a type that would store a value of type T; <...> for
some instantiation. Here “X storing Y” means that X is Y or is a struct type with an
instance field that stores Y.

c) Check for cycles.
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The special case of a struct S<typars> storing a static field of type s<typars> is allowed.

15. Collectively add the elaborated member items that represent the members for all new type
definitions to the environment as a recursive group (§8.13), excluding interface implementation
members.

16. If the type definition has a primary constructor, create a member item to represent the primary
constructor.

After these steps are complete for each type definition, check the members. For each member:

1. If the member is in a generic type, create a copy of the type parameters for the generic type and
add the copy to the environment for that member.

2. If the member has explicit type parameters, elaborate these type parameters and any explicit
constraints.

3. If the member is an override, default, or interface implementation member, apply dispatch-slot
inference.

4. If the member has syntactic parameters, assign an initial type to the elaborated member item
based on the patterns that specify arguments for the members.

5. If the member is an instance member, assign a type to the instance variable.

Finally, check the function, value, and member definitions of each new type definition in order as a
recursive group.

8.2 Type Kind Inference

A type that is specified in one of the following ways has an anonymous type kind:

e By using begin and end on the right-hand side of the = token.
e In lightweight syntax, with an implicit begin/end.

F# infers the kind of an anonymous type by applying the following rules, in order:

1. Ifthe type has a Class attribute, Interface attribute, or Struct attribute, this attribute
identifies the kind of the type.

2. If the type has any concrete elements, the type is a class. Concrete elements are primary
constructors, additional object constructors, function definitions, value definitions, non-abstract
members, and any inherit declarations that have arguments.

3. Otherwise, the type is an interface type.

For example:

// This is implicitly an interface
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type IName =
abstract Name : string

// This is implicitly a class, because it has a constructor
type ConstantName(n:string) =
member x.Name = n

// This is implicitly a class, because it has a constructor
type AbstractName(n:string) =

abstract Name : string

default x.Name = "<no-name>"

If a type is not an anonymous type, any use of the Class attribute, Interface attribute, or
Struct attribute must match the class/end, interface/end, and struct/end tokens, if such
tokens are present. These attributes cannot be used with other kinds of type definitions such as type
abbreviations, record, union, or enum types.

8.3 Type Abbreviations

Type abbreviations define new names for other types. For example:
type PairOfInt = int * int

Type abbreviations are expanded and erased during compilation and do not appear in the
elaborated form of F# declarations, nor can they be referred to or accessed at runtime.

The process of repeatedly eliminating type abbreviations in favor of their equivalent types must not
result in an infinite type derivation. For example, the following are not valid type definitions:

type X = option<X>

type Identity<'T> = 'T
and Y = Identity<Y>

The constraints on a type abbreviation must satisfy any constraints that the abbreviated type
requires.

For example, assuming the following declarations:

type IA =
abstract AbstractMember : int -> int

type IB =
abstract AbstractMember : int -> int

type C<'T when 'T :> IB>() =
static member StaticMember(x : 'a) = x.AbstractMember(1)

the following is permitted:
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type D<'T when 'T :> IB> = C<'T>
whereas the following is not permitted:

type E<'T> = C<'T> // invalid: missing constraint

Type abbreviations can define additional constraints, so the following is permitted:
type F<'T when 'T :> IA and 'T :> IB> = C<'T>

The right side of a type abbreviation must use all the declared type variables that appear on the left
side. For this purpose, the order of type variables that are used on the right-hand side of a type
definition is determined by their left-to-right occurrence in the type.

For example, the following is not a valid type abbreviation.

type Drop<'T,'U> = 'T * 'T // invalid: dropped type variable

Note: This restriction simplifies the process of guaranteeing a stable and consistent
compilation to generic CLI code.

Flexible type constraints #type may not be used on the right side of a type abbreviation, because
they expand to a type variable that has not been named in the type arguments of the type
abbreviation. For example, the following type is disallowed:

type BadType = #Exception -> int // disallowed

Type abbreviations may be declared internal or private.

Note: Private type abbreviations are still, for all purposes, considered equivalent to the
abbreviated types.

8.4 Record Type Definitions
A record type definition introduces a type in which all the inputs that are used to construct a value
are accessible as properties on values of the type. For example:

type R1 =
{ x : int;
y : int }

member this.Sum = this.x + this.y
In this example, the integers x and y can be accessed as properties on values of type R1.
Record fields may be marked mutable. For example:

type R2 =
{ mutable x : int;
mutable y : int }
member this.Move(dx,dy) =
this.x <- this.x + dx
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this.y <- this.y + dy

The mutable attribute on x and y makes the assignments valid.

Record types are implicitly sealed and may not be given the Sealed attribute. Record types may not

be given the AbstractClass attribute.

Record types are implicitly marked serializable unless the AutoSerializable(false) attribute is

used.

8.4.1 Members in Record Types

Record types may declare members (§8.13), overrides, and interface implementations. Like all types
with overrides and interface implementations, they are subject to Dispatch Slot Checking (§14.8).

8.4.2 Name Resolution and Record Field Labels

For a record type, the record field labels field; ... fieldy are added to the FieldLabels table of the
current name resolution environmentunless the record type has the RequireQualifiedAccess

attribute.

Record field labels in the FieldLabels table play a special role in Name Resolution for Members
(§14.1): an expression’s type may be inferred from a record label. For example:

type R = { dx : int; dy: int }
let f x = x.dx // x is inferred to have type R

In this example, the lookup . dx is resolved to be a field lookup.

8.4.3 Structural Hashing, Equality, and Comparison for Record Types
Record types implicitly implement the following interfaces and dispatch slots unless they are
explicitly implemented as part of the definition of the record type:

interface System.Collections.IStructuralEquatable
interface System.Collections.IStructuralComparable
interface System.IComparable

override GetHashCode : unit -> int

override Equals : obj -> bool

The implicit implementations of these interfaces and overrides are described in §8.15.

8.4.4 With/End in Record Type Definitions
Record type definitions can include with/end tokens, as the following shows:

type R1 =
{ x : int;
y : int }
with

member this.Sum = this.x + this.y
end
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The with/end tokens can be omitted if the type-defn-elements vertically align with the { in
the record-fields. The semicolon (;) tokens can be omitted if the next record-field vertically
aligns with the previous record-field.

8.4.5 CLIMutable Attributes

Adding the cLIMutable attribute to a record type causes it to be compiled to a CLI representation as
a plain-old CLR object (POCO) with a default constructor along with property getters and setters.
Adding the default constructor and mutable properties makes objects of the record type usable with
.NET tools and frameworks such as database queries, serialization frameworks, and data models in
XAML programming.

For example, an F# immutable record cannot be serialized because it does not have a constructor.
However, if you attach the CLIMutable attribute as in the following example, the XmlSerializer is
enable to serialize or deserialize this record type:

[<CLIMutable>]
type R1 = { x : string; y : int }

8.5 Union Type Definitions

A union type definition is a type definition that includes one or more union cases. For example:

type Message =
| Result of string
| Request of int * string
member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm

Union case names must begin with an uppercase letter, which is defined to mean any character for
which the CLI library function System.Char.IsUpper returns true and System.Char.IsLower
returns false.

The union cases Casel ... CaseN have module scope and are added to the Expritems and Patltems
tables in the name resolution environment. This means that their unqualified names can be used to
form both expressions and patterns, unless the record type has the RequireQualifiedAccess
attribute.

Parentheses are significant in union definitions. Thus, the following two definitions differ:

C of int * int
C of (int * int)

type CType
type CType

The lack of parentheses in the first example indicates that the union case takes two arguments. The
parentheses in the second example indicate that the union case takes one argument that is a first-
class tuple value.

Union fields may optionally be named within each case of a union type. For example:
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type Shape =
| Rectangle of width: float * length: float
| Circle of radius: float
| Prism of width: float * float * height: float

The names are referenced when pattern matching on union values of this type. When using pattern
matching with multiple fields, semicolons are used to delimit the named fields, e.g.
Prism(width=w; height=h).

The following declaration defines a type abbreviation if the named type A exists in the name
resolution environment. Otherwise it defines a union type.

type OneChoice = A
To disambiguate this case and declare an explicit union type, use the following:

type OneChoice =
| A

Union types are implicitly marked serializable unless the AutoSerializable(false) attributeis
used.

8.5.1 Members in Union Types

Union types may declare members (§8.13), overrides, and interface implementations. As with all
types that declare overrides and interface implementations, they are subject to Dispatch Slot
Checking (§14.8).

8.5.2 Structural Hashing, Equality, and Comparison for Union Types
Union types implicitly implement the following interfaces and dispatch slots unless they are explicitly
implemented as part of the definition of the union type:

interface System.Collections.IStructuralEquatable
interface System.Collections.IStructuralComparable
interface System.IComparable

override GetHashCode : unit -> int

override Equals : obj -> bool

The implicit implementations of these interfaces and overrides are described in §8.15.

8.5.3 With/End in Union Type Definitions
Union type definitions can include with/end tokens, as the following shows:

type R1 =
{ x : int;
y : int }
with

member this.Sum = this.x + this.y
end
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The with/end tokens can be omitted if the type-defn-elements vertically align with the { in
the record-fields. The semicolon (;) tokens can be omitted if the next record-field vertically
aligns with the previous record-field.

For union types, the with/end tokens can be omitted if the type-defn-elements vertically
alignwith the first | in the union-type-cases. However, with/end must be present if the |
tokens align with the type token. For example:

/// Note: this layout is permitted
type Message =
| Result of string
| Request of int * string
member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm

/// Note: this layout is not permitted

type Message =

| Result of string

| Request of int * string

member x.Name = match x with Result(nm) -> nm | Request(_,nm) -> nm

8.5.4 Compiled Form of Union Types for Use from Other CLI Languages
A compiled union type U has:

e One Cll static getter property U. C for each null union case C. This property gets a singleton
object that represents each such case.

e One ClLl nested type U. C for each non-null union case C. This type has instance properties
Iteml, Item2.... for each field of the union case, or a single instance property Item if there is
only one field. However, a compiled union type that has only one case does not have a nested
type. Instead, the union type itself plays the role of the case type.

e One CLl static method U.NewC for each non-null union case C. This method constructs an object
for that case.

e One ClLlinstance property U. IsC for each case C. This property returns true or false for the
case.

e One ClLlinstance property U. Tag for each case C. This property fetches or computes an integer
tag corresponding to the case.

e If U has more than one case, it has one CLI nested type U. Tags. The U. Tags typecontains one
integer literal for each case, in increasing order starting from zero.

e A compiled union type has the methods that are required to implement its auto-generated
interfaces, in addition to any user-defined properties or methods.

These methods and properties may not be used directly from F#. However, these types have user-
facing List.Empty, List.Cons, Option.None, and Option.Some properties and/or methods.

A compiled union type may not be used as a base type in another CLI language, because it has at
least one assembly-private constructor and no public constructors.
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8.6 Class Type Definitions

A class type definition encapsulates values that are constructed by using one or more object
constructors. Class types have the form:

type type-name patop: as-defnep: =
class
class-inherits-declopt
class-function-or-value-defnspt
type-defn-elements
end

The class/end tokens can be omitted, in which case Type Kind Inference (§8.2) is used to
determine the kind of the type.

In F#, class types are implicitly marked serializable unless the AutoSerializable(false)
attribute is present.

8.6.1 Primary Constructors in Classes

An object constructor represents a way of initializing an object. Object constructors can create values
of the type and can partially initialize an object from a subclass. A class can have an optional primary
constructor and zero or more additional object constructors.

If a type definition has a pattern immediately after the type-name and any accessibility annotation,
then it has a primary constructor. For example, the following type has a primary constructor:

type Vector2D(dx : float, dy : float) =
let length = sqrt(dx*x + dy*dy)
member v.Length = length
member v.DX = dx
member v.DY = dy

Class definitions that have a primary constructor may contain function and value definitions,
including those that use let rec.

The pattern for a primary constructor must have zero or more patterns of the following form:
(simple-pat, ..., simple-pat)
Each simple-pat has this form:
simple-pat :=
| ident
| simple-pat : type

Specifically, nested patterns may not be used in the primary constructor arguments. For example,
the following is not permitted because the primary constructor arguments contain a nested tuple
pattern:

type TwoVectors((px, py), (ax, qy)) =
member v.Length = sqrt((gqx-px)*(gx-px) + (qy-py)*(ay-py))
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Instead, one or more value definitions should be used to accomplish the same effect:

type TwoVectors(pv, qv) =
let (px, py) = pv
let (gx, qy) = qv
member v.Length = sqrt((gx-px)*(gx-px) + (qy-py)*(qy-py))

When a primary constructor is evaluated, the inheritance and function and value definitions are
evaluated in order.

8.6.1.1 Object References in Primary Constructors
For types that have a primary constructor, the name of the object parameter can be bound and used

in the non-static function, value, and member definitions of the type definition as follows:

type X(a:int) as x =
let mutable currentA
let mutable currentB
do x.B <- x.A + 3
member self.GetResult()= currentA + currentB
member self.A with get() currentA and set v
member self.B with get() currentB and set v

o
o

currentA <- v
currentB <- v

During construction, no member on the type may be called before the last value or function
definition in the type has completed; such a call results in an InvalidOperationException. For
example, the following code raises this exception:

type C() as self =
let £ = (fun (x:C) -> x.F())
let y = f self
do printfn "construct”
member this.F() = printfn "hi, y = %A" y

let r = new C() // raises InvalidOperationException

The exception is raised because an attempt may be made to access the value of the field y before
initialization is complete.

8.6.1.2 Inheritance Declarations in Primary Constructors
An inherit declaration specifies that the type being defined is an extension of an existing type.

Such declarations have the following form:
class-inherits-decl := inherit type expropt
For example:

type MyDerived(...) =
inherit MyBase(...)

If a class definition does not contain an inherit declaration, the class inherits
fromSystem.Object by default.
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The inherit declaration for a type must have arguments if and only if the type has a primary
constructor.

Unlike §8.6.1.2, members of a base type can be accessed during construction of the derived class.
For example, the following code does not raise an exception:

type B() =
member this.G() = printfn "hello "

type C() as self =
inherit B()
let £ = (fun (x:C) -> x.G())
let y = f self
do printfn "construct”
member this.F() = printfn "hi, y = %A" y

let r = new C() // does not raise InvalidOperationException

8.6.1.3 Instance Function and Value Definitions in Primary Constructors
Classes that have primary constructors may include function definitions, value definitions, and “do”
statements. The following rules apply to these definitions:

e FEach definition may be marked static (see §8.6.2.1). If the definition is not marked static, it is
called an instance definition.

e The functions and values defined by instance definitions are lexically scoped (and thus implicitly
private) to the object being defined.

e Each value definition may optionally be marked mutable.

e A group of function and value definitions may optionally be marked rec.

e Function and value definitions are generalized.

e Value definitions that declared in classes are represented in compiled code as follows:

o If a value definition is not mutable, and is not used in any function or member, then the
value is represented as a local value in the object constructor.

o If a value definition is mutable, or used in any function or member, then the value is
represented as an instance field in the corresponding CLI type.

e Function definitions are represented in compiled code as private members of the corresponding
CLI type.

For example, consider this type:

type C(x:int,y:int) =
let z=x+y
let fw=x+w
member this.Z = z
member this.Add(w) = f w
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The input y is used only during construction, and no field is stored for it. Likewise the function f
is represented as a member rather than a field that is a function value.

A value definition is considered a function definition if its immediate right-hand-side is an
anonymous function, as in this example:

let £ = (fun w -> X + w)
Function and value definitions may have attributes as follows:

e Value definitions represented as fields may have attributes that target fields.

e Value definitions represented as locals may have attributes that target fields, but these
attributes will not be attached to any construct in the resulting CLI assembly.

e Function definitions represented as methods may have attributes that target methods.

For example:

type C(x:int) =
[<System.Obsolete>]
let unused = x
member P =1

In this example, no field is generated for unused, and no corresponding compiled CLI attribute is
generated.

8.6.1.4 Static Function and Value Definitions in Primary Constructors
Classes that have primary constructors may have function definitions, value definitions, and “do”
statements that are marked as static:

e The values that are defined by static function and value definitions are lexically scoped (and thus
implicitly private) to the type being defined.

e Each value definition may optionally be marked mutable.

e A group of function and value definitions may optionally be marked rec.

e Static function and value definitions are generalized.

e Static function and value definitions are computed once per generic instantiation.

e Static function and value definitions are elaborated to a static initializer associated with each
generic instantiation of the generated class. Static initializers are executed on demand in the
same way as static initializers for implementation files §12.5.

e The compiled representation for static value definitions is as follows:

e If the value is not used in any function or member then the value is represented as a local
value in the CLI class initializer of the type.

o If the value is used in any function or member, then the value is represented as a static field
of the CLI class for the type.

e The compiled representation for a static function definition is a private static member of the
corresponding CLI type.
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Static function and value definitions may have attributes as follows:
e Static function and value definitions represented as fields may have attributes that target fields.

e Static function and value definitions represented as methods may have attributes that target
methods.

For example:

type C<'T>() =
static let mutable v = 2 + 2
static do v <- 3

member X.P = v
static member P2 = v+v

printfn "check: %d = 3" (new C<int>()).P
printfn "check: %d = 3" (new C<int>()).P
printfn "check: %d = 3" (new C<string>()).P
printfn "check: %d = 6" (C<int>.P2)

printfn "check: %d = 6" (C<string>.P2)

In this example, the value v is represented as a static field in the CLI type for C. One instance of this
field exists for each generic instantiation of C. The output of the program is

check:
check:
check:
check:
check:

a0 W w w
1
a0 W w w

8.6.2 Members in Classes

Class types may declare members (§8.13), overrides, and interface implementations. As with all
types that have overrides and interface implementations, such class types are subject to Dispatch
Slot Checking (§14.8).

8.6.3 Additional Object Constructors in Classes
Although the use of primary object constructors is generally preferable, additional object
constructors may also be specified. Additional object constructors are required in two situations:

e To define classes that have more than one constructor.

e To specify explicit val fields without the DefaultValue attribute.

For example, the following statement adds a second constructor to a class that has a primary
constructor:

type PairOfIntegers(x:int,y:int) =
new (x) = PairOfIntegers(x,Xx)

The next example declares a class without a primary constructor:
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type PairOfStrings =
val s1 : string
val s2 : string
new (s) = { s1 =s; s2 =5s }
new (s1,s2) = { s1 = s1; s2 = s2 }

If a primary constructor is present, additional object constructors must call another object
constructor in the same type, which may be another additional constructor or the primary
constructor.

If no primary constructor is present, additional constructors must initialize any val fields of the
object that do not have the DefaultValue attribute. They must also specify a call to a base class
constructor for any inherited class type. A call to a base class constructor is not required if the base
classis System.Object

The use of additional object constructors and val fields is required if a class has multiple object
constructors that must each call different base class constructors. For example:

type BaseClass =
val s1 : string
new (s) = { s1 =s }
new () = { s1 = "default" }

type SubClass =
inherit BaseClass
val s2 : string
new (sl1,s2) = { inherit BaseClass(sl); s2 = s2 }
new (s2) = { inherit BaseClass(); s2 = s2 }

To implement additional object constructors, F# uses a restricted subset of expressions that ensure

that the code generated for the constructor is valid according to the rules of object construction for
CLI objects. Note that precisely one additional -constr-init-expr occurs for each branch of a
construction expression.

For classes without a primary constructor, side effects can be performed after the initialization of
the fields of the object by using the additional -constr-expr then stmt form. For example:

type PairOfIntegers(x:int,y:int) =
// This additional constructor has a side effect after
initialization.
new(x) =
PairOfIntegers(x, X)
then
printfn "Initialized with only one integer"

The name of the object parameter can be bound within additional constructors. For example:
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type X =
val a : (unit -> string)
val mutable b : string
new() as x = { a = (fun () -> x.b); b = "b" }

A warning is given if x occurs syntactically in or before the additional -constr-init-expr of
the construction expression. If any member is called before the completion of execution of the
additional-constr-init-expr within the additional-constr-expr then an
InvalidOperationException isthrown.

8.6.4 Additional Fields in Classes

Additional field declarations indicate that a value is stored in an object. They are generally used only
for classes without a primary constructor, or for mutable fields that use default initialization, and
typically occur only in generated code. For example:

type PairOflIntegers =
val x : int
val y : int
new(x, y) = {x = x; y =y}

The following shows an additional field declaration as a static field in an explicit class type:

type TypeWithADefaultMutableBooleanField =
[<DefaultValue>]
static val mutable ready : bool

At runtime, such a field is initially assigned the zero value for its type (§6.9.3). For example:

type MyClass(name:string) =
// Keep a global count. It is initially zero.
[<DefaultValue>]
static val mutable count : int

// Increment the count each time an object is created
do MyClass.count <- MyClass.count + 1

static member NumCreatedObjects = MyClass.count

member x.Name = name

A val specification in a type that has a primary constructor must be marked mutable and must have
the DefaultValue attribute. For example:

type X() =
[<DefaultValue>]
val mutable x : int

The DefaultValue attribute takes a check parameter, which indicates whether to ensure that the
val specification does not create unexpected null values. The default value for check is true. If
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this parameter is true, the type of the field must permit default initialization (§5.4.8). For example,
the following type is rejected:

type MyClass<'T>() =
[<DefaultValue>]
static val mutable uninitialized : 'T

The reason is that the type ' T does not admit default initialization. However, in compiler-generated
and hand-optimized code it is sometimes essential to be able to emit fields that are completely
uninitialized. In this case, DefaultValue(false) can be used. For example:

type MyNullable<'T>() =
[<DefaultValue>]
static val mutable ready : bool

[<DefaultValue(false)>]
static val mutable uninitialized : 'T

8.7 Interface Type Definitions

An interface type definition represents a contract that an object may implement. Such a type
definition containsonly abstract members. For example:

type IPair<'T,'U> =
interface
abstract First: 'T
abstract Second: 'U
end

type IThinker<'Thought> =
abstract Think: ('Thought -> unit) -> unit
abstract StopThinking: (unit -> unit)

Note: The interface/end tokens can be omitted when lightweight syntax is used, in
which case Type Kind Inference (§8.2) is used to determine the kind of the type. The
presence of any non-abstract members or constructors means a type is not an interface

type.

By convention, interface type names start with |, as in IEvent. However, this convention
is not followed as strictly in F# as in other CLI languages.

Interface types may be arranged hierarchically by specifying inherit declarations. For example:

type IA =
abstract One: int -> int

type IB =
abstract Two: int -> int

type IC =
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inherit IA
inherit IB
abstract Three: int -> int

Each inherit declaration must itself be an interface type. Circular references are not allowed
among inherit declarations. F# uses the named types of the inherited interface types to
determine whether references are circular.

8.8 Struct Type Definitions

A struct type definition is a type definition whose instances are stored inline inside the stack frame or
object of which they are a part. The type is represented as a CLI struct type, also called a value type.
For example:

type Complex =
struct
val real: float;
val imaginary: float
member x.R = x.real
member x.I = X.imaginary
end

Note: The struct/end tokens can be omitted when lightweight syntax is used, in which
case Type Kind Inference (§8.2) is used to determine the kind of the type.

Becaues structs undergo type kind inference (§8.2), the following is valid:

[<Struct>]

type Complex(r:float, i:float) =
member x.R r
member x.I i

Structs may have primary constructors:

[<Struct>]

type Complex(r : float, I : float) =
member x.R = r
member x.I = i

Structs that have primary constructors must accept at least one argument.
Structs may have additional constructors. For example:

[<Struct>]

type Complex(r : float, I : float) =
member x.R r
member x.I i
new(r : float) = new Complex(r, 0.0)
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The fields in a struct may be mutable only if the struct does not have a primary constructor. For
example:

[<Struct>]
type MutableComplex =
val mutable real : float;
val mutable imaginary : float
member X.R = X.real
member Xx.I = Xx.imaginary
member x.Change(r, i) = x.real <- r; x.imaginary <- i
new (r, i) = { real = r; imaginary = i }

Struct types may declare members, overrides, and interface implementations. As for all types that
declare overrides and interface implementations, struct types are subject to Dispatch Slot Checking
(§14.8).

Structs may not have inherit declarations.

Structs may not have “let” or “do” statements unless they are static. For example, the following is
not valid:

[<Struct>]
type BadStructl (def : int) =
do System.Console.WritelLine("Structs cannot use 'do'!")

Structs may have static “let” or “do” statements. For example, the following is valid:

[<Struct>]
type GoodStructl (def : int) =
static do System.Console.WriteLine("Structs can use 'static do'")

A struct type must be valid according to the CLI rules for structs; in particular, recursively
constructed structs are not permitted. For example, the following type definition is not permitted,
because the size of Badstruct2 would be infinite:

[<Struct>]
type BadStruct2 =
val data : float;
val rest : BadStruct2
new (data, rest) = { data = data; rest = rest }

Likewise, the implied size of the following struct would be infinite:

[<Struct>]

type BadStruct3 (data : float, rest : BadStruct3) =
member s.Data data
member s.Rest rest

If the types of all the fields in a struct type permit default initialization, the struct type has an implicit
default constructor,which initializes all the fields to the default value. For example, the complex type
defined earlier in this section permits default initialization.
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[<Struct>]

type Complex(r : float, I : float) =
member Xx.R r
member x.I i
new(r : float) = new Complex(r, 0.0)

let zero = Complex()

Note: The existence of the implicit default constructor for structs is not recorded in CLI
metadata and is an artifact of the CLI specification and implementation itself. A CLI
implementation permits default constructors for all struct types, although F# does not
permit their direct use for F# struct types unless all field types admit default
initialization. This is similar to the way that F# considers some types to have null as an
abnormal value.

Public struct types for use from other CLI languages should be designed with the
existence of the default zero-initializing constructor in mind.

8.9 Enum Type Definitions

Occasionally the need arises to represent a type that compiles as a CLI enumeration type. An enum
type definition has values that are represented by integer constants and has a CLI enumeration as its
compiled form. Enum type definitions are declared by specifying integer constants in a format that is
syntactically similar to a union type definition. For example:

type Color =
| Red = @
| Green =1
| Blue = 2

let rgb = (Color.Red, Color.Green, Color.Blue)

let show(colorScheme) =
match colorScheme with
| (Color.Red, Color.Green, Color.Blue) -> printfn "RGB in use"
| _ -> printfn "Unknown color scheme in use"

The example defines the enum type Color, which has the values Red, Green, and Blue, mapped to
the constants 0, 1, and 2 respectively. The values are accessed by their qualified names: Color.Red,
Color.Green, and Color.Blue.

Each case must be given a constant value of the same type. The constant values dictate the
underlying type of the enum, and must be one of the following types:

e sbyte, intl6, int32, int64, byte, uintl6, uint32, uint64, char

The declaration of an enumeration type in an implementation file has the following effects on the
typing environment:
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e Brings a named type into scope.
e Adds the named type to the inferred signature of the containing namespace or module.

Enum types coerce to System. Enum and satisfy the enum<underlying-type> constraint for their
underlying type.

Each enum type declaration is implicitly annotated with the RequiresQualifiedAccess attribute
and does not add the tags of the enumeration to the name environment.

type Color =
| Red = @
| Green =1
| Blue = 2

let red = Red // not accepted, must use Color.Red

Unlike unions, enumeration types are fundamentally “incomplete,” because CLI enumerations can
be converted to and from their underlying primitive type representation. For example, a Color
value that is not in the above enumeration can be generated by using the enum function from the F#
library:

let unknownColor : Color = enum<Color>(7)

This statement adds the value named unknownColor, equal to the constant 7, to the Color
enumeration.

8.10 Delegate Type Definitions

Occasionally the need arises to represent a type that compiles as a CLI delegate type. A delegate
type definition has as its values functions that are represented as CLI delegate values. A delegate
type definition is declared by using the delegate keyword with a member signature. For example:

type Handler<'T> = delegate of obj * 'T -> unit

Delegates are often used when using Platform Invoke (P/Invoke) to interface with CLI libraries, as in
the following example:

type ControlEventHandler = delegate of int -> bool

[<D11lImport("kernel32.d11")>]
extern void SetConsoleCtrlHandler(ControlEventHandler callback, bool
add)

8.11 Exception Definitions

An exception definition defines a new way of constructing values of type exn (a type abbreviation for
System.Exception). Exception definitions have the form:
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exception 1ident of type; * .. * typen
An exception definition has the following effect:

e The identifier ident can be used to generate values of type exn.
e The identifier ident can be used to pattern match on values of type exn.

e The definition generates a type with name ident that derives from exn.

For example:

exception Error of int * string
raise (Error (3, "well that didn't work did it"))

try
raise (Error (3, "well that didn't work did it"))
with
| Error(sev, msg) -> printfn "severity = %d, message = %s" sev msg

The type that corresponds to the exception definition can be used as a type in F# code. For example:

let exn = Error (3, "well that didn't work did it")
let checkException() =

if (exn :? Error) then printfn "It is of type Error"

if (exn.GetType() = typeof<Error>) then printfn "Yes, it really is
of type Error"

Exception abbreviations may abbreviate existing exception constructors. For example:

exception ThatWentBadlyWrong of string * int
exception ThatWentWrongBadly = ThatWentBadlyWrong

let checkForBadDay() =
if System.DateTime.Today.DayOfWeek = System.DayOfWeek.Monday then
raise (ThatWentWrongBadly("yes indeed",123))

Exception values may also be generated by defining and using classes that extend
System.Exception.

8.12 Type Extensions

A type extension associates additional members with an existing type. For example, the following
associates the additional member IsLong with the existing type System.String:

type System.String with
member x.Islong = (x.Length > 1000)
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Type extensions may be applied to any accessible type definition except those defined by type
abbreviations. For example, to add an extension method to a list type, use 'a List because 'a list
is a type abbreviation of 'a List. For example:

type 'a List with
member x.GetOrDefault(n) =
if x.Length > n then x.[n]
else Unchecked.defaultof<'a>

let intlst = [1; 2; 3]
intlst.GetOrDefault(1l) //2
intlst.GetOrDefault(4) //9©

For an array type, backtick marks can be used to define an extension method to the array type:

type 'a T[] with
member x.GetOrDefault(n) =
if x.Length > n then x.[n]
else Unchecked.defaultof<'a>

let arrlist = [| 1; 2; 3 |]
arrlist.GetOrDefault(1) //2
arrlist.GetOrDefault(4) //0

A type can have any number of extensions.

If the type extension is in the same module or namespace declaration group as the original type
definition, it is called an intrinsic extension. Members that are defined in intrinsic extensions follow
the same name resolution and other language rules as members that are defined as part of the
original type definition.

If the type extension is not intrinsic, it must be in a module, and it is called an extension member.
Opening a module that contains an extension member extends the name resolution of the dot
syntax for the extended type. That is, extension members are accessible only if the module that
contains the extension is open.

Name resolution for members that are defined in type extensions behaves as follows:
e In method application resolution (see §14.4), regular members (that is, members that are part of

the original definition of a type, plus intrinsic extensions) are preferred to extension members.

e Extension members that are in scope and have the correct name are included in the group of
members considered for method application resolution (see §14.4).

e Anintrinsic member is always preferred to an extension member. If an extension member has
the same name and type signature as a member in the original type definition or an inherited
member, then it will be inaccessible.

The following illustrates the definition of one intrinsic and one extension member for the same type:

namespace Numbers
type Complex(r : float, i : float) =
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member x.R
member x.I

[
S

// intrinsic extension

type Complex with
static member Create(a, b) = new Complex (a, b)
member x.RealPart = x.R
member x.ImaginaryPart = x.I

namespace Numbers
module ComplexExtensions =
// extension member
type Numbers.Complex with

member x.Magnitude =
member x.Phase =

Extensions may define both instance members and static members.

Extensions are checked as follows:

Checking applies to the member definitions in an extension together with the members and
other definitions in the group of type definitions of which the extension is a part.

Two intrinsic extensions may not contain conflicting members because intrinsic extensions are
considered part of the definition of the type.

Extensions may not define fields, interfaces, abstract slots, inherit declarations, or dispatch slot
(interface and override) implementations.

Extension members must be in modules.
Extension members are compiled as CLI static members with encoded names.

e The elaborated form of an application of a static extension member C.M(arg,..,arg,) is a
call to this static member with arguments argi, ..., argn..

e The elaborated form of an application of an instance extension member
obj.M(argi,..,arg,) is an invocation of the static instance member where the object
parameter is supplied as the first argument to the extension member followed by arguments
arg: .. argn.

8.12.1 Imported CLI C# Extensions Members
The CLI C# language defines an “extension member,” which commonly occurs in CLI libraries, along

with some other CLI languages. C# limits extension members to instance methods.

C#-defined extension members are made available to F# code in environments where the C#-

authored assembly is referenced and an open declaration of the corresponding namespace is in
effect.
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The encoding of compiled names for F# extension members is not compatible with C# encodings of
C# extension members. However, for instance extension methods, the naming can be made
compatible. For example:

open System.Runtime.CompilerServices

[<Extension>]
module EnumerableExtensions =
[<CompiledName("OutputAll"); Extension>]
type System.Collections.Generic.IEnumerable<'T> with
member x.OutputAll (this:seq<'T>) =
for x in this do
System.Console.WriteLine (box x)

C#-style extension members may also be declared directly in F#. When combined with the “inline”
feature of F#, this allows the definition of generic, constrained extension members that are not
otherwise definable in C# or F#.

[<Extension>]

type ExtraCSharpStyleExtensionMethodsInFSharp () =
[<Extension>]
static member inline Sum(xs: seq<'T>) = Seq.sum Xs

Such an extension member can be used as follows:

let listOfIntegers = [ 1 .. 100 ]

let listOfBigIntegers = [ 1I .. 1001 ]
listOfIntegers.Sum()
listOfBigIntegers.Sum()

8.13 Members

Member definitions describe functions that are associated with type definitions and/or values of
particular types. Member definitions can be used in type definitions. Members can be classified as
follows:

e Property members

e Method members

A static member is prefixed by static and is associated with the type, rather than with any
particular object. Here are some examples of static members:

type MyClass() =
static let mutable adjustableStaticValue = "3"
static let staticArray = [| "A"; "B" |]
static let staticArray2 = [|[| "A"; "B" |]1; [| "A"; "B" |1 |]

static member StaticMethod(y:int) =3 + 4 +y
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static member StaticProperty = 3 + staticArray.Length

static member StaticProperty2
with get() = 3 + staticArray.Length

static member MutableStaticProperty
with get() adjustableStaticValue
and set(v:string) = adjustableStaticValue <- v

static member StaticIndexer
with get(idx) = staticArray.[idx]

static member StaticIndexer2
with get(idx1l,idx2) = staticArray2.[idx1].[idx2]

static member MutableStaticIndexer
with get (idx1l) = staticArray.[idx1]
and set (idx1) (v:string) = staticArray.[idx1] <- v

An instance member is a member without static. Here are some examples of instance members:

type MyClass() =
let mutable adjustableInstanceValue = "3"
let instanceArray = [| "A"; "B" |]
let instanceArray2 = [| [| "A"; "B" |[]; [| "A"; "B" |] |]

member X.InstanceMethod(y:int) = 3 + y + instanceArray.Length
member x.InstanceProperty = 3 + instanceArray.Length

member x.InstanceProperty2
with get () = 3 + instanceArray.Length

member x.InstanceIndexer
with get (idx) = instanceArray.[idx]

member x.InstanceIndexer2
with get (idx1,idx2) = instanceArray2.[idx1].[idx2]

member x.MutableInstanceProperty
with get () = adjustableInstanceValue
and set (v:string) = adjustableInstanceValue <- v

member x.MutableInstanceIndexer

with get (idx1) = instanceArray.[idx1]
and set (idx1l) (v:string) = instanceArray.[idx1] <- v
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Members from a set of mutually recursive type definitions are checked as a single mutually recursive
group. As with collections of recursive functions, recursive calls to potentially-generic methods may
result in inconsistent type constraints:

type Test() =

static member Id x = X

member t.M1 (x: int) = Test.Id(x)

member t.M2 (x: string) = Test.Id(x) // error, x has type 'string’
"int

not
A target method that has a full type annotation is eligible for early generalization (§14.6.7).

type Test() =
static member Id<'T> (x:'T) : 'T = x
member t.M1 (x: int) = Test.Id(x)
member t.M2 (x: string) = Test.Id(x)

8.13.1 Property Members
A property member is a method-or-prop-defn in one of the following forms:

staticept member ident..,: ident = expr

staticept member ident..,: ident with get pat = expr

staticept member ident..,: ident with set pato.: pat= expr

staticept member ident..p: ident with get pat = expr and set pate: pat
expr

staticept member ident..,: ident with set pate: pat = expr and get pat
expr

A property member in the form

staticoye member ident.q: ident with get pat;
opt = €xXpro

expr:; and set pat.s patw

is equivalent to two property members of the form:

staticept member ident..,: ident with get pat:; = expr:
staticept member ident..p: ident with set pat.s patz opr = expr:

Furthermore, the following two members are equivalent:

staticept member ident.o.,: ident = expr
staticopr member ident..: ident with get () = expr

These two are also equivalent:

staticet member ident..p: ident with set pat = expr:
staticepr member ident.,: ident with set () pat = expr

Thus, property members may be reduced to the following two forms:

staticet member ident..p: ident with get patiax = expr
staticet member ident..p: ident with set patis pat = expr
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The ident .., must be present if and only if the property member is an instance member. When
evaluated, the identifier ident is bound to the “this” or “self” object parameter that is associated
with the object within the expression expr.

A property member is an indexer property if patiay is not the unit pattern (). Indexer properties
called Item are special in the sense that they are accessible via the . [ | notation. An Item property
that takes one argument is accessed by using x. [ 1 ]; with two arguments by x.[1, 7], and so on.
Setter properties must return type unit.

Note: As of F# 3.1, the special . [ ] notation for Item properties is available only for
instance members. A static indexer property cannot be accessible by using the . [ ]
notation.

Property members may be declared abstract. If a property has both a getter and a setter, then
both must be abstract or neither must be abstract.

Each property member has an implied property type. The property type is the type of the value that
the getter property returns or the setter property accepts. If a property member has both a getter
and a setter, and neither is an indexer property, the signatures of both the getter and the setter
must imply the same property type.

Static and instance property members are evaluated every time the member is invoked. For
example, in the following, the body of the member is evaluated each time C. Time is evaluated:

type C () =
static member Time = System.DateTime.Now

Note that a static property member may also be written with an explicit get method:

static member ComputerName
with get() = System.Environment.GetEnvironmentVariable("COMPUTERNAME")

Property members that have the same name may not appear in the same type definition even if
their signatures are different. For example:

type C () =
static member P = false // error: Duplicate property.
member this.P = true

However, methods that have the same name can be overloaded when their signatures are different.

8.13.2 Auto-implemented Properties

Properties can be declared in two ways: either explicitly specified with the underlying value or
automatically generated by the compiler. The compiler creates a backing field automatically if all of
the following are true for the declaration:

e The declaration uses the member val keywords.

e The declaration omits the self-identifier.

e The declaration includes an expression to initialize the property.
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To create a mutable property, include with get, with set,or both:

staticept member val accessq: ident : tyo: = expr

staticept member val accessq: ident : tyo: = expr with get
staticet member val accessq: ident : tyo: = expr with set
staticept member val accessop: ident : tyo: = expr with get, set

Automatically implemented properties are part of the initialization of a type, so they must be
included before any other member definitions, in the same way as let bindings and do bindings in a
type definition. The expression that initializes an automatically implemented property is evaluated
only at initialization, and not every time the property is accessed. This behavior is different from the
behavior of an explicitly implemented property.

For example, the following class type includes two automatically implemented properties. Propertyl
is read-only and is initialized to the argument provided to the primary constructor and Property2 is a
settable property that is initialized to an empty string:

type D (x:int) =
member val Propertyl
member val Property2

X

with get, set
Auto-implemented properties can also be used to implement default or override properties:

type MyBase () =
abstract Property : string with get, set
default val Property = “default” with get, set

type MyDerived() =
inherit MyBase()
override val Property = "derived" with get, set

The following example shows how to use an auto-implemented property to implement an interface:

type MyInterface () =
abstract Property : string with get, set

type MyImplementation () =
interface MyInterface with
member val Property = "implemented" with get, set

8.13.3 Method Members
A method member is of the form:

staticept member ident..,: ident pat; ... pat, = expr

The ident ..p: can be present if and only if the property member is an instance member. In this
case, the identifier ident corresponds to the “this” (or “self”) variable associated with the object
on which the member is being invoked.
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Arity analysis (§14.10) applies to method members. This is because F# members must compile to CLI
methods, which accept only a single fixed collection of arguments.

8.13.4 Curried Method Members
Methods that take multiple arguments may be written in iterated (“curried”) form. For example:

static member StaticMethod2 si1 s2 =
sprintf "In StaticMethod(%s,%s)" s1 s2

The rules of arity analysis (§14.10) determine the compiled form of these members.
The following limitations apply to curried method members:

e Additional argument groups may not include optional or byref parameters.

e  When the member is called, additional argument groups may not use named
arguments(§8.13.5).

e Curried members may not be overloaded.

The compiled representation of a curried method member is a .NET method in which the arguments
are concatenated into a single argument group.

Note: It is recommended that curried argument members do not appear in the public
APl of an F# assembly that is designed for use from other .NET languages. Information
about the currying order is not visible to these languages.

8.13.5 Named Arguments to Method Members
Calls to methods—but not to let-bound functions or function values—may use named arguments.
For example:

System.Console.WriteLine(format = "Hello {@}", argd = "World")
System.Console.WriteLine("Hello {@}", argd = "World")
System.Console.WriteLine(argd = "World", format = "Hello {0}")

The argument names that are associated with a method declaration are derived from the names
that appear in the first pattern of a member definition, or from the names used in the signature for a
method member. For example:

type C() =
member x.Swap(first, second) = (second, first)

let ¢ = C()
c.Swap(first = 1,second
c.Swap(second = 1,first

2) // result is '(2,1)'
2) // result is '(1,2)'

Named arguments may be used only with the arguments that correspond to the arity of the
member. That is, because members have an arity only up to the first set of tupled arguments, named
arguments may not be used with subsequent curried arguments of the member.
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The resolution of calls that use named arguments is specified in Method Application Resolution (see
§14.4). The rules in that section describe how resolution matches a named argument with either a
formal parameter of the same name or a “settable” return property of the same name. For example,
the following code resolves the named argument to a settable property:

System.Windows.Forms.Form(Text = "Hello World")

If an ambiguity exists, assigning the named argument is assigned to a formal parameter rather than
to a settable return property.

The Method Application Resolution (§14.4) rules ensure that:

e Named arguments must appear after all other arguments, including optional arguments that
are matched by position.

After named arguments have been assigned, the remaining required arguments are called the
required unnamed arguments. The required unnamed arguments must precede the named
arguments in the argument list. The n unnamed arguments are matched to the first n formal
parameters; the subsequent named arguments must include only the remaining formal parameters.
In addition, the arguments must appear in the correct sequence.

For example, the following code is invalid:

// error: unnamed args after named
System.Console.WriteLine(argd = "World", "Hello {@}")

Similarly, the following code is invalid:

type Foo() =

static member M (argl, arg2, arg3) =1
// error: argl, arg3 not a prefix of the argument list
Foo.M(1, 2, arg2 = 3)

The following code is valid:

type Foo() =
static member M (argl, arg2, arg3) =1

Foo.M (1, 2, arg3 = 3)

The names of arguments to members may be listed in member signatures. For example, in a
signature file:

type C =
static member ThreeArgs : argl:int * arg2:int * arg3:int -> int
abstract TwoArgs : argl:int * arg2:int -> int

8.13.6 Optional Arguments to Method Members
Method members—but not functions definitions—may have optional arguments. Optional

arguments must appear at the end of the argument list. An optional argument is marked with a ?
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before its name in the method declaration. Inside the member, the argument has type
option<argType>.

The following example declares a method member that has two optional arguments:

let defaultArg x y = match x with None ->y | Some v -> v

type T() =
static member OneNormalTwoOptional (argl, ?arg2, ?arg3) =
let arg2 = defaultArg arg2 3
let arg3 = defaultArg arg3 10
argl + arg2 + arg3

Optional arguments may be used in interface and abstract members. In a signature, optional
arguments appear as follows

static member OneNormalTwoOptional : argl:int * ?arg2:int * ?arg3:int -
> int

Callers may specify values for optional arguments in the following ways:

e Byname,suchasarg2 = 1.

e By propagating an existing optional value by name, such as ?arg2=None or ?arg2=Some(3) or
?arg2=arg2. This can be useful when building a method that passes optional arguments on to
another method.

e By using normal, unnamed arguments that are matched by position.

For example:
T.OneNormalTwoOptional(3)
T.0OneNormalTwoOptional(3, 2)
T.0OneNormalTwoOptional(argl = 3)
T.OneNormalTwoOptional(argl = 3, arg2 = 1)
T.OneNormalTwoOptional(arg2 = 3, argl = Q)
T.OneNormalTwoOptional(arg2 = 3, argl = 0, arg3 = 11)
T.0OneNormalTwoOptional(e, 3, 11)
T.OneNormalTwoOptional(@, 3, arg3 = 11)
T.OneNormalTwoOptional(argl = 3, ?arg2 = Some 1)
T.OneNormalTwoOptional(arg2 = 3, argl = 0, arg3 = 11)
T.OneNormalTwoOptional(?arg2 = Some 3, argl = 0, arg3 = 11)
T.OneNormalTwoOptional(®@, 3, ?arg3 = Some 11)

The resolution of calls that use optional arguments is specified in Method Application Resolution (see
§14.4).

Optional arguments may not be used in member constraints.
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Note: Imported CLI metadata may specify arguments as optional and may additionally
specify a default value for the argument. These are treated as F# optional arguments. CLI
optional arguments can propagate an existing optional value by name; for example,
?ValueTitle = Some (..).

For example, here is a fragment of a call to a Microsoft Excel COM automation API that
uses named and optional arguments.

chartobject.Chart.ChartWizard(Source = range5,
Gallery = X1ChartType.x13DColumn,
PlotBy = X1RowCol.x1Rows,
HasLegend = true,
Title = "Sample Chart",
CategoryTitle = "Sample Category
Type",
ValueTitle = "Sample Value Type")

CLI optional arguments are not passed as values of type Option<_>. If the optional
argument is present, its value is passed. If the optional argument is omitted, the default
value from the CLI metadata is supplied instead. The value
System.Reflection.Missing.Value is supplied for any CLI optional arguments of
type System.0Object that do not have a corresponding CLI default value, and the
default (zero-bit pattern) value is supplied for other CLI optional arguments of other
types that have no default value.

The compiled representation of members varies as additional optional arguments are added. The
addition of optional arguments to a member signature results in a compiled form that is not binary-
compatible with the previous compiled form.

Marking an argument as optional is equivalent to adding the FSharp.Core.OptionalArgument
attribute (§17.1) to a required argument. This attribute is added implicitly for optional arguments.
Adding the [<OptionalArgument>] attribute to a parameter of type 'a option in a virtual
method signature is equivalent to using the (?x: 'a) syntax in a method definition. If the attribute is
applied to an argument of a method, it should also be applied to all subsequent arguments of the
method. Otherwise, it has no effect and callers must provide all of the arguments.

8.13.7 Type-directed Conversions at Member Invocations
As described in Method Application Resolution (see §14.4), three type-directed conversions are
applied at method invocations.

8.13.7.1 Conversion to Delegates
The first type-directed conversion converts anonymous function expressions and other function-

valued arguments to delegate types. Given:

o Aformal parameter of delegate type D
e Anactual argument farg of known type ty: -> ... -> ty, -> rty

e Precisely n arguments to the Invoke method of delegate type D

Then:
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e The parameter is interpreted as if it were written:

new D(fun arg:; ... arg, -> farg arg: ... argn)

If the type of the formal parameter is a variable type, then F# uses the known inferred type of the
argument including instantiations to determine whether a formal parameter has delegate type. For
example, if an explicit type instantiation is given that instantiates a generic type parameter to a
delegate type, the following conversion can apply:

type GenericClass<'T>() =
static member M(arg: 'T) = ()

GenericClass<System.Action>.M(fun () -> ()) // allowed

8.13.7.2 Conversion to Reference Cells
The second type-directed conversion enables an F# reference cell to be passed where a byref<ty>
is expected. Given:

o Aformal out parameter of type byref<ty>
e An actual argument that is not a byref type

Then:

e The actual parameter is interpreted as if it had type ref<ty>.

For example:

type C() =
static member M1l(arg: System.Action) = ()
static member M2(arg: byref<int>) = ()

C.M1(fun () -> ()) // allowed
let £ = (fun () -> ()) in C.M1(f) // not allowed

let result = ref ©
C.M2(result) // allowed

Note: These type-directed conversions are primarily for interoperability with existing
member-based .NET libraries and do not apply at invocations of functions defined in
modules or bound locally in expressions.

A value of type ref<ty> may be passed to a function that accepts a byref parameter. The interior
address of the heap-allocated cell that is associated with such a parameter is passed as the pointer
argument.

For example, consider the following C# code:

public class C

{
static public void IntegerOutParam(out int x) { x = 3; }
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public class D
{

virtual public void IntegerOutParam(out int x) { x = 3; }

This C# code can be called by the following F# code

let resl = ref ©
C.IntegerOutParam(resl)
// resl.contents now equals 3

Likewise, the abstract signature can be implemented as follows:

let x = {new D() with IntegerOutParam(res : byref<int>) = res <- 4}
let res2 = ref 0@

x.IntegerOutParam(res2);

// res2.contents now equals 4

8.13.7.3 Conversion to Quotation Values
The third type-directed conversion enables an F# expression to be implicitly quoted at a member
call.

Conversion to a quotation value is driven by the ReflectedDefinition attribute to a method argument
of type FSharp.Quotations.Expr<_>:

static member Plot([<ReflectedDefinition>] values:Expr<int>) = (...)
The intention is that this gives an implicit quotation from X --> <@ X @> at the callsite. So for
Chart.Plot(f x + f y)
the caller becomes:
Chart.Plot(k@ f x + Ty @)

Additionally, the method can declare that it wants both the quotation and the evaluation of the
expression, by giving "true" as the "includeValue" argument of the ReflectedDefinitionAttribute.

static member Plot([<ReflectedDefinition(true)>] values:Expr<X>) =

(...)
So for

Chart.Plot(f x + f vy)
the caller becomes:

Chart.Plot(Expr.WithValue(f x + f y, <@ f x + Ty @))
and the quotation value Q received by Chart.Plot matches:

match Q with
| Expr.Withvalue(v, ty) --> // v=Ffx+ fy
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Methods with ReflectedDefinition arguments may be used as first class values
(including pipelined uses), but it will not normally be useful to use them in this way. This
is because, in the above example, a first-class use of the method Chart.Plotis
considered shorthand for (fun x -> C.Plot(x)) for some compiler-generated local
name “x”, which will become (fun x -> C.Plot( <@ x @> )), so the implicit
quotation will just be a local value substitution. This means a pipelines use expr | >

C.Plot will not capture a full quotation for expr, but rather just its value.

The same applies to auto conversions for LINQ expressions: if you pipeline a method
accepting Expression arguments. This is an intrinsic cost of having an auto-quotation
meta-programming facility. All uses of auto-quotation need careful use API designers.

Auto-quotation of arguments only applies at method calls, and not function calls.

The conversion only applies if the called-argument-type is type Expr for some type T, and
if the caller-argument type is not of the form Expr for any U.

The caller-argument-type is determined as normal, with the addition that a caller
argument of the form <@ ... @> is always considered to have a type of the form Expr<>,
in the same way that caller arguments of the form (fun x -> ...) are always assumed to
have type of the form ™ -> ™" (i.e. a function type)

8.13.7.4 Conversion to LINQ Expressions

The third type-directed conversion enables an F# expression to be implicitly converted to a LINQ
expression at a method call. Conversion is driven by an argument of type
System.Ling.Expressions.Expression.

static member Plot(values:Expression<Func<int,int>>) = (...)

This attribute results in an implicit quotation from X --> <@ X @> at the callsite and a call for a
helper function. So for

Chart.Plot(f x + f vy)
the caller becomes:

Chart.Plot(FSharp.Ling.RuntimeHelpers.LeafExpressionConverter.
QuotationToLambdaExpression <@ f x + £y @>)

8.13.8 Overloading of Methods
Multiple methods that have the same name may appear in the same type definition or extension.
For example:

type MyForm() =
inherit System.Windows.Forms.Form()

member Xx.ChangeText(text: string) =
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X.Text <- text

member Xx.ChangeText(text: string, reason: string) =
X.Text <- text
System.Windows.Forms.MessageBox.Show ("changing text due to
reason)

+

Methods must be distinct based on their name and fully inferred types, after erasure of type
abbreviations and unit-of-measure annotations.

Methods that take curried arguments may not be overloaded.

8.13.9 Naming Restrictions for Members
A member in a record type may not have the same name as a record field in that type.

A member may not have the same name and signature as another method in the type. This check
ignores return types except for members that are named op Implicitorop Explicit.

8.13.10 Members Represented as Events
Events are the CLI notion of a “listening point” —that is, a configurable object that holds a set of
callbacks, which can be triggered, often by some external action such as a mouse click or timer tick.

In F#, events are first-class values; that is, they are objects that mediate the addition and removal of
listeners from a backing list of listeners. The F# library supports the type
FSharp.Control.IEvent<_, > andthe module FSharp.Control.Event, which contains
operations to map, fold, create, and compose events. The type is defined as follows:

type IDelegateEvent<'del when 'del :> System.Delegate > =
abstract AddHandler : 'del -> unit
abstract RemoveHandler : 'del -> unit

type IEvent<'Del,'T when 'Del : delegate<'T,unit> and 'del :>
System.Delegate > =

abstract Add : event : ('T -> unit) -> unit

inherit IDelegateEvent<'del>

type Handler<'T> = delegate of sender : obj * 'T -> unit
type IEvent<'T> = IEvent<Handler<'T>, 'T>
The following shows a sample use of events:

open System.Windows.Forms

type MyCanvas() =
inherit Form()
let event = new Event<PaintEventArgs>()
member X.Redraw = event.Publish
override x.0OnPaint(args) = event.Trigger(args)
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let form = new MyCanvas()

form.Redraw.Add(fun args -> printfn "OnRedraw")
form.Activate()

Application.Run(form)

Events from CLI languages are revealed as object properties of type
FSharp.Control.IEvent<tydeiegate, TVargs>. The F# compiler determines the type arguments,
which are derived from the CLI delegate type that is associated with the event.

Event declarations are not built into the F# language, and event is not a keyword. However,
property members that are marked with the CLIEvent attribute and whose type coerces to
FSharp.Control.IDelegateEvent<tygeiegate> are compiled to include extra CLI metadata and
methods that mark the property name as a CLI event. For example, in the following code, the
ChannelChanged property is currently compiled as a CLI event:

type ChannelChangedHandler = delegate of obj * int -> unit

type C() =
let channelChanged = new Event<ChannelChangedHandler, >()
[<CLIEvent>]
member self.ChannelChanged = channelChanged.Publish

Similarly, the following shows the definition and implementation of an abstract event:

type I =
[<CLIEvent>]
abstract ChannelChanged : IEvent<ChannelChanged,int>

type ImplI() =
let channelChanged = new Event<ChannelChanged, >()
interface I with
[<CLIEvent>]
member self.ChannelChanged = channelChanged.Publish

8.13.11 Members Represented as Static Members

Most members are represented as their corresponding CLI method or property. However, in certain
situations an instance member may be compiled as a static method. This happens when either of the
following is true:

e The type definition uses null as a representation by placing the
CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTrueV
alue) attribute on the type that declares the member.

e The member is an extension member.

Compilation of an instance member as a static method can affect the view of the type when seen
from other languages or from System.Reflection. A member that might otherwise have a static
representation can be reverted to an instance member representation by placing the attribute
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CompilationRepresentation(CompilationRepresentationFlags.Instance) on the

member.
For example, consider the following type:

[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsTru
eValue)>]
type option<'T> =

| None

| Some of 'T

member x.IsNone = match x with None -> true | _ -> false
member x.IsSome = match x with Some _ -> true | _ -> false

[<CompilationRepresentation(CompilationRepresentationFlags.Instance)>]
member x.Item =
match x with
| Some x -> x
| None -> failwith "Option.Item"

The IsNone and IsSome properties are represented as CLI static methods. The Item property is

represented as an instance property.

8.14 Abstract Members and Interface Implementations

Abstract member definitions and interface declarations in a type definition represent promises that
an object will provide an implementation for a corresponding contract.

8.14.1 Abstract Members
An abstract member definition in a type definition represents a promise that an object will provide

an implementation for a dispatch slot. For example:

type IX =
abstract M : int -> int

The abstract member M indicates that an object of type IX will implement a displatch slot for a
member that returns an int.

A class definition may contain abstract member definitions, but the definition must be labeled with
the AbstractClass attribute:

[<AbstractClass>]
type X() =
abstract M : int -> int
An abstract member definition has the form

abstract access,+ member-sig
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where a member signature has one of the following forms

ident typar-defns.: : curried-sig

ident typar-defns.: : curried-sig with get
ident typar-defns.: : curried-sig with set
ident typar-defns.: : curried-sig with get, set
ident typar-defns.: : curried-sig with set, get

and the curried signature has the form
args-spec: -> ... -> args-spec, -> type

If n>2,thenargs-spec, .. args-spec, must all be patterns without attribute or optional
argument specifications.

If get or set is specified, the abstract member is a property member. If both get and set are
specified, the abstract member is equivalent to two abstract members, one with get and one with
set.

8.14.2 Members that Implement Abstract Members
An implementation member has the form:

override 1ident.1ident pat; ... pat, = expr
default ident.ident pat; ... pat, = expr

Implementation members implement dispatch slots. For example:

[<AbstractClass>]
type BaseClass() =
abstract AbstractMethod : int -> int

type SubClass(x: int) =
inherit BaseClass()
override obj.AbstractMethod n = n + x

let vl = BaseClass() // not allowed - BaseClass is
abstract
let v2 = (SubClass(7) :> BaseClass)

v2.AbstractMethod 6 // evaluates to 13

In this example, BaseClass () declares the abstract slot AbstractMethod and the SubClass
type supplies an implementation member obj . AbstractMethod, which takes an argument n and
returns the sum of n and the argument that was passed in the instantiation of SubClass. The v2
object instantiates SubClass with the value 7, so v2.AbstractMethod 6 evaluates to 13.

The combination of an abstract slot declaration and a default implementation of that slot create the
F# equivalent of a “virtual” method in some other languages—that is, an abstract member that is
guaranteed to have an implementation. For example:

183



type BaseClass() =
abstract AbstractMethodWithDefaultImplementation : int -> int
default obj.AbstractMethodWithDefaultImplementation n = n

type SubClassl(x: int) =
inherit BaseClass()
override obj.AbstractMethodWithDefaultImplementation n = n + x

type SubClass2() =
inherit BaseClass()

let vl = BaseClass() // allowed -- BaseClass contains a default

implementation
let v2 = (SubClassl1(7) :> BaseClass)
let v3 = (SubClass2() :> BaseClass)

vl.AbstractMethodWithDefaultImplementation 6 // evaluates to 6
v2.AbstractMethodWithDefaultImplementation 6 // evaluates to 13
v3.AbstractMethodWithDefaultImplementation 6 // evaluates to 6

Here, the BaseClass type contains a default implementation, so F# allows the instantiation of v1.
The instantiation of v2 is the same as in the previous example. The instantiation of v3 is similar to
that of v1, because SubClass?2 inherits directly from BaseClass and does not override the
default method.

Note: The keywords override and default are synonyms. However, it is
recommended that default be used only when the implementation is in the same class
as the corresponding abstract definition; override should be used in other cases.
This records the intended role of the member implementation.

Implementations may override methods from System.Object:

type BaseClass() =

override obj.ToString() "I'm an instance of BaseClass"”

type SubClass(x: int) =
inherit BaseClass()
override obj.ToString()

"I'm an instance of SubClass"”

In this example, BaseClass inherits from System.Object and overrides the ToString method
from that class. The SubClass, in turn, inherits from BaseClass and overrides its version of the
ToString method.

Implementations may include abstract property members:

[<AbstractClass>]

type BaseClass() =
let mutable datal = ©
let mutable data2 = @

abstract AbstractProperty : int
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abstract AbstractSettableProperty : int with get, set

abstract AbstractPropertyWithDefaultImplementation : int
default obj.AbstractPropertyWithDefaultImplementation = 3

abstract AbstractSettablePropertyWithDefaultImplementation : int
with get, set
default obj.AbstractSettablePropertyWithDefaultImplementation
with get() = data2
and set v = data2 <- v

type SubClass(x: int) =
inherit BaseClass()
let mutable datalb = @
let mutable data2b = @
override obj.AbstractProperty = 3 + x
override obj.AbstractSettableProperty
with get() = datalb + x
and set v = datalb <- v - x
override obj.AbstractPropertyWithDefaultImplementation = 6 + X
override obj.AbstractSettablePropertyWithDefaultImplementation
with get() = data2b + x
and set v = data2b <- v - x

The same rules apply to both property members and method members. In the preceding example,
BaseClass includes abstract properties named AbstractProperty,
AbstractSettableProperty, AbstractPropertyWithDefaultImplementation, and
AbstractSettablePropertyWithDefaultImplementation and provides default
implementations for the latter two. SubClass provides implementations for AbstractProperty
and AbstractSettableProperty, and overrides the default implementations for
AbstractPropertyWithDefaultImplementation and
AbstractSettablePropertyWithDefaultImplementation.

Implementation members may also implement CLI events (§8.13.10). In this case, the member
should be marked with the CLIEvent attribute. For example:

type ChannelChangedHandler = delegate of obj * int -> unit

[<AbstractClass>]
type BaseClass() =
[<CLIEvent>]
abstract ChannelChanged : IEvent<ChannelChangedHandler, int>

type SubClass() =
inherit BaseClass()
let mutable channel = 7
let channelChanged = new Event<ChannelChangedHandler, int>()
[<CLIEvent>]
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override self.ChannelChanged = channelChanged.Publish
member self.Channel
with get () = channel
and set v = channel <- v; channelChanged.Trigger(self, channel)

BaseClass implements the CLI event IEvent, so the abstract member ChannelChanged is
marked with [ <CLIEvent> ] as described earlier in §8.13.10. SubClass provides an
implementation of the abstract member, so the [ <CLIEvent>] attribute must also precede the
override declaration in SubClass.

8.14.3 Interface Implementations

An interface implementation specifies how objects of a given type support a particular interface. An
interface in a type definition indicates that objects of the defined type support the interface. For
example:

type IIncrement =
abstract M : int -> int

type IDecrement =
abstract M : int -> int

type C() =
interface IIncrement with
member x.M(n) = n + 1
interface IDecrement with
member x.M(n) = n - 1

The first two definitions in the example are implementations of the interfaces IIncrement and
IDecrement. In the last definition,the type C supports these two interfaces.

No type may implement multiple different instantiations of a generic interface, either directly or
through inheritance. For example, the following is not permitted:

// This type definition is not permitted because it implements two
instantiations
// of the same generic interface
type ClassThatTriesToImplemenTwoInstantiations() =
interface System.IComparable<int> with
member x.CompareTo(n : int) = @
interface System.IComparable<string> with
member x.CompareTo(n : string) =1

Each member of an interface implementation is checked as follows:

e The member must be an instance member definition.
e Dispatch Slot Inference (§14.7) is applied.

e The member is checked under the assumption that the “this” variable has the enclosing type.

In the following example, the value x has type C.
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type C() =
interface IIncrement with
member x.M(n) = n + 1
interface IDecrement with
member x.M(n) = n - 1

All interface implementations are made explicit. In its first implementation, every interface must be
completely implemented, even in an abstract class. However, interface implementations may be
inherited from a base class. In particular, if a class C implements interface I, and a base class of C
implements interface I, then C is not required to implement all the methods of I;it can implement
all, some, or none of the methods instead. For example:

type I1 =
abstract V1 : string
abstract V2 : string

type I2 =
inherit I1
abstract V3 : string

type C1() =
interface I1 with
member this.Vv1 = "C1"
member this.V2 = "C2"

// This is OK

type C2() =
inherit C1()

// This is also OK; C3 implements I2 but not Il.
type C3() =
inherit C1()
interface I2 with
member this.Vv3 = "C3"

// This is also OK; C4 implements one method in I1.
type C4() =
inherit C1()
interface I1 with
member this.Vv2 = "C2b"

8.15 Equality, Hashing, and Comparison

Functional programming in F# frequently involves the use of structural equality, structural hashing,
and structural comparison. For example, the following expression evaluates to true, because tuple
types support structural equality:

(1, 1 +1) = (1, 2)
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Likewise, these two function calls return identical values:

hash (1, 1 +1 )
hash (1,2)

Similarly, an ordering on constituent parts of a tuple induces an ordering on tuples themselves, so all
the following evaluate to true:

(1, 2) < (1, 3)
(1, 2) < (2, 3)
(1, 2) < (2, 1)
(1, 2) > (1, o)

The same applies to lists, options, arrays, and user-defined record, union, and struct types whose
constituent field types permit structural equality, hashing, and comparison. For example, given:

type R = R of int * int

then all of the following also evaluate to true:
R (1, 1 +1) =R (1, 2)
R (1, 3) <> R (1, 2)

hash (R (1, 1 + 1)) = hash (R (1, 2))

R (1, 2) < R (1, 3)
R (1, 2) < R (2, 3)
R (1, 2) < R (2, 1)
R (1, 2) > R (1, @)

To facilitate this, by default, record, union, and struct type definitions—called structural types—
implicitly include compiler-generated declarations for structural equality, hashing, and comparison.
These implicit declarations consist of the following for structural equality and hashing:

override x.GetHashCode()
override x.Equals(y:obj)
interface System. Collectlons IStructuralEquatable with

member x.Equals(yobj: obj, comparer:
System.Collections.IEqualityComparer) =

member X.GetHashCode(comparer: System.IEqualityComparer) =

The following declarations enable structural comparison:

interface System.IComparable with
member Xx.CompareTo(y:obj) =
interface System.Collections.IStructuralComparable with
member Xx.CompareTo(yobj: obj, comparer:
System.Collections.IComparer) =

For exception types, implicit declarations for structural equality and hashings are generated, but
declarations for structural comparison are not generated. Implicit declarations are never generated
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for interface, delegate, class, or enum types. Enum types implicitly derive support for equality,
hashing, and comparison through their underlying representation as integers.

8.15.1 Equality Attributes
Several attributes affect the equality behavior of types:

FSharp.Core.NoEquality
FSharp.Core.ReferenceEquality
FSharp.Core.StructuralEquality
FSharp.Core.CustomEquality

The following table lists the effects of each attribute on a type:

Attrribute Effect
NoEquality = No equality or hashing is generated for the type.

= The type does not satisfy the ty : equality constraint.
ReferenceEquality = No equality or hashing is generated for the type.

= The defaults for System.Object will implicitly be used.
StructuralEquality | =The type must be a structural type.
= All structural field types ty must satisfy ty : equality.
CustomEquality = The type must have an explicit implementation of
override Equals(obj: obj)
None = For a non-structural type, the default is ReferenceEquality.
= For a structural type:
The default is NoEquality if any structural field type F fails F : equality.

The defaultis StructuralEquality if all structural field types F satisfy
F : equality.

Equality inference also determines the constraint dependencies of a generic structural type. That is:

e If a structural type has a generic parameter 'Tand T : equality is necessary to make the
type default to StructuralEquality, then the EqualityConditionalOn constraint
dependency is inferred for ' T.

8.15.2 Comparison Attributes
The comparison behavior of types can be affected by the following attributes:

FSharp.Core.NoComparison
FSharp.Core.StructuralComparison
FSharp.Core.CustomComparison

The following table lists the effects of each attribute on a type.

Attribute Effect

NoComparison = No comparisons are generated for the type.

= The type does not satisfy the ty : comparison constraint.
StructuralComparison | = The type must be a structural type other than an exception type.

= All structural field types must ty satisfy ty : comparison.

= An exception type may not have the StructuralComparison attribute.
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Attribute Effect

CustomComparison = The type must have an explicit implementation of one or both of the following:
interface System.IComparable
interface System.Collections.IStructuralComparable

= A structural type that has an explicit implementation of one or both of these

contracts must specify the CustomComparison attribute.
None = For a non-structural or exception type, the default is NoComparison

= For any other structural type:
The default is NoComparison if any structural field type F fails F :
comparison.
The defaultis StructuralComparison if all structural field types F satisfy
F : comparison.

This check also determines the constraint dependencies of a generic structural type. That is:

e [f astructural type has a generic parameter 'Tand T : comparison is necessary to make the
type default to StructuralComparison, then the ComparisonConditionalOn constraint
dependency is inferred for ' T.

For example:

[<StructuralEquality; StructuralComparison>]
type X = X of (int -> int)

results in the following message:

The struct, record or union type 'X' has the 'StructuralEquality'’
attribute

but the component type '(int -> int)' does not satisfy the 'equality'
constraint

For example, given
type R1 =

{ myData : int }
static member Create() = { myData

0}

[<ReferenceEquality>]
type R2 =
{ mutable myState : int }
static member Fresh() = { myState

0}

[<StructuralEquality; NoComparison >]
type R3 =

{ someType : System.Type }

static member Make() = { someType

typeof<int> }
then the following expressions all evaluate to true:

R1.Create() = Rl.Create()
not (R2.Fresh() = R2.Fresh())
R3.Make() = R3.Make()
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Combinations of equality and comparion attributes are restricted. If any of the following attributes
are present, they may be used only in the following combinations:

e No attributes

e [<NoComparison>] onany type

e [<NoEquality; NoComparison>] on any type

e [<CustomEquality; NoComparison>] on a structural type

e [<ReferenceEquality>] ona non-struct structural type

e [<ReferenceEquality; NoComparison>] on a non-struct structural type
e [<StructuralEquality; NoComparison>] on a structural type

e [<CustomEquality; CustomComparison>] on a structural type

e [<StructuralEquality; CustomComparison>] on a structural type

e [<StructuralEquality; StructuralComparison>] on a structural type

8.15.3 Behavior of the Generated Object.Equals Implementation
For a type definition T, the behavior of the generated override x.Equals(y:obj) =
implementation is as follows.

1. Iftheinterface System.IComparable has an explicit implementation, then just call
System.IComparable.CompareTo:

override x.Equals(y : obj) =
((x :> System.IComparable).CompareTo(y) = 0)

2. Otherwise:
e Convert the y argument to type T. If the conversion fails, return false.
e Return falseif T is a reference type and v is null.

e If Tisa struct or record type, invoke FSharp.Core.Operators. (=) on each
corresponding pair of fields of x and y in declaration order. This method stops at the first
false result and returns false.

e If Tisa union type, invoke FSharp.Core.Operators. (=) first on the index of the union
cases for the two values, then on each corresponding field pair of x and y for the data
carried by the union case. This method stops at the first false result and returns false.

e If T is an exception type, invoke FSharp.Core.Operators. (=) on the index of the tags
for the two values, then on each corresponding field pair for the data carried by the
exception. This method stops at the first false result and returns false.

8.15.4 Behavior of the Generated CompareTo Implementations
For a type T, the behavior of the generated System.IComparable.CompareTo implementation is
as follows:
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e Convert the y argument to type T . If the conversion fails, raise the InvalidCastException.
o If Tis areference type and y is null, return 1.

e [If Tisa struct or record type, invoke FSharp.Core.Operators.compare on each
corresponding pair of fields of x and y in declaration order, and return the first non-zero result.

e [f Tisaunion type, invoke FSharp.Core.Operators.compare first on the index of the union
cases for the two values, and then on each corresponding field pair of x and y for the data
carried by the union case. Return the first non-zero result.

The first few lines of this code can be written:

interface System.IComparable with
member x.CompareTo(y:obj) =
let y = (obj :?> T) in
match obj with
| null -> 1
| -> ...

8.15.5 Behavior of the Generated GetHashCode Implementations
For a type T, the generated System.Object.GetHashCode () override implements a combination
hash of the structural elements of a structural type.

8.15.6 Behavior of Hash, =, and Compare

The generated equality, hashing, and comparison declarations that are described in sections 8.15.3,
8.15.4, and 8.15.5 use the hash, = and compare functions from the F# library. The behavior of these
library functions is defined by the pseudocode later in this section. This code ensures:

e Ordinal comparison for strings

e  Structural comparison for arrays

o Natural ordering for native integers (which do not support System.IComparable)

8.15.6.1 Pseudocode for FSharp.Core.Operators.compare

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to
(=), compare, and hash for all base types, and faster paths are used for comparing
most arrays.

open System

/// Pseudo code for code implementation of generic comparison.
let rec compare x y =

let xobj = box x

let yobj = box y

match xobj, yobj with

| null, null -> @

| null, -> -1

| , null -> 1
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// Use Ordinal comparison for strings
| (:? string as x),(:? string as y) ->
String.CompareOrdinal(x, y)

// Special types not supporting IComparable
| (:? Array as arrl), (:? Array as arr2) ->
compare the arrays by rank, lengths and elements ...
| (:? nativeint as x),(:? nativeint as y) ->
compare the native integers x and y....
| (:? unativeint as x),(:? unativeint as y) ->
compare the unsigned integers x and y....

// Check for IComparable
| (:? IComparable as x),_ -> x.CompareTo(yobj)

| ,(:? IComparable as yc) -> -(sign(yc.CompareTo(xobj)))

// Otherwise raise a runtime error
| _ -> raise (new ArgumentException(...))

8.15.6.2 Pseudo code for FSharp.Core.Operators.(=)

Note: In practice, fast (but semantically equivalent) code is emitted for direct calls to
(=), compare, and hash for all base types, and faster paths are used for comparing
most arrays

open System

/// Pseudo code for core implementation of generic equality.
let rec (=) xy =
let xobj = box x
let yobj = box y
match xobj,yobj with
| null,null -> true
| null, -> false
| _,null -> false

// Special types not supporting IComparable
| (:? Array as arrl), (:? Array as arr2) ->
. compare the arrays by rank, lengths and elements .

// Ensure NaN semantics on recursive calls
| (:? float as f1), (:? float as f2) ->
. IEEE equality on f1 and f2...
| (:? float32 as f1), (:? float32 as f2) ->
. IEEE equality on f1 and f2...

// Otherwise use Object.Equals. This 1s reference equality
// for reference types unless an override 1is provided
(implicitly
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// or explicitly).
| _ -> xobj.Equals(yobj)
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9. Units Of Measure

F# supports static checking of units of measure. Units of measure, or measures for short, are like
types in that they can appear as parameters to other types and values (as in float<kg>,
vector<m/s>, add<m>), can contain variables (as in f1oat< 'U>), and are checked for consistency
by the type-checker.

However, measures differ from types in several important ways:

e Measures play no role at runtime; in fact, they are erased.
e Measures obey special rules of equivalence, so that N m can be interchanged with m N.

e Measures are supported by special syntax.

The syntax of constants (§4.3) is extended to support numeric constants with units of measure. The
syntax of types is extended with measure type annotations.

measure-Lliteral-atom :=

Long-ident -- named measure e.g. kg
( measure-literal-simp ) -- parenthesized measure, such as
(N m)

measure-Literal -power :=
measure-Literal -atom
measure-Lliteral-atom ~ int32 -- power of measure, such as m"3

measure-Lliteral-seq :=
measure-Literal -power

measure-Literal-power measure-Literal-seq

measure-Literal-simp :=

measure-Lliteral-seq -- implicit product, such as m s”-
2

measure-Literal-simp * measure-Lliteral-simp -- product, such as
m * s”3

measure-Literal-simp / measure-literal-simp  -- quotient, such
as m/s"2

/ measure-literal-simp -- reciprocal, such as /s

1 -- dimensionless

measure-Lliteral :=
-- anonymous measure

%easure—LiteraL—simp -- simple measure, such as N m
const :=

sbyte < measure-Lliteral > -- 8-bit integer constant

intl6é < measure-Literal > -- 16-bit integer constant

int32 < measure-Literal > -- 32-bit integer constant

int64 < measure-Literal > -- 64-bit integer constant




ieee32 < measure-literal > -- single-precision float32
constant

ieee64 < measure-literal > -- double-precision float constant

decimal < measure-Lliteral > -- decimal constant

measure-atom :=

typar -- variable measure, such as 'U

Long-ident -- named measure, such as kg

( measure-simp ) -- parenthesized measure, such as
(N m)

measure-power :=
measure-atom
measure-atom ~ int32 -- power of measure, such as m"3

measure-seq :=
measure-power

measure-power measure-seq

measure-simp :=

measure-seq -- implicit product, such as 'U
"VA3
measure-simp * measure-simp -- product, such as 'U * 'V
measure-simp / measure-simp -- quotient, such as 'U / 'V
/ measure-simp -- reciprocal, such as /'U
1 -- dimensionless measure (no units)
measure :=

_ -- anonymous measure
measure-simp -- simple measure, such as 'U 'V

Measure definitions use the special Measure attribute on type definitions. Measure parameters use
the syntax of generic parameters with the same special Measure attribute to parameterize types
and members by units of measure. The primitive types sbyte, intl6, int32, int64, float,
float32, and decimal have non-parameterized (dimensionless) and parameterized versions.

Here is a simple example:

[<Measure>] type m // base measure: meters
[<Measure>] type s // base measure: seconds
[<Measure>] type sgm = m”2 // derived measure: square meters

let areaOfTriangle (baselLength:float<m>, height:float<m>) : float<sgm>

baselLength*height/2.0

let distanceTravelled (speed:float<m/s>, time:float<s>) : float<m> =
speed*time

As with ordinary types, F# can infer that functions are generic in their units. For example, consider
the following function definitions:

let sgr (x:float< >) = x*x
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let sumOfSquares x y = sgqr x + sqr y

The inferred types are:
val sgqr : float<'u> -> float<'u ~ 2>

val sumOfSquares : float<'u> -> float<'u> -> float<'u ~ 2>

Measures are type-like annotations such as kg or m/s or m”2. Their special syntax includes the use
of * and / for product and quotient of measures, juxtaposition as shorthand for product, and * for
integer powers.

9.1 Measures
Measures are built from:

e Atomic measures from long identifiers such as SI. kg or MyUnits.feet.

e Product measures, which are written measure measure (juxtaposition ) or measure *
measure.

e Quotient measures, which are written measure / measure.
e Integer powers of measures, which are written measure ~ int.
e Dimensionless measures, which are written 1.

e Variable measures, which are written 'u or 'U. Variable measures can include anonymous
measures _, which indicates that the compiler can infer the measure from the context.

Dimensionless measures indicate “without units,” but are rarely needed, because non-
parameterized types such as float are aliases for the parameterized type with 1 as parameter, that
is, float = float<1>.

The precedence of operations involving measure is similar to that for floating-point expressions:

e Products and quotients (* and /) have the same precedence, and associate to the left, but
juxtaposition has higher syntactic precedence than both * and /.

e Integer powers () have higher precedence than juxtaposition.

e The / symbol can also be used as a unary reciprocal operator.

9.2 Constants Annotated by Measures

A floating-point constant can be annotated with its measure by specifying a literal measure in angle
brackets following the constant.

Measure annotations on constants may not include measure variables.

Here are some examples of annotated constants:
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let earthGravity = 9.81f<m/s"2>
let atmosphere = 101325.0<N m"-2>
let zero = 0.0f< >

Constants that are annotated with units of measure are assigned a corresponding numeric type with
the measure parameter that is specified in the annotation. In the example above, earthGravity is
assigned the type float32<m/s”2>, atmosphere is assigned the type float<N/m”"2> and zero
is assigned the type float< 'U>.

9.3 Relations on Measures

After measers are parsed and checked, they are maintained in the following normalized form:

measure-int := 1 | Llong-ident | measure-par | measure-int measure-int |
/ measure-int

Powers of measures are expanded. For example, kg” 3 is equivalent to kg kg kg.

Two measures are indistinguishable if they can be made equivalent by repeated application of the
following rules:

e Commutativity. measure-int; measure-int, is equivalent to measure-int, measure-
inti.

e Associativity. It does not matter what grouping is used for juxtaposition (product) of measures,
so parentheses are not required. For example, kg m s can be split as the product of kg mand
s, or as the product of kgand m s.

e Identity. 1 measure-int is equivalent to measure-int.
e Inverses. measure-int / measure-int is equivalentto 1.
e Abbreviation. Long-ident is equivalent to measure if a measure abbreviation of the form

[<Measure>] type Long-ident = measure iscurrentlyin scope.

Note that these are the laws of Abelian groups together with expansion of abbreviations.
For example, kg m / s”*2isthesameasm kg / s”2.

For presentation purposes (for example, in error messages), measures are presented in the
normalized form that appears at the beginning of this section, but with the following restrictions:

e Powers are positive and greater than 1. This splits the measure into positive powers and
negative powers, separated by /.

e Atomic measures are ordered as follows: measure parameters first, ordered alphabetically,
followed by measure identifiers, ordered alphabetically.

For example, the measure expression m*1 kg s”-1 would be normalizedtokg m / s.

This normalized form provides a convenient way to check the equality of measures: given two
measure expressions measure-int; and measure-int,, reduce each to normalized form by using
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the rules of commutativity, associativity, identity, inverses and abbreviation, and then compare the
syntax.

To check the equality of two measures, abbreviations are expanded to compare their normalized
forms. However, abbreviations are not expanded for presentation. For example, consider the
following definitions:

[<Measure>] type a
[<Measure>] type b = a * a
let x = 1<b> / 1<a>

The inferred type is presented as int<b/a>, not int<a>. If a measure is equivalent to 1,
however, abbreviations are expanded to cancel each other and are presented without units:

let y = 1<b> / 1ka a> // val y : int = 1

9.3.1 Constraint Solving

The mechanism described in §14.5 is extended to support equational constraints between measure
expressions. Such expressions arise from equations between parameterized types—that is, when
type<tyargii, ..., tyargi.> = type<tyargi,..., tyarg..>isreduced to a series of
constraints tyarg:: = tyarg.:. For the arguments that are measures, rather than types, the rules
listed in §9.3 are applied to obtain primitive equations of the form 'U = measure-int where 'U
is @ measure variable and measure-1int is a measure expression in internal form. The variable 'U is
then replaced by measure-int wherever else it occurs. For example, the equation
float<m”2/s"2> = float<'U”2> would be reduced to the constraintm”2/s”2 = "U”2, which
would be further reduced to the primitive equation 'U = m/s.

If constraints cannot be solved, a type error occurs. For example, the following expression
fun (x : float<m”2>, y : float<s>) -> x + y

would eventually)result in the constraint m*2 = s, which cannot be solved, indicating a type error.

9.3.2 Generalization of Measure Variables
Analogous to the process of generalization of type variables described in §14.6.7, a generalization
procedure produces measure variables over which a value, function, or member can be generalized.

9.4 Measure Definitions
Measure definitions define new named units of measure by using the same syntax as for type
definitions, with the addition of the Measure attribute. For example:

[<Measure>] type kg

[<Measure>] type m

[<Measure>] type s
N

[<Measure>] type N = kg / m s”2
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A primitive measure abbreviation defines a fresh, named measure that is distinct from other
measures. Measure abbreviations, like type abbreviations, define new names for existing measures.
Also like type abbreviations, repeatedly eliminating measure abbreviations in favor of their
equivalent measures must not result in infinite measure expressions. For example, the following is
not a valid measure definition because it results in the infinite squaring of X:

[<Measure>] type X = X*2

Measure definitions and abbreviations may not have type or measure parameters.

9.5 Measure Parameter Definitions

Measure parameter definitions can appear wherever ordinary type parameter definitions can (see
§5.2.9). If an explicit parameter definition is used, the parameter name is prefixed by the special
Measure attribute. For example:

val sgr<[<Measure>] 'U> : float<'U> -> float<'U"2>

type Vector<[<Measure>] 'U>
{ X: float<'U>;
Y: float<'U>;
Z: float<'U>}

type Sphere<[<Measure>] 'U>
{ Center:Vector<'U>;
Radius:float<'U> }

type Disc<[<Measure>] 'U> =
{ Center:Vector<'U>;
Radius:float<'U>;
Norm:Vector<1l> }

type SceneObject<[<Measure>] 'U> =
| Sphere of Sphere<'U>
| Disc of Disc<'U>

Internally, the type checker distinguishes between type parameters and measure parameters by
assigning one of two sorts (Type or Measure) to each parameter. This technique is used to check the
actual arguments to types and other parameterized definitions. The type checker rejects ill-formed
types such as float<int> and IEnumerable<m/s>.

0.6 Measure Parameter Erasure

In contrast to type parameters on generic types, measure parameters are not exposed in the
metadata that the runtime interprets; instead, measures are erased. Erasure has several
consequences:
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e (Casting is with respect to erased types.
e Method application resolution (see §14.4) is with respect to erased types.

e Reflection is with respect to erased types.

9.7 Type Definitions with Measures in the F# Core Library
The F# core library defines the following types:

type float<[<Measure>] 'U>
type float32<[<Measure>] 'U>
type decimal<[<Measure>] 'U>
type int<[<Measure>] 'U>
type sbyte<[<Measure>] 'U>
type intl6<[<Measure>] 'U>
type int64<[<Measure>] 'U>

Note: These definitions are called measure-annotated base types and are marked with
the MeasureAnnotatedAbbreviation attribute in the implementation of the library.
The MeasureAnnotatedAbbreviation attribute is not for use in user code and in
future revisions of the language may result in a warning or error.

These type definitions have the following special properties:

e Theyextend System.ValueType.

o They explicitly implement System.IFormattable, System.IComparable,
System.IConvertible, and corresponding generic interfaces, instantiated at the given type—
for example, System.IComparable<float<'u>> and System.IEquatable<float<'u>>
(so that you can invoke, for example, compareTo after an explicit upcast).

e Asaresult of erasure, their compiled form is the corresponding primitive type.

e For the purposes of constraint solving and other logical operations on types, a type equivalence
holds between the unparameterized primitive type and the corresponding measured type
definition that is instantiated at <1>:

sbyte = sbyte<1>
intle = intl6<1>
int32 = int32<1>
int64 = int64<1>
float = float<l>
float32 float32<1>
decimal decimal<l>

o The measured type definitions sbyte, intl6, int32, int64, float32, float, and decimal
are assumed to have additional static members that have the measure types that are listed in
the table. Note that N is any of these types, and F is either f1loat32 or float.

Member Measure Type

Sqrt F<'U”2> -> F<'U>
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Member Measure Type

Atan2 F<'U> -> F<'U> -> F<1>
op_Addition N<'U> -> N<'U> -> N<'U>
op_Subtraction

op_Modulus

op_Multiply N<'U> -> N<'V> -> N<'U '"V>
op_Division N<'U> -> N<'V> -> N<'U/'V>
Abs N<'U> -> N<'U>

op_UnaryNegation
op_UnaryPlus
Sign N<'U> -> int

This mechanism is used to support units of measure in the following math functions of the F#
library:
(+),(-), (*), (/),(%),(~+),(~-),abs, sign, atan2 and sqrt.

9.8 Restrictions
Measures can be used in range expressions but a properly measured step is required. For example,
these are not allowed:

[<Measure>] type s

[1<s> .. 5<s>] // error: The type 'int<s>' does not match the
type 'int'

[1<s> .. 1 .. 5¢<s>] // error: The type 'int<s>' does not match the
type 'int

However, the following range expression is valid:

[1<s> .. 1<s> .. 5<s>] // int<s> list = [1; 2; 3; 4; 5]
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10. Namespaces and Modules

F# is primarily an expression-based language. However, F# source code units are made up of
declarations, some of which can contain further declarations. Declarations are grouped using
namespace declaration groups, type definitions, and module definitions. These also have
corresponding forms in signatures. For example, a file may contain multiple namespace declaration
groups, each of which defines types and modules, and the types and modules may contain member,
function, and value definitions, which contain expressions.

Declaration elements are processed in the context of an environment. The definition of the elements
of an environment is found in §14.1.

namespace-decl-group :=

namespace long-ident module-elems -- elements within a
namespace

namespace global module-elems -- elements within no
namespace

module-defn :=
attributesq,,+ module accessop: ident

module-defn-body

module-defn-body :=
begin module-elems.: end

module-elem :=

module-function-or-value-defn -- function or value
definitions
type-defns -- type definitions
exception-defn -- exception definitions
module-defn -- module definitions
module-abbrev -- module abbreviations
import-decl -- import declarations
compiler-directive-decl -- compiler directives

module-function-or-value-defn :=
attributesq,: let function-defn
attributesq,t let value-defn
attributes,: let recey: function-or-value-defns
attributes,t: do expr

import-decl := open long-ident

module-abbrev := module ident = Llong-ident
compiler-directive-decl := # ident string ... string
module-elems := module-elem ... module-elem

access :=

private




internal
public

10.1 Namespace Declaration Groups

Modules and types in an F# program are organized into namespaces, which encompass the
identifiers that are defined in the modules and types. New components may contribute entities to
existing namespaces. Each such contribution to a namespace is called a namespace declaration

group.
In the following example, the MyCompany .MyLibrary namespace contains Values and x:

namespace MyCompany.MyLibrary

module Valuesl =
let x = 1

A namespace declaration group is the basic declaration unit within an F# implementation file and is
of the form

namespace Llong-ident

module-elems

The Long-1ident must be fully qualified. Each such group contains a series of module and type
definitions that contribute to the indicated namespace. An implementation file may contain multiple
namespace declaration groups, as in this example:

namespace MyCompany.MyOtherLibrary

type MyType() =
let x = 1
member v.P = x + 2

module MyInnerModule =
let myValue =1

namespace MyCompany.MyOtherLibrary.Collections

type MyCollection(x : int) =
member v.P = X

Namespace declaration groups may not be nested.

A namespace declaration group can contain type and module definitions, but not function or value
definitions. For example:

namespace MyCompany.MyLibrary
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// A type definition in a namespace

type MyType() =
let x =1
member v.P = x+2

// A module definition in a namespace
module MyInnerModule =
let myValue =1

// The following is not allowed: value definitions are not allowed
in namespaces
let addOne x = x + 1

When a namespace declaration group N is checked in an environment env, the individual
declarations are checked in order and an overall namespace declaration group signature Nsi4 is
inferred for the module. An entry for V is then added to the ModulesAndNamespaces table in the
environment env (see §14.1.3).

Like module declarations, namespace declaration groups are processed sequentially rather than
simultaneously, so that later namespace declaration groups are not in scope when earlier ones are
processed. This prevents invalid recursive definitions.

In the following example, the declaration of x in Modulel generates an error because the
Utilities.Part2 namespace is not in scope:

namespace Utilities.Partl

module Modulel =
let x = Utilities.Part2.Module2.x + 1 // error (Part2 not yet
declared)

namespace Utilities.Part2

module Module2 =
let x = Utilities.Partl.Modulel.x + 2

Within a namespace declaration group, the namespace itself is implicitly opened if any preceding
namespace declaration groups or referenced assemblies contribute to it. For example:

namespace MyCompany.MyLibrary

module Valuesl =
let x = 1

namespace MyCompany.MyLibrary

// Here, the implicit open of MyCompany.MyLibrary brings Valuesl
into scope

module Values2 =
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let x = Valuesl.x

10.2 Module Definitions

A module definition is a named collection of declarations such as values, types, and function values.
Grouping code in modules helps keep related code together and helps avoid name conflicts in your
program. For example:

module MyModule =
let x =1
type Foo = A | B
module MyNestedModule =
let fy=y+1
type Bar = C | D

When a module definition M is checked in an environment envy, the individual declarations are
checked in order and an overall module signature Msi4 is inferred for the module. An entry for Mis
then added to the ModulesAndNamespaces table to environment env, to form the new
environment used for checking subsequent modules

Like namespace declaration groups, module definitions are processed sequentially rather than
simultaneously, so that later modules are not in scope when earlier ones are processed.

module Partl =
let x = Part2.StorageCache() // error (Part2 not yet declared)
module Part2 =

type StorageCache() =
member cache.Clear() = ()

No two types or modules may have identical names in the same namespace. The
[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix)>]
attribute adds the suffix Module to the name of a module to distinguish the module name from a
type of a similar name.

For example, this is frequently used when defining a type and a set of functions and values to
manipulate values of this type.

type Cat(kind: string) =
member X.Meow() = printfn "meow"
member X.Purr() = printfn "purr"
member x.Kind = kind

[<CompilationRepresentation(CompilationRepresentationFlags.ModuleSuffix

)>]
module Cat =

206



let tabby = Cat "Tabby"
let purr (c:Cat) = c.Purr()
let purrTwice (c:Cat) = purr(); purr()

Cat.tabby |> Cat.purr |> Cat.purrTwice

10.2.1 Function and Value Definitions in Modules
Function and value definitionsin modules introduce named values and functions.

let recept function-or-value-defn; and ... and function-or-value-defn,
The following example defines value x and functions id and fib:

module M =
let x =1
let id x = x
let rec fib x = if x <= 2 then 1 else fib (n - 1) + fib (n - 2)

Function and value definitions in modules may declare explicit type variables and type constraints:

let pair<'T>(x : 'T) = (x, X)
let dispose<'T when 'T :> System.IDisposable>(x : 'T) = x.Dispose()
let convert<'T, 'U>(x) = unbox<'U>(box<'T>(x))

A value definition that has explicit type variables is called a type function (§10.2.3).
Function and value definitions may specify attributes:

// A value definition with the System.Obsolete attribute
[<System.Obsolete("Don't use this")>]
let oneTwoPair = (1, 2)

// A function definition with an attribute
[<System.Obsolete("Don't use this either")>]
let pear v = (v, v)

By the use of pattern matching, a value definition can define more than one value . In such cases,
the attributes apply to each value.

// A value definition that defines two values, each with an
attribute

[<System.Obsolete("Don't use this")>]
let (a, b) = (1, 2)

Values may be declared mutable:

// A value definition that defines a mutable value
let mutable count =1
let freshName() = (count <- count + 1; count)
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Function and value definitions in modules are processed in the same way as function and value
definitions in expressions (§14.6), with the following adjustments:

e FEach defined value may have an accessibility annotation (§10.5). By default, the accessibility
annotation of a function or value definition in a module is public.

e Each defined value is externally accessible if its accessibility annotation is public and it is not
hidden by an explicit signature. Externally accessible values are guaranteed to have compiled CLI
representations in compiled CLI binaries.

e Each defined value can be used to satisfy the requirements of any signature for the module
(811.2).

e Each defined value is subject to arity analysis (§14.10).

e Values may have attributes, including the ThreadStatic or ContextStatic attribute.

10.2.2 Literal Definitions in Modules
Value definitions in modules may have the Literal attribute. This attribute causes the value to be
compiled as a constant. For example:

[<Literal>]
let PI = 3.141592654

Literal values may be used in custom attributes and pattern matching. For example:

[<Literal>]
let StartOfWeek = System.DayOfWeek.Monday

[<MyAttribute(StartOfieek)>]
let feeling(day) =
match day with
| startOfWeek -> "rough"
| _ -> "great"

A value that has the Literal attribute is subject to the following restrictions:

e It may not be marked mutable orinline.
e It may not also have the ThreadStatic or ContextStatic attributes.

o The right-hand side expression must be a literal constant expression that is both a valid
expression after checking, and is made up of either:

e Asimple constant expression, with the exception of (), native integer literals, unsigned
native integer literals, byte array literals, Biginteger literals, and user-defined numeric
literals.

e Areference to another literal
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e A bitwise combination of literal constant expressions

e A “+” concatenation of two literal constant expressions which are strings

e “enum x” or “LanguagePrimitives.EnumOfValue x” where “x” is a literal constant expression.

10.2.3 Type Function Definitions in Modules
Value definitions within modules may have explicit generic parameters. For example, ‘T is a generic
parameter to the value empty:

let empty<'T> : (list<'T> * Set<'T>) = ([], Set.empty)

A value that has explicit generic parameters but has arity [ ] (that is, no explicit function parameters)
is called a type function. The following are some example type functions from the F# library:

val typeof<'T> : System.Type
val sizeof<'T> : int
module Set =
val empty<'T> : Set<'T>
module Map =
val empty<'Key, 'Value> : Map<'Key, 'Value>

Type functions are rarely used in F# programming, although they are convenient in certain
situations. Type functions are typically used for:

e Pure functions that compute type-specific information based on the supplied type arguments.

e Pure functions whose result is independent of inferred type arguments, such as empty sets and
maps.

Type functions receive special treatment during generalization (§14.6.7) and signature conformance
(§11.2). They typically have either the RequiresExplicitTypeArguments attribute or the
GeneralizableValue attribute. Type functions may not be defined inside types, expressions, or
computation expressions.

In general, type functions should be used only for computations that do not have observable side
effects. However, type functions may still perform computations. In this example, r is a type
function that calculates the number of times it has been called

let mutable count =1

let r<'T> = (count <- count + 1); ref ([] : 'T list);;
// count =1

let x1 = r<int>

// count = 2
let x2 = r<int>
// count = 3

let z0 = x1
// count = 3
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The elaborated form of a type function is that of a function definition that takes one argument of
type unit. That is, the elaborated form of

let 1ident typar-defns = expr
is the same as the compiled form for the following declaration:

let ident typar-defns () = expr
References to type functions are elaborated to invocations of such a function.
10.2.4 Active Pattern Definitions in Modules

A value definition within a module that has an active-pattern-op-name introduces pattern-
matching tags into the environment when the module is accessed or opened. For example,

let (|A|B|C|]) x = if x < @ then A elif x = @ then B else C
introduces pattern tags A, B, and C into the Pat/tems table in the name resolution environment.
10.2.5 “do” statements in Modules
A “do” statement within a module has the following form:

do expr

The expression expr is checked with an arbitrary initial type ty. After checking expr, ty is asserted
to be equal to unit. If the assertion fails, a warning rather than an error is reported. This warning is
suppressed for plain expressions without do in script files (that is, . fsx and . fsscript files).

A “do” statement may have attributes. In this example, the STAThread attribute specifies that main
uses the single-threaded apartment (STA) threading model of COM:

let main() =
let form = new System.Windows.Forms.Form()
System.Windows.Forms.Application.Run(form)

[<STAThread>]
do main()

10.3 Import Declarations

Namespace declaration groups and module definitions can include import declarations in the
following form:

open long-ident

Import declarations make elements of other namespace declaration groups and modules accessible
by the use of unqualified names. For example:

open FSharp.Collections
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open System

Import declarations can be used in:

e Module definitions and their signatures.

e Namespace declaration groups and their signatures.

An import declaration is processed by first resolving the Long-ident to one or more namespace
declaration groups and/or modules [F, ..., F»] by Name Resolution in Module and Namespace Paths
(814.1.2). For example, System.Collections.Generic may resolve to one or more namespace
declaration groups—one for each assembly that contributes a namespace declaration group in the
current environment. Next, each F; is added to the environment successively by using the technique
specified in §14.1.3. An error occurs if any F; is a module that has the RequireQualifiedAccess
attribute.

10.4 Module Abbreviations

A module abbreviation defines a local name for a module long identifier, as follows:
module 1ident = long-ident

For example:
module Ops = FSharp.Core.Operators

Module abbreviations can be used in:

e Module definitions and their signatures.
e Namespace declaration groups and their signatures.

Module abbreviations are implicitly private to the module or namespace declaration group in which
they appear.

A module abbreviation is processed by first resolving the Long-ident to a list of modules by Name
Resolution in Module and Namespace Paths (see §14.1). The list is then appended to the set of
names that are associated with ident in the ModulesAndNamespaces table.

Module abbreviations may not be used to abbreviate namespaces.

10.5 Accessibility Annotations
Accessibilities may be specified on declaration elements in namespace declaration groups and
modaules, and on members in types. The table lists the accessibilities that can appear in user code:

Accessibility Description
public No restrictions on access.
private Access is permitted only from the enclosing type, module, or namespace

declaration group.
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Accessibility

Description

internal

Access is permitted only from within the enclosing assembly, or from
assemblies whose name is listed using the InternalsVisibleTo attribute in

the current assembly.

The default accessibilities are public. Specifically:

e Function definitions, value definitions, type definitions, and exception definitions in modules are

public.

e Modules, type definitions, and exception definitions in namespaces are public.

e Members in type definitions are public.

Some function and value definitions may not be given an accessibility and, by their nature, have

restricted lexical scope. In particular:

e Function and value definitions in classes are lexically available only within the class being

defined, and only from the point of their definition onward.

e Module type abbreviations are lexically available only within the module or namespace

declaration group being defined, and only from their point of their definition onward.

Note that:

e private onamember means “private to the enclosing type or module.”

e private on afunction or value definition in a module means “private to the module or

namespace declaration group.”

e private onatype, module, or type representation in a module means “private to the module.”

The CLI compiled form of all non-public entities is internal.

Note: The family and protected specifications are not supported in this version of

the F# language.

Accessibility modifiers can appear only in the locations summarized in the following table.

Component

Location

Example

Function or value
definition in module

Module definition
Type definition

val definition in a class
Explicit constructor

Implicit constructor

Precedes identifier

Precedes identifier

Precedes identifier

Precedes identifier
Precedes identifier

Precedes identifier

let private x =1

let inline private f x =1
let mutable private x =1
module private M =

let x = 1

type private C = A |
type private C<'T> =
val private x : int
private new () = { inherit Base

}
type C private() = ...

B
A| B
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Component Location Example

Member definition Precedes identifier, but cannot member private x.X =1
appear on:
= inherit definitions
= interface definitions
mabstract definitions
= Individual union cases

Accessibility for inherit,
interface,and abstract
definitions is always the same as
that of the enclosing class.

Explicit property get or set = Precedes identifier member __ .Item
in a class with private get i =1
and private set i v = ()
Type representation Precedes identifier type Cases =
private
| A
| B
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11. Namespace and Module
Signatures

A signature file contains one or more namespace or module signatures, and specifies the
functionality that is implemented by its corresponding implementation file. It also can hide
functionality that the corresponding implementation file contains.

namespace-decl-group-signature :=
namespace Llong-ident module-signature-elements

module-signature
module 1ident

module-signature-body

module-signature-element :=

val mutableg: curried-sig -- value signature

val value-defn -- literal value signature

type type-signatures -- type(s) signature

exception exception-signature -- exception signature

module-signature -- submodule signature

module-abbrev -- local alias for a module

import-decl -- locally import contents of a module
module-signature-elements := module-signature-element ... module-

signature-element

module-signature-body =
begin module-signature-elements end

type-signature :=

abbrev-type-signature
record-type-signature
union-type-signature
anon-type-signature
class-type-signature
struct-type-signature
interface-type-signature
enum-type-signature
delegate-type-signature
type-extension-signature

type-signatures := type-signature ... and ... type-signature

type-signature-element :=

attributes,+ accessq,: hew : uncurried-sig -- constructor
signature

attributes,,+ member accessqt member-sig -- member signature

attributes,+ abstract accessq,t member-sig -- member signature

attributes,: override member-sig -- member signature




attributes,: default member-sig -- member

signature

attributesq: static member accessq,t member-sig -- static
member signature

interface type -- interface signature
abbrev-type-signature := type-name '=' type
union-type-signature .= type-name '=' union-type-cases type-

extension-elements-signatureopt

record-type-signature := type-name '=' '{' record-fields '}' type-
extension-elements-signatureopt

anon-type-signature := type-name '=' begin type-elements-signature
end

class-type-signature := type-name '=' class type-elements-signature
end

struct-type-signature := type-name '=' struct type-elements-signature
end

interface-type-signature := type-name '=' interface type-elements-

signature end

enum-type-signature := type-name '=' enum-type-cases

delegate-type-signature := type-name '=' delegate-sig

type-extension-signature := type-name type-extension-elements -
signature

type-extension-elements-signature := with type-elements-signature end

The begin and end tokens are optional when lightweight syntax is used.

Like module declarations, signature declarations are processed sequentially rather than
simultaneously, so that later signature declarations are not in scope when earlier ones are
processed.

namespace Utilities.Partl

module Modulel =

val x : Utilities.Part2.StorageCache // error (Part2 not yet

declared)
namespace Utilities.Part2
type StorageCache =

new : unit -> unit
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11.1 Signature Elements

A namespace or module signature declares one or more value signatures and one or more type
definition signatures. A type definition signature may include one or more member signatures, in
addition to other elements of type definitions that are specified in the signature grammar at the
start of this chapter.

11.1.1 Value Signatures
A value signature indicates that a value exists in the implementation. For example, in the signature
of a module, the following declares two value signatures:

module MyMap =
val mapForward : indexl: int * index2: int -> string
val mapBackward : name: string -> (int * int)

The corresponding implementation file might contain the following implementation:

module MyMap =

let mapForward (indexl:int, index2:int) = string index1 + "," +
string index2

let mapBackward (name:string) = (0, 0)

11.1.2 Type Definition and Member Signatures

A type definition signature indicates that a corresponding type definition appears in the
implementation. For example, in an interface type, the following declares a type definition signature
for Forward and Backward:

type IMap =
interface
abstract Forward : indexl: int * index2: int -> string
abstract Backward : name: string -> (int * int)
end

A member signature indicates that a corresponding member appears on the corresponding type
definition in the implementation. Member specifications must specify argument and return types,
and can optionally specify names and attributes for parameters.

For example, the following declares a type definition signature for a type with one constructor
member, one property member Kind and one method member Purr:

type Cat =
new : kind:string -> Cat
member Kind : string
member Purr : unit -> Cat

The corresponding implementation file might contain the following implementation:

type Cat(kind: string) =
member Xx.Meow() = printfn "meow"
member x.Purr() = printfn "purr"
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member x.Kind = kind

11.2 Signature Conformance
Values, types, and members that are present in implementations can be omitted in signatures, with
the following exceptions:

e Type abbreviations may not be hidden by signatures. That is, a type abbreviation type T = ty
in an implementation does not match type T (without an abbreviation) in a signature.

e Any type that is represented as a record or union must reveal either all or none of its fields or
cases, in the same order as that specified in the implementation. Types that are represented as
classes may reveal some, all, or none of their fields in a signature.

e Any type that is revealed to be an interface, or a type that is a class or struct with one or more
constructors may not hide its inherit declaration, abstract dispatch slot declarations, or
abstract interface declarations.

Note: This section does not yet document all checks made by the F# 3.1 language
implementation.

11.2.1 Signature Conformance for Functions and Values
If both a signature and an implementation contain a function or value definition with a given name,
the signature and implementation must conform as follows:

e The declared accessibilities, inline, and mutable modifiers must be identical in both the
signature and the implementation.

o [f either the signature or the implementation has the [ <Literal>] attribute, both must have
this attribute. Furthermore, the declared literal values must be identical.

e The number of generic parameters—both inferred and explicit—must be identical.

e The types and type constraints must be identical up to renaming of inferred and/or explicit
generic parameters. For example, assume a signature is written “val head : seq<'T> ->
"T” and the compiler could infer the type “val head : seq<'a> -> 'a”fromthe
implementation. These are considered identical up to renaming the generic parameters.

The arities must match, as described in the next section.

11.2.1.1 Arity Conformance for Functions and Values

Arities of functions and values must conform between implementation and signature. Arities of
values are implicit in module signatures. A signature that contains the following results in the arity
[A:...A,] for F:

val F : tys,1 * ... * tyra -> o0 => tyn1 ¥ ... ¥ tynan -> rty

Arities in a signature must be equal to or shorter than the corresponding arities in an
implementation, and the prefix must match. This means that F# makes a deliberate distinction
between the following two signatures:
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val F: int -> int
and
val F: (int -> int)

The parentheses indicate a top-level function, which might be a first-class computed expression that
computes to a function value, rather than a compile-time function value.

The first signature can be satisfied only by a true function; that is, the implementation must be a
lambda value as in the following:

let Fx=x+1

Note: Because arity inference also permits right-hand-side function expressions, the
implementation may currently also be:

let F = fun x -> x + 1

The second signature
val F: (int -> int)

can be satisfied by any value of the appropriate type. For example:

let f =
let myTable = new System.Collections.Generic.Dictionary<int,int>(4)
fun x ->
if myTable.ContainsKey x then
myTable.[x]
else
let res = x * X
myTable.[x] <- res
res
—or—

let £ = fun x -> x + 1

// throw an exception as soon as the module initialization is triggered
let £ : int -> int = failwith "failure"

For both the first and second signatures, you can still use the functions as first-class function values
from client code—the parentheses simply act as a constraint on the implementation of the value.

The reason for this interpretation of types in value and member signatures is that CLI
interoperability requires that F# functions compile to methods, rather than to fields that are
function values. Thus, signatures must contain enough information to reveal the desired arity of a
method as it is revealed to other CLI programming languages.
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11.2.1.2 Signature Conformance for Type Functions
If a value is a type function, then its corresponding value signature must have explicit type
arguments. For example, the implementation

let empty<'T> : 1list<'T> = printfn "hello"; []
conforms to this signature:

val empty<'T> : list<'T>
but not to this signature:

val empty : list<'T>

The reason for this rule is that the second signature indicates that the value is, by default,
generalizable (§14.6.7).

11.2.2 Signature Conformance for Members
If both a signature and an implementation contain a member with a given name, the signature and
implementation must conform as follows:

e If oneis an extension member, both must be extension members.
e If one is a constructor, then both must be constructors.
e If oneis a property, then both must be properties.

e The types must be identical up to renaming of inferred or explicit type parameters (as for
functions and values).

e Thestatic, abstract, and override qualifiers must match precisely.

e Abstract members must be present in the signature if a representation is given for a type.

Note: This section does not yet document all checks made by the F# 3.1 language
implementation.
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12. Program Structure and

Execution

F# programs are made up of a collection of assemblies. F# assemblies are made up of static
references to existing assemblies, called the referenced assemblies, and an interspersed sequence of
signature (. fs1i) files, implementation (. fs) files, script (. fsx or . fsscript) files, and
interactively executed code fragments.

implementation-file :=
namespace-decl-group ... namespace-decl-group
named-module
anonynmous -module

script-file := implementation-file
-- script file, additional directives allowed

signature-file:=
namespace-decl-group-signature ... namespace-decl-group-signature
anonynmous-module-signature
named-module-signature

named-module :=
module long-ident module-elems

anonymous-module :=
module-elems

named-module-signature :=
module long-ident module-signature-elements

anonymous-module-signature :=
module-signature-elements

script-fragment :=
module-elems -- interactively entered code fragment

A sequence of implementation and signature files is checked as follows.

1.

Form an initial environment sig-enve and impl -enve by adding all assembly references to the
environment in the order in which they are supplied to the compiler. This means that the
following procedure is applied for each referenced assembly:

e Add the top level types, modules, and namespaces to the environment.

e For each AutoOpen attribute in the assembly, find the types, modules, and namespaces that
the attribute references and add these to the environment.

The resulting environment becomes the active environment for the first file to be processed.



2. For each file:

e Ifthe i'" file is a signature file file.fsi:

a. Check it against the current signature environment sig-envi.1, which generates the
signature S1igrice for the current file.

b. Add Sigfiieto sig-envi.;to produce sig-envi to make it available for use in later
signature files.

The processing of the signature file has no effect on the implementation environment, so
impl-env; isidentical to implL-envi_s.

e [f the file is an implementation file file. fs, check it against the environment impl-envi_s,
which gives elaborated namespace declaration groups ImpLyiie.

a. If acorresponding signature S1igyiie exists, check Implsiie against Sigsiie during this
process (§11.2). Then add Sigriie to implL-envi-; to produce impL-envi. This step
makes the signature-constrained view of the implementation file available for use in
later implementation files. The processing of the implementation file has no effect on
the signature environment, so sig-env; isidentical to sig-envi.i.

b. If the implementation file has no signature file, add ImpLsi.. to both sig-envi-; and
impl-envi_;, to produce sig-envi and impLl-envi. This makes the contents of the
implementation available for use in both later signature and implementation files.

The signature file for a particular implementation must occur before the implementation file in the
compilation order. For every signature file, a corresponding implementation file must occur after the
file in the compilation order. Script files may not have signatures.

12.1 Implementation Files

Implementation files consist of one or more namespace declaration groups. For example:

namespace MyCompany.MyOtherLibrary

type MyType() =
let x = 1
member v.P = X + 2

module MyInnerModule =
let myValue =1

namespace MyCompany. MyOtherLibrary.Collections

type MyCollection(x : int) =
member v.P = X

An implementation file that begins with a module declaration defines a single namespace
declaration group with one module. For example:
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module MyCompany.MyLibrary.MyModule

let x =1
is equivalent to:

namespace MyCompany.MyLibrary

module MyModule =
let x =1

The final identifier in the Long-ident that follows the module keyword is interpreted as the
module name, and the preceding identifiers are interpreted as the namespace.

Anonymous implementation files do not have either a leading module or namespace declaration.
Only the scripts and the last file within an implementation group for an executable image (.exe) may
be anonymous. An anonymous implementation file contains module definitions that are implicitly
placed in a module. The name of the module is generated from the name of the source file by
capitalizing the first letter and removing the filename extensionlf the filename contains characters
that are not valid in an F# identifier, the resulting module name is unusable and a warning occurs.

Given an initial environment envy, an implementation file is checked as follows:

e Create a new constraint solving context.

e Check the namespace declaration groups in the file against the existing environment envi-; and
incrementally add them to the environment (§10.1) to create a new environment env;.

e Apply default solutions to any remaining type inference variables that include default
constraints. The defaults are applied in the order that the type variables appear in the type-
annotated text of the checked namespace declaration groups.

e Check the inferred signature of the implementation file against any required signature by using
Signature Conformance (§11.2). The resulting signature of an implementation file is the required
signature, if it is present; otherwise it is the inferred signature.

e Report a “value restriction” error if the resulting signature of any item that is not a member,
constructor, function, or type function contains any free inference type variables.

e Choose solutions for any remaining type inference variables in the elaborated form of an
expression. Process any remaining type variables in the elaborated form from left-to-right to
find a minimal type solution that is consistent with constraints on the type variable. If no unique
minimal solution exists for a type variable, report an error.

The result of checking an implementation file is a set of elaborated namespace declaration groups.

12.2 Signature Files

Signature files specify the functionality that is implemented by a corresponding implementation file.
Each signature file contains a sequence of namespace-decl-group-signature elements. The
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inclusion of a signature file in compilation implicitly applies that signature type to the contents of a
corresponding implementation file.

Anonymous signature files do not have either a leading module or namespace declaration.
Anonymous signature files contain module-elems that are implicitly placed in a module. The name
of the module is generated from the name of the source file by capitalizing the first letter and
removing the filename extension. If the filename contains characters that are not valid in an F#
identifier, the resulting module name is unusable and a warning occurs.

Given an initial environment env, a signature file is checked as follows:

e Create a new constraint solving context.
e Check each namespace-decl-group-signature;inenvi.; and add the result to that

environment to create a new environment env;.

The result of checking a signature file is a set of elaborated namespace declaration group types.

12.3 Script Files

Script files have the.fsx or . fsscript filename extension. They are processed in the same way as
files that have the . fs extension, with the following exceptions:

e Side effects from all scripts are executed at program startup.

e For script files, the namespace FSharp.Compiler.Interactive.Settings is opened by
default.

e F#Interactive references the assembly FSharp.Compiler.Interactive.Settings.dll by
default, but the F# compiler does not. If the script uses the script helper Tsi object, then the
script should explicitly reference FSharp.Compiler.Interactive.Settings.dll.

Script files may add to the set of referenced assemblies by using the #r directive (§12.312.4).

Script files may add other signature, implementation, and script files to the list of sources by using
the #1oad directive. Files are compiled in the same order that was passed to the compiler, except
that each script is searched for #1oad directives and the loaded files are placed before the script, in
the order they appear in the script. If a filename appears in more than one #1oad directive, the file
is placed in the list only once, at the position it first appeared.

Script files may have #nowarn directives, which disable a warning for the entire compilation.

The F# compiler defines the COMPILED compilation symbol for input files that it has processed. F#
Interactive defines the INTERACTIVE symbol.

Script files may not have corresponding signature files.
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12.4 Compiler Directives

Compiler directives are declarations in non-nested modules or namespace declaration groups in the
following form:

# 1id string ... string

The lexical preprocessor directives #if, #else, #endif and #indent "off" are similar to
compiler directives. For details on #1if, #else, #endif, see §3.3. The #indent "off" directive is
described in §19.4.

The following directives are valid in all files:

Directive Example Short Description

#nowarn #nowarn "54" For signature (. fsi) files and implementation
(. fs) files, turns off warnings within this lexical
scope.

For script (. fsx or . fsscript)files, turns off
warnings globally.
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The following directives are valid in script files:

Directive Example Short Description
#r #r "System.Core" References a DLL within this entire
#reference #r @"Nunit.Core.dll" script.

#r @"c:\NUnit\Nunit.Core.d11l"

#r "nunit.core, Version=2.2.2.0,
Culture=neutral,
PublicKeyToken=96d0@9aleb7f44a77"

#I #I @"c:\Projects\Libraries\Bin" | Adds a path to the search paths for
#Include DLLs that are referenced within this
entire script.
#load #load "library.fs" Loads a set of signature and
#load "core.fsi" "core.fs" implementation files into the script
execution engine.
#ttime #time Enables or disables the display of
#ttime "on" performance information, including
#time "off" elapsed real time, CPU time, and

garbage collection information for
each section of code that is
interpreted and executed.

#help #help Asks the script execution
environment for help.

#q #q Requests the script execution

#quit #quit environment to halt execution and
exit.

12.5 Program Execution

Execution of F# code occurs in the context of an executing CLI program into which one or more
compiled F# assemblies or script fragments is loaded. During execution, the CLI program can use the
functions, values, static members, and object constructors that the assemblies and script fragments
define.

12.5.1 Execution of Static Initializers
Each implementation file, script file, and script fragment involves a static initializer. The execution of
the static initializer is triggered as follows:

e For executable (.exe) files that have an explicit entry point function, the static initializer for the
last file that appears on the command line is forced immediately as the first action in the
execution of the entry point function.

e For executable files that have an implicit entry point, the static initializer for the last file that
appears on the command line is the body of the implicit entry point function.

e For scripts, F# Interactive executes the static initializer for each program fragment immediately.

e For all other implementation files, the static initializer for the file is executed on first access of a
value that has observable initialization according to the rules that follow, or first access to any
member of any type in the file that has at least one “static let” or “static do” declaration.
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At runtime, the static initializer evaluates, in order, the definitions in the file that have observable
initialization according to the rules that follow. Definitions with observable initialization in nested
modules and types are included in the static initializer for the overall file.

All definitions have observable initialization except for the following definitions in modules:

e Function definitions

o Type function definitions

o Lliteral definitions

e Value definitions that are generalized to have one or more type variables

e Non-mutable, non-thread-local values that are bound to an initialization constant expression,
which is an expression whose elaborated form is one of the following:

e Asimple constant expression.
e A null expression.

e Auseof the typeof< > orsizeof< > operator from FSharp.Core.Operators, or the
defaultof<_ > operator from FSharp.Core.Operators.Unchecked.

e Alet expression where the constituent expressions are initialization constant expressions.

o A match expression where the input is an initialization constant expression, each case is a
test against a constant, and each target is an initialization constant expression.

e Ause of one of the unary or binary operators =, <>, <, >, <=, >=,+, -, ¥, <<<, >>>, | | |,
&&&, MM, ~n enum< >, not, compare, prefix —, and prefix + from
FSharp.Core.Operators on one or two arguments, respectively. The arguments
themselves must be initialization constant expressions, but cannot be operations on
decimals or strings. Note that the operators are unchecked for arithmetic operations, and
that the operators % and / are not included because their use can raise division-by-zero
exceptions.

e Auseofa[<Literal>] value.
e Ause of a case from an enumeration type.
e Ause of a null case from a union type.

e Ause of avalue that is defined in the same assembly and does not have observable
initialization, or the use of a value that is defined by a “let” or “match” expression within the
expression itself.

If the execution environment supports the concurrent execution of multiple threads of F# code, each
static initializer runs as a mutual exclusion region. The use of a mutual exclusion region ensures that
if another thread attempts to access a value that has observable initialization, that thread pauses
until static initialization is complete. A static initializer runs only once, on the first thread that
acquires entry to the mutual exclusion region.
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Values that have observable initialization have implied CLI fields that are private to the assembly. If
such a field is accessed by using CLI reflection before the execution of the corresponding
initialization code, then the default value for the type of the field will be returned.

Within implementation files, generic types that have static value definitions receive a static initializer
for each generic instantiation. These initializers are executed immediately before the first
dereference of the static fields for the generic type, subject to any limitations present in the specific
CLl implementation in used. If the static initializer for the enclosing file is first triggered during
execution of the static initializer for a generic instantiation, references to static values definition in
the generic class evaluate to the default value.

For example, if external code accesses data in this example, the static initializer runs and the
program prints “hello”:

module LibraryModule
printfn "hello"
let data = new Dictionary<int,int>()

That is, the side effect of printing “hello” is guaranteed to be triggered by an access to the value
data.

If external code calls id or accesses size in the following example, the execution of the static
initializer is not yet triggered. However if external code calls T ( ),the execution of the static initializer
is triggered because the body refers to the value data, which has observable initialization.

module LibraryModule

printfn "hello"

let data = new Dictionary<int,int>()
let size = 3

let id x = x

let f() = data

All of the following represent definitions that do not have observable initialization because they are
initialization constant expressions.

let x = System.DayOfWeek.Friday

let x = 1.0

let x = "two"

let x = enum<System.DayOfWeek>(9)
let x =1+ 1

let x : int 1list = []

let x int option = None

let x = compare 1 1

let x = match true with true -> 1 | false -> 2
let x = true && true

let x = 42 >>> 2

let x = typeof<int>

let x = Unchecked.defaultof<int>
let x = Unchecked.defaultof<string>
let x = sizeof<int>
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12.5.2 Explicit Entry Point

The last file that is specified in the compilation order for an executable file may contain an explicit
entry point. The entry point is indicated by annotating a function in a module with EntryPoint
attribute:

e The EntryPoint attribute applies only to a “let”-bound function in a module. The function
cannot be a member.

e This attribute can apply to only one function, and the function must be the last declaration in the
last file processed on the command line. The function may be in a nested module.

e The function is asserted to have type string[ ] -> int before type checking. If the assertion
fails, an error occurs.

e At runtime, the entry point is passed one argument at startup: an array that contains the same
entries as System.Environment.GetCommandLineArgs (), minus the first entry in that
array.

The function becomes the entry point to the program. At startup, F# immediately forces execution
of the static initializer for the file in which the function is declared, and then evaluates the body of
the function.
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13. Custom Attributes and
Reflection

CLI languages use metadata inspection and the System.Reflection libraries to make guarantees
about how compiled entities appear at runtime. They also allow entities to be attributed by static
data, and these attributes may be accessed and read by tools and running programs. This chapter
describes these mechanisms for F#.

Attributes are given by the following grammar:

attribute := attribute-target:.,: object-construction
attribute-set := [< attribute ; ... ; attribute >]
attributes := attribute-set ... attribute-set

attribute-target :=
assembly
module
return
field
property
param
type
constructor
event

13.1 Custom Attributes

CLI languages support the notion of custom attributes which can be added to most declarations.
These are added to the corresponding elaborated and compiled forms of the constructs to which

they apply.

Custom attributes can be applied only to certain target language constructs according to the
AttributeUsage attribute, which is found on the attribute class itself. An error occurs if an
attribute is attached to a language construct that does not allow that attribute.

Custom attributes are not permitted on function or value definitions in expressions or computation
expressions. Attributes on parameters are given as follows:

let foo([<SomeAttribute>] a) = a + 5

If present, the arguments to a custom attribute must be literal constant expressions, or arrays of the
same.

Custom attributes on return values are given as follows:



let foo a : [<SomeAttribute>] = a + 5

Custom attributes on primary constructors are given before the arguments and before any
accessibility annotation:

type Fool [<System.Obsolete("don't use me")>] () =
member x.Bar() =1

type Foo2 [<System.Obsolete("don't use me")>] private () =
member x.Bar() =1

Custom attributes are mapped to compiled CLI metadata as follows:

e Custom attributes map to the element that is specified by their target, if a target is given.

e A custom attribute on a type type is compiled to a custom attribute on the corresponding CLI
type definition, whose System. Type object is returned by typeof<type>.

e By default, a custom attribute on a record field F for a type T is compiled to a custom attribute
on the CLI property for the fieldthat is named F, unless the target of the attribute is field, in
which case it becomes a custom attribute on the underlying backing field for the CLI property
that is named _F.

e A custom attribute on a union case ABC for a type T is compiled to a custom attribute on a static
method on the CLI type definition T. This method is called:

e get ABCif the union case takes no arguments
e ABC otherwise

e Custom attributes on arguments are propagated only for arguments of member definitions, and
not for “let”-bound function definitions.

e Custom attributes on generic parameters are not propagated.

Custom attributes that appear immediately preceding “do” statements in modules anywhere in an
assembly are attached to one of the following:

e The main entry point of the program.
e The compiled module.
e The compiled assembly.

Custom attributes are attached to the main entry point if it is valid for them to be attached to a
method according to the AttributeUsage attribute that is found on the attribute class itself, and
likewise for the assembly. If it is valid for the attribute to be attached to either the main method or
the assembly. the main method takes precedence.

For example, the STAThread attribute should be placed immediately before a top-level “do”
statement.

let main() =
let form = new System.Windows.Forms.Form()
System.Windows.Forms.Application.Run(form)
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[<STAThread>]
do main()

13.1.1 Custom Attributes and Signatures

During signature checking, custom attributes attached to items in F# signature files (. fs1i files) are
combined with custom attributes on the corresponding element from the implementation file
according to the following algorithm:

e Start with lists AImp L and AS1g containing the attributes in the implementation and signature,
in declaration order.

o Check each attribute in AImpL against the available attributes in ASig.

e [f ASig contains an attribute that is an exact match after evaluating attribute arguments, then
ignore the attribute in the implementation, remove the attribute from ASig, and continue

checking;

e [f ASig contains an attribute that has the same attribute type but is not an exact match, then
give a warning and ignore the attribute in the implementation;

e Otherwise, keep the attribute in the implementation.

The compiled element contains the compiled forms of the attributes from the signature and the
retained attributes from the implementation.

This means:

e When an implementation has an attribute X(“abc") and the signature is missing the
attribute, then no warning is given and the attribute appears in the compiled assembly.

e When a signature has an attribute X("abc") and the implementation is missing the
attribute, then no warning is given, and the attribute appears in the compiled assembly.

e When an implementation has an attribute X("abc™) and the signature has attribute
X("def"), then a warning is given, and only X("def" ) appears in the compiled assembly.

13.2 Reflected Forms of Declaration Elements

The typeof and typedefof F# library operators return a System. Type object for an F# type
definition. According to typical implementations of the CLI execution environment, the
System.Type object in turn can be used to access further information about the compiled form of
F# member declarations. If this operation is supported in a particular implementation of F#, then the
following rules describe which declaration elements have corresponding System.Reflection

objects:

e All member declarations are present as corresponding methods, properties or events.
e Private and internal members and types are included.

e Type abbreviations are not given corresponding System. Type definitions.
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In addition:

e F# modules are compiled to provide a corresponding compiled CLI type declaration and
System.Type object, although the System. Type object is not accessible by using the typeof
operator.

However:

e Internal and private function and value definitions are not guaranteed to be given corresponding
compiled CLI metadata definitions. They may be removed by optimization.

e Additional internal and private compiled type and member definitions may be present in the
compiled CLI assembly as necessary for the correct implementation of F# programs.

e The System.Reflection operations return results that are consistent with the erasure of F#
type abbreviations and F# unit-of-measure annotations.

e The definition of new units of measure results in corresponding compiled CLI type declarations
with an associated System. Type.
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14. Inference Procedures

14.1 Name Resolution

The following sections describe how F# resolves names in various contexts.

14.1.1 Name Environments
Each point in the interpretation of an F# program is subject to an environment. The environment
encompasses:

e All referenced external DLLs (assemblies).

e  ModulesAndNamespaces: a table that maps Long-1idents to a list of signatures. Each signature
is either a namespace declaration group signature or a module signature.

For example, System.Collections may map to one namespace declaration group signature
for each referenced assembly that contributes to the System.Collections namespace, and
to a module signature, if a module called System.Collections is declared orin a referenced
assembly.

If the program references multiple assemblies, the assemblies are added to the name resolution
environment in the order in which the references appear on the command line. The order is
important only if ambiguities occur in referencing the contents of assemblies—for example, if
two assemblies define the type MyNamespace.C.
e Expritems: a table that maps names to the following items:
e Avalue
e Aunion case for use when constructing data
e An active pattern result tag for use when returning results from active patterns
e Atype name for each class or struct type
e FieldLabels: a table that maps names to sets of field references for record types
e Pgtltems: a table that maps names to the following items:
e Aunion case, for use when pattern matching on data
e An active pattern case name, for use when specifying active patterns
e Aliteral definition
e Types: a table that maps names to type definitions. Two queries are supported on this table:

e Find a type by name alone. This query may return multiple types. For example, in the default
type-checking environment, the resolution of System. Tuple returns multiple tuple types.



e Find a type by name and generic arity n. This query returns at most one type. For example,
in the default type-checking environment, the resolution of System.Tuple withn = 2
returns a single type.

e ExtensionsinScope: a table that maps type names to one or more member definitions

The dot notation is resolved during type checking by consulting these tables.

14.1.2 Name Resolution in Module and Namespace Paths

Given an input Long-1ident and environment env, Name Resolution in Module and Namespace
Paths computes the result of interpreting Long-ident as a module or namespace. The procedure
returns a list of modules and namespace declaration groups.

Name Resolution in Module and Namespace Paths proceeds through the following steps:

1. Consult the ModulesAndNamespaces table to resolve the Long-ident prefix to a list of
modules and namespace declaration group signatures.

2. If any identifiers remain unresolved, recursively consult the declared modules and sub-modules
of these namespace declaration groups.

3. Concatenate all the results.

If the Long-1ident starts with the special pseudo-identifier keyword global, the identifier is
resolved by consulting the ModulesAndNamespaces table and ignoring all open directives, including
those implied by AutoOpen attributes.

For example, if the environment contains two referenced DLLs, and each DLL has namespace
declaration groups for the namespaces System, System.Collections, and
System.Collections.Generic, Name Resolution in Module and Namespace Paths for
System.Collections returns the two namespace declaration groups named
System.Collections, one from each assembly.

14.1.3 Opening Modules and Namespace Declaration Groups
When a module or namespace declaration group F is opened, the compiler adds items to the name
environment as follows:

1. Add each exception label for each exception type definition (§8.11) in F to the Expritems and
Patltems tables in the original order of declaration in F.

2. Add each type definition in the original order of declaration in F. Adding a type definition
involves the following procedure:

a. Ifthe type is a class or struct type (or an abbreviation of such a type), add the type name to
the Expritems table.

b. If the type definition is a record, add the record field labels to the FieldLabels table, unless
the type has the RequireQualifiedAccess attribute.
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c. Ifthe typeis a union, add the union cases to the Expritems and Patltems tables, unless the
type has the RequireQualifiedAccess attribute.

d. Add the type to the TypeNames table. If the type has a CLI-encoded generic name such as
List 1, add an entry under both List and List 1.

3. Add each value in the original order of declaration in F, as follows:

a. Add the value to the Expritems table.

b. If any value is an active pattern, add the tags of that active pattern to the Patitems table
according to the original order of declaration.

c. Ifthevalueis a literal, add it to the Patitems table.

4. Addthe member contents of each type extension in F; to the ExtensionsinScope table according
to the original order of declaration in F;.

5. Add each sub-module or sub-namespace declaration group in F; to the ModulesAndNamespaces
table according to the original order of declaration in F;.

6. Open any sub-modules that are marked with the FSharp.Core.AutoOpen attribute.

14.1.4 Name Resolution in Expressions

Given an input Long-1ident, environment env, and an optional count n of the number of
subsequent type arguments <, ..., >, Name Resolution in Expressions computes a result that
contains the interpretation of the Long-ident< , ..., > prefix as avalue or other expression
item, and a residue path rest.

How Name Resolution in Expressions proceeds depends on whether Long-ident is a single
identifier or is composed of more than one identifier.

If Long-ident is a single identifier ident:
1. Lookup ident inthe Expritems table. Return the result and empty rest.

2. If ident does not appear in the Expritems table, look it up in the Types table, with generic arity
that matches n if available. Return this type and empty rest.

3. If ident does not appear in either the Expritems table or the Types table, fail.

If Long-ident is composed of more than one identifier ident. rest, Name Resolution in
Expressions proceeds as follows:

1. If ident exists as a value in the Expritems table, return the result, with rest as the residue.

2. If ident does not exist as a value in the Expritems table, perform a backtracking search as
follows:

a. Consider each division of Long-ident into [namespace-or-module -
path].ident[.rest], in which the namespace-or-module-path becomes successively
longer.
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For each such division, consider each module signature or namespace declaration group
signature F in the list that is produced by resolving namespace-or-module-path by using
Name Resolution in Module and Namespace Paths.

For each such F, attempt to resolve ident[.rest] in the following order. If any resolution
succeeds, then terminate the search:

1) Avaluein F. Return this item and rest.
2) A union case in F. Return this item and rest.
3) An exception constructor in F. Return this item and rest.

4) Atypein F.If rest is empty, then return this type; if not, resolve using Name
Resolution for Members.

5) A [sub-]module in F. Recursively resolve rest against the contents of this module.

3. Ifsteps 1and 2 do notresolve Long-ident, look up ident in the Types table.

C.

If the generic arity n is available, then look for a type that matches both ident and n.
If no generic arity n is available, and rest is not empty:

1) If the Types table contains a type ident that does not have generic arguments,
resolve to this type.

2) If the Types table contains a unique type ident that has generic arguments, resolve
to this type. However, if the overall result of the Name Resolution in Expressions
operation is a member, and the generic arguments do not appear in either the
return or argument types of the item, warn that the generic arguments cannot be
inferred from the type of the item.

3) If neither of the preceding steps resolves the type, give an error.

If rest is empty, return the type, otherwise resolve using Name Resolution for Members.

4. |If steps 1-3 do not resolve Long-ident, look up ident in the Expritems table and return the

result and residue rest.

5. Otherwise, if ident is a symbolic operator name, resolve to an item that indicates an implicitly

resolved symbolic operator.

6. Otherwise, fail.

If the expression contains ambiguities, Name Resolution in Expressions returns the first result that

the process generates. For example, consider the following cases:

238



module M =

type C =
| C of string
| D of string
member x.Propl = 3
type Data =
| C of string
| E
member x.Propl = 3
member x.Prop2 = 3
let C =5
open M
let C =14
let D =6
let testl = C //
let test2 = C.ToString() //
ToString
let test3 = M.C //
let test4 = M.Data.C //
let test5 = M.C.C //
M.C,
//
nen
let test6 = C.Propl //
property Prop
let test7 = M.E.Prop2 //

lookup

resolves to the value C
resolves to the value C with residue

resolves to the value M.C

resolves to the union case M.Data.C
error: first part resolves to the value
and this contains no field or property

error: the value C does not have a

resolves to M.E, and then a property

The following example shows the resolution behavior for type lookups that are ambiguous by

generic arity:

module M =
type C<'T>() =
static member P

type C<'T,'U>() =
static member P

let _ = new M.C()

let _ = new M.C<int>()
let _ = M.C()

let _ = M.Ckint>()

let _ = M.Cint,int>()
let _ = M.C<_>()

let _ = M.C<_, >()

let = M.C.P

let _ = M.C<_>.P

let _ = M.C<_, >.P

!/
!/
!/
!/
!/
!/
!/
//
!/
!/

gives an error

no error, resolves to C<'T>
gives an error

no error, resolves to C<'T>

no error, resolves to C<'T,'U>
no error, resolves to C<'T>

no error, resolves to C<'T,'U>
gives an error

no error, resolves to C<'T>

no error, resolves to C<'T,'U>
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The following example shows how the resolution behavior differs slightly if one of the types has no
generic arguments.

module M =
type C() =
static member P = 1
type C<'T>() =
static member P = 1
let = new M.C() // no error, resolves to C
let _ = new M.C<int>() // no error, resolves to C<'T>
let = M.C() // no error, resolves to C
let = M.C< >() // no error, resolves to C
let = M.Cint>() // no error, resolves to C<'T>
let = M.C< >() // no error, resolves to C
let = M.C<_>() // no error, resolves to C<'T>
let _ = M.C.P // no error, resolves to C
let = M.C< >.P // no error, resolves to C
let _ = M.C<_>.P // no error, resolves to C<'T>

In the following example, the procedure issues a warning for an incomplete type. In this case, the
type parameter ' T cannot be inferred from the use M. C. P, because ' T does not appear at all in the
type of the resolved element M.C<"'T>.P.

module M =
type C<'T>() =
static member P = 1

let = M.C.P // no error, resolves to C<'T>.P, warning

given

The effect of these rules is to prefer value names over module names for single identifiers. For
example, consider this case:

let Foo = 1

module Foo
let ABC 2
let x1 = Foo // evaluates to 1

The rules, however, prefer type names over value names for single identifiers, because type names
appear in the Expritems table. For example, consider this case:

let Foo =1
type Foo() =
static member ABC = 2
let x1 = Foo.ABC // evaluates to 2
let x2 = Foo() // evaluates to a new Foo()
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14.1.5 Name Resolution for Members
Name Resolution for Members is a sub-procedure used to resolve . member-ident[.rest]toa
member, in the context of a particular type type.

Name Resolution for Members proceeds through the following steps:
1. Search the hierarchy of the type from System.0bject to type.
2. Ateach type, try to resolve member-ident to one of the following, in order:

a. Aunion case of type.

b. A property group of type.
¢. A method group of type.
d. Afield of type.

e. Aneventof type.

f. A property group of extension members of type, by consulting the ExtensionsinScope table.
g. A method group of extension members of type, by consulting the ExtensionsinScope table.
h. A nested type type-nested of type. Recursively resolve .rest if it is present, otherwise

return type-nested.

3. Atany type, the existence of a property, event, field, or union case named member-ident
causes any methods or other entities of that same name from base types to be hidden.

4. Combine method groups with method groups from base types. For example:

type A() =
member this.Foo(i : int) = ©

type B() =
inherit A()
member this.Foo(s : string) =1

let b = new B()
b.Foo(1) // resolves to method in A
b.Foo("abc") // resolves to method in B

14.1.6 Name Resolution in Patterns

Name Resolution for Patterns is used to resolve Long-ident in the context of pattern expressions.
The Long-1ident must resolve to a union case, exception label, literal value, or active pattern case
name. If it does not, the Long-1ident may represent a new variable definition in the pattern.

Name Resolution for Patterns follows the same steps to resolve the member-ident as Name
Resolution in Expressions (§14.1.4) except that it consults the Patitems table instead of the Expritems
table. As a result, values are not present in the namespace that is used to resolve identifiers in
patterns. For example:
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let C =3

match 4 with

| C -> sprintf "matched, C = %d" C
| _ -> sprintf "no match, C = %d" C

resultsin "matched, C = 4", because C is not present in the Patitems table, and hence becomes
a value pattern. In contrast,

[<Literal>]
let C = 3

match 4 with
| € -> sprintf "matched, C = %d" C
| _ -> sprintf "no match, C = %d" C

resultsin "no match, C = 3", because C is a literal and therefore is present in the Patitems table.

14.1.7 Name Resolution for Types

Name Resolution for Types is used to resolve Long-ident in the context of a syntactic type. A
generic arity that matches n is always available. The result is a type definition and a possible residue
rest.

Name Resolution for Types proceeds through the following steps:

1. Given ident[.rest], look up ident in the Types table, with generic arity n. Return the result
and residue rest.

2. If ident is not present in the Types table:

a. Divide Long-1ident into [namespace-or-module-path].ident[.rest], in which the
namespace-or-module-path becomes successively longer.

b. For each such division, consider each module and namespace declaration group F in the list
that results from resolving namespace-or-module-path by using Name Resolution in
Module and Namespace Paths (§14.1.2).

c. Foreach such F, attempt to resolve ident[.rest] in the following order. Terminate the
search when the expression is successfully resolved.

1) Atypein F. Return this type and residue rest.

2) A [sub-Jmodule in F. Recursively resolve rest against the contents of this module.

In the following example, the name C on the last line resolves to the named type M.C<_, >
because C is applied to two type arguments:
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module M =
type C<'T, 'U> = 'T * 'T * 'U

module N =
type C<'T> = 'T * 'T

open M
open N

let x : C<int, string> = (1, 1, "abc")

14.1.8 Name Resolution for Type Variables

Whenever the F# compiler processes syntactic types and expressions, it assumes a context that
maps identifiers to inference type variables. This mapping ensures that multiple uses of the same
type variable name map to the same type inference variable. For example, consider the following
function:

let + xy = (x:'T), (y:'T)

In this case, the compiler assigns the identifiers x and y the same static type—that is, the same type
inference variable is associated with the name ' T. The full inferred type of the function is:

val f<'T> : 'T -> 'T -> 'T * 'T

The map is used throughout the processing of expressions and types in a left-to-right order. It is
initially empty for any member or any other top-level construct that contains expressions and types.
Entries are eliminated from the map after they are generalized. As a result, the following code
checks correctly:

let £ () =
let g1 (x:'T) = x
let g2 (y:'T) = (y:string)

gl 3, g1 "3", g2 "4"

The compiler generalizes g1, which is applied to both integer and string types. The type variable ' T
in (y:'T) on the third line refers to a different type inference variable, which is eventually constrained
to be type string.

14.1.9 Field Label Resolution
Field Label Resolution specifies how to resolve identifiers such as fieldlin{ fieldl = expr;
... fieldN = expr }.

Field Label Resolution proceeds through the following steps:
1. Look up all fields in all available types in the Types table and the FieldLabels table (§8.4.2).

2. Return the set of field declarations.
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14.2 Resolving Application Expressions

Application expressions that use dot notation—such as x. Y<int>.Z(g).H.I.j—are resolved
according to a set of rules that take into account the many possible shapes and forms of these
expressions and the ambiguities that may occur during their resolution. This section specifies the
exact algorithmic process that is used to resolve these expressions.

Resolution of application expressions proceeds as follows:

1. Repeatedly decompose the application expression into a leading expression expr and a list of
projections projs. Each projection has the following form:
e .long-ident-or-op isadot lookup projection.
e expr isan application projection.
e <types>isatype application projection.

For example:

o Xx.y.Z(g).H.I.jdecomposesintox.y.Zand projections (g), .H.I.7j.
e Xx.M<int>(g) decomposesinto x.Mand projections <int>, (g).

e f x decomposes into f and projection x.

Note: In this specification we write sequences of projections by juxtaposition; for
example, (expr).long-ident<types>(expr).We also write (.rest +projs) to
refer to adding a residue long identifier to the front of a list of projections, which results
inprojs if restisemptyand .rest projs otherwise.

2. After decomposition:

o If expris along identifier expression Long-ident, apply Unqualified Lookup (§14.2.1) on
Long-1ident with projections projs.

e If expris not such an expression, check the expression against an arbitrary initial type ty, to

Expression-Qualified Lookup (§14.2.3)

14.2.1 Unqualified Lookup

Given an input Long-1ident and projections pro7js, Unqualified Lookup computes the result of
“looking up” Long-ident.projs in an environment env. The first part of this process resolves a
prefix of the information in Long-ident.projs, and recursive resolutions typically use Expression-
Qualified Resolution to resolve the remainder.

For example, Unqualified Lookup is used to resolve the vast majority of identifier references in F#
code, from simple identifiers such as sin, to complex accesses such as
System.Environment.GetCommandLineArgs().Length.

Unqualified Lookup proceeds through the following steps:
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1. Resolve Long-ident by using Name Resolution in Expressions (§14.1). This returns a name
resolution item 1tem and a residue long identifier rest.

For example, the result of Name Resolution in Expressions for v.X.Y may be a value reference v
along with a residue long identifier . X.Y. Likewise, N.X(args) .Y may resolve to an overloaded
method N. X and a residue long identifier. Y.

Name Resolution in Expressions also takes as input the presence and count of subsequent type
arguments in the first projection. If the first projection in projs is <tyargs>, Unqualified
Lookup invokes Name Resolution in Expressions with a known number of type arguments.
Otherwise, it is invoked with an unknown number of type arguments.

2. Apply Item-Qualified Lookup for item and (rest + projs).

14.2.2 Item-Qualified Lookup

Given an input item 1 tem and projections projs, Item-Qualified Lookup computes the projection
item.projs. This computation is often a recursive process: the first resolution uses a prefix of the
information in item. projs, and recursive resolutions resolve any remaining projections.

Item-Qualified Lookup proceeds as follows:
1. If itemis not one of the following, return an error:

e Anamed value
e Aunion case
e Agroup of named types
e A group of methods
e Agroup of indexer getter properties
e Asingle non-indexer getter property
e A static F# field
e Astatic CLI field
e Animplicitly resolved symbolic operator name
2. If the first projection is <types >, then we say the resolution has a type application <types>

with remaining projections.

3. Otherwise, checking proceeds as shown in the table.

If itemis: Action
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If itemis:

Action

A value reference v

A type name, where
projs begins with
<types>.long-
ident

A group of type
names where projs
begins with <types>
orexpror projsis
empty

A group of method
references

A group of property
indexer references

A static field
reference

A union case tag,
exception tag, or
active pattern result
element tag

A CLI event reference

1.

2.

2.

3.
1.

3.

1

2.

Instantiate the type scheme of v, which results in a type ty. Apply these rules:

= |f the first projection is <types>, process the types and use the results as the
arguments to instantiate the type scheme.

= If the first projection is not <types>, the type scheme is freshly instantiated.

= |f the value has the RequiresExplicitTypeArguments attribute, the first
projection must be <types>.

= |f the value has type byref<ty,>, add a byref dereference to the elaborated
expression.

= Insert implicit flexibility for the use of the value (§14.4.3).

.Apply Expression-Qualified Lookup for type ty and any remaining projections.
1.

Process the types and use the results as the arguments to instantiate the named
type reference, thus generating a type ty.

Apply Name Resolution for Members to ty and Long-ident, which generates a
new item.

.Apply Item-Qualified Lookup to the new item and any remaining projections.
.Process the types and use the results as the arguments to instantiate the named

type reference, thus generating a type ty.

Process the object construction ty (expr) as an object constructor call in the same

way as new ty(expr). If projs is empty then process the object construction ty

as an object constructor call in the same way as (fun arg -> newty(arg)),i.e.

resolve the object constructor call with no arguments.

Apply Expression-Qualified Lookup to 1tem and any remaining projections.

Apply Method Application Resolution for the method group. Method Application

Resolution accepts an optional set of type arguments and a syntactic expression

argument. Determine the arguments based on what projs begins with:

m<types> expr,then use <types> as the type arguments and expr as the
expression argument.

mexpr, then use expr as the expression argument.

= anything else, use no expression argument or type arguments.

.If the result of Method Application Resolution is labeled with the

RequiresExplicitTypeArguments attribute, then explicit type arguments are
required.

Let fty be the actual return type that results from Method Application Resolution.
Apply Expression-Qualified Lookup to £ty and any remaining projections.

.Apply Method Application Resolution, and use the underlying getter indexer

methods for the method group.
Determine the arguments to Method Application Resolution as described for a
group of methods.

1.Check the field for accessibility and attributes.

2

W N P W

N U0

.Let fty be the actual type of the field, taking into account the type ty via which the

field was accessed in the case where this is a field in a generic type.

.Apply Expression-Qualified Lookup to fty and projs.

.Check the tag for accessibility and attributes.

.If projs begins with expr, use expr as the expression argument.

.Otherwise, use no expression argument or type arguments. In this case, build a

function expression for the union case.

.Let fty be the actual type of the union case.

.Apply Expression-Qualified Lookup to £ty and remaining projs.
.Check the event for accessibility and attributes.

.Let fty be the actual type of the event.

3.

Apply Expression-Qualified Lookup to fty and projs.
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If itemis:

Action

An implicitly resolved
symbolic operator
name op

1.1f op is a unary, binary or the ternary operator ?< -, resolve to the following
expressions, respectively:
(fun (x:”a) -> (*a : static member (op) : "a -> "b) x)
(fun (x:7a) (y:~b) ->
((~a or "b) : static member (op) : "“a * *b -> ~c) (X,y))
(fun (x:7a) (y:”b) (z:"c) ->
((*a or "b or ~c) : static member (op) : "~a * *b * ~c -> ~d) (X,y,2))
2.The resulting expressions are static member constraint invocation expressions (§0),
which enable the default interpretation of operators by using type-directed
member resolution.

3.Recheck the entire expression with additional subsequent projections . projs.

14.2.3 Expression-Qualified Lookup
Given an elaborated expression expr of type ty, and projections projs, Expression-Qualified

Lookup computes the “lookups or applications” for expr.projs.

Expression-Qualified Lookup proceeds through the following steps:

1. Inspect projs and process according to the following table.

projs Action Comments

Empty Assert that the type of the overall, Checking is complete.
original application expression is ty.

Starts with(expr2) Apply Function Application Resolution Checking is complete when Function
(§14.3). Application Resolution returns.

Starts with<types> Fail. Type instantiations may not be applied

Starts with . Long-
ident

to arbitrary expressions; they can apply
only to generic types, generic methods,
and generic values.

Resolve Long-1ident using Name For example, for ty = string and
Resolution for Members (§14.1.4). Long-ident = Length, Name
Return a name resolution item item Resolution for Members returns a

and a residue long identifier rest. property reference to the CLI instance
Continue processing at step 2. property System.String.Length.

2. IfStep 1returned an itemand rest, reportan error if 1temis not one of the following:

e Agroup of methods.

e A group of instance getter property indexers.

e Asingle instance, non-indexer getter property.

e Asingle instance F# field.

e Asingle instance CLI field.

3. Proceed based on i1tem as shown in the table:

If itemis:

Action
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If itemis:

Action

Group of methods

Group of indexer properties

Non-indexer getter property

Instance intermediate language
(IL) or F# field F

1. Apply Method Application Resolution for the method group. Method
Application Resolution accepts an optional set of type arguments and a
syntactic expression argument. If projs begins with:
=<types>(arg), then use <types> as the type arguments and arg

as the expression argument.
= (arg), then use arg as the expression argument.
= otherwise, use no expression argument or type arguments.

2.Let fty be the actual return type resulting from Method Application
Resolution. Apply Expression-Qualified Lookup to fty and any
remaining projections.

1. Apply Method Application Resolution and use the underlying getter
indexer methods for the method group.

2.Determine the arguments to Method Application Resolution as
described for a group of methods.

Apply Method Application Resolution for the method group that contains

only the getter method for the property, with no type arguments and

one () argument.

1.Check the field for accessibility and attributes.

2.Let fty be the actual type of the field (taking into account the type ty
by which the field was accessed).

3.Assert that ty is a subtype of the actual containing type of the field.

4.Produce an elaborated form for expr. F. If F is a field in a value type
then take the address of expr by using the AddressOf (expr,
NeverMutates) operation §6.9.4.

5. Apply Expression-Qualified Lookup to fty and projs.

14.3 Function Application Resolution

Given expressions 1 and expr where 1 has type ty, and given subsequent projections projs,
Function Application Resolution does the following:

1. Asserts that f has type ty: -> ty,for new inference variables ty; and ty..

2. If the assertion succeeds:

a. Check expr with the initial type ty:.

b. Process projs using Expression-Qualified against ty..

3. |If the assertion fails, and expr has the form { computation-expr }:

a. Check the expression as the computation expression form ¥ { computation-expr },

giving result type tyi.

b. Process projs using Expression-Qualified Lookup against ty.
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14.4 Method Application Resolution

Given a method group M, optional type arguments <Actual TypeArgs >, an optional syntactic

argument obj, an optional syntactic argument arg, and overall initial type ty, Method Application

Resolution resolves the overloading based on the partial type information that is available. It also:

Resolves optional and named arguments.
Resolves “out” arguments.

Resolves post-hoc property assignments.
Applies method application resolution.

Inserts ad hoc conversions that are only applied for method calls.

If no syntactic argument is supplied, Method Application Resolution tries to resolve the use of the

method as a first class value, such as the method call in the following example:

List.map System.Environment.GetEnvironmentVariable ["PATH"; "USERNAME"]

Method Application Resolution proceeds through the following steps:

1.

Restrict the candidate method group M to those methods that are accessible from the point of
resolution.

If an argument arg is present, determine the sets of unnamed and named actual arguments,
UnnamedActualArgs and NamedActualArgs:

a. Decompose arg into a list of arguments:

e [fargisasyntactictuple argl ,..., argh, usethese arguments.
e If argisa syntactic unit value (),use a zero-length list of arguments.

b. For each argument:

e If argisa binary expression of the form name=expr, it is a named actual argument.
e Otherwise, arg is an unnamed actual argument.

If there are no named actual arguments, and M has only one candidate method, which accepts
only one required argument, ignore the decomposition of arg to tuple form. Instead,arg itself
is the only named actual argument.

All named arguments must appear after all unnamed arguments.
Examples:
x.M(1, 2) hastwo unnamed actual arguments.
x.M(1, y = 2) hasone unnamed actual argument and one named actual argument.
x.M(1, (y = 2)) hastwo unnamed actual arguments.
X.M( printfn "hello"; ()) hasone unnamed actual argument.
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x.M((a, b)) hasone unnamed actual argument.

x.M(()) hasone unnamed actual argument.

3. Determine the named and unnamed prospective actual argument types, called
ActualArgTypes.

e Ifanargument arg is present, the prospective actual argument types are fresh type

inference variables for each unnamed and named actual argument.

If the argument has the syntactic form of an address-of expression &expr after ignoring
parentheses around the argument, equate this type with a type byref<ty> for a fresh

type ty.

If the argument has the syntactic form of a function expression fun pat; .. pat, ->
expr after ignoring parentheses around the argument, equate this type with a type ty:
-> .. ty, -> rtyforfresh types ty: .. ty,.

e If noargument arg is present:

a.

If the method group contains a single method, the prospective unnamed argument
types are one fresh type inference variable for each required, non-“out” parameter that
the method accepts.

If the method group contains more than one method, the expected overall type of the
expression is asserted to be a function type dty -> rty.

= [Ifdtyisatupletype (dtyl * .. * dtyN),the prospective argument types are
(dtyl, .. ,dtyN).

= Ifdtyisunit, then the prospective argument types are an empty list.
= [f dty is any other type, the prospective argument types are dty alone.

Subsequently:

= The method application is considered to have one unnamed actual argument for
each prospective unnamed actual argument type.

= The method application is considered to have no named actual arguments.

4. For each candidate method in M, attempt to produce zero, one, or two prospective method calls

Mpossibie as follows:

a. Ifthe candidate method is generic and has been generalized, generate fresh type inference

variables for its generic parameters. This results in the Formal TypeArgs for MpossibLe.

b. Determine the named and unnamed formal parameters, called NamedFormalArgs and

UnnamedFormalArgs respectively, by splitting the formal parameters for M into

parameters that have a matching argument in NamedActualArgs and parameters that do

not.

c. If the number of UnnamedFormalArgs exceeds the number of UnnamedActualArgs,

then modify UnnamedFormalArgs as follows:
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e Determine the suffix of UnnamedFormalArgs beyond the number of
UnnamedActualArgs.

e If all formal parameters in the suffix are “out” arguments with byref type, remove the
suffix from UnnamedFormalArgs and call it ImplicitlyReturnedFormalArgs.

e [f all formal parameters in the suffix are optional arguments, remove the suffix from
UnnamedFormalArgs and call it ImplicitlySuppliedFormalArgs.

If the last element of UnnamedFormalArgs has the ParamArray attribute and type pty| |
for some pty, then modify UnnamedActualArgs as follows:

e If the number of UnnamedActualArgs exceeds the number of UnnamedFormalArgs -
1, produce a prospective method call named ParamArrayActualArgs that has the
excess of UnnamedActualArgs removed.

e If the number of UnnamedActualArgs equals the number of UnnamedFormalArgs -1,
produce two prospective method calls:

= One has an empty ParamArrayActualArgs.
= One has no ParamArrayActualArgs.

e If ParamArrayActualArgs has been produced, then Mpossibie is said to use
ParamArray conversion with type pty.

Associate each name=arg in NamedActualArgs with a target. A target is a named formal
parameter, a settable return property, or a settable return field as follows:

o If one of the arguments in NamedFormalArgs has name name, that argument is the
target.

o If the return type of M, before the application of any type arguments Actual TypeArgs,
contains a settable property name,then name is the target. The available properties
include any property extension members of type, found by consulting the
ExtensionsinScope table.

o [f the return type of M, before the application of any type arguments Actual TypeArgs,
contains a settable field name, then name is the target.

No prospective method call is generated if any of the following are true:

e A named argument cannot be associated with a target.

e The number of UnnamedActualArgs is less than the number of
UnnamedFormalArgs after steps 4 a-e.

e The number of ActualTypeArgs, if any actual type arguments are present, does not
precisely equal the number of FormalTypeArgs for M.
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e The candidate method is static and the optional syntactic argument obj is present, or
the candidate method is an instance method and ob7j is not present.

5. Attempt to apply initial types before argument checking. If only one prospective method call
Mpossibie €Xists, assert Myossinie by performing the following steps:

a. Verify that each Actual TypeArg; is equal to its corresponding Formal TypeArg;.
b. Verify that the type of 0b7j is a subtype of the containing type of the method M.

c. Foreach UnnamedActualArg: and UnnamedFormalArg, verify that the corresponding
ActualArgType coerces to the type of the corresponding argument of M.

d. If Myossivie uses ParamArray conversion with type pty, then for each
ParamArrayActualArgs, verify that the corresponding ActualArgType coerces to pty.

e. Foreach NamedActualArg: that has an associated formal parameter target, verify that the
corresponding ActualArgType coerces to the type of the corresponding argument of M.

f. For each NamedActualArg: that has an associated property or field setter target, verify
that the corresponding ActualArgType coerces to the type of the property or field.

g. Verify that the prospective formal return type coerces to the expected actual return type. If
the method M has return type rty, the formal return type is defined as follows:

o [f the prospective method call contains ImplicitlLyReturnedFormalArgs with type
tya, ..., tyn, the formal return typeis rty * ty, * ... * tynIfrty isunit then
the formal return typeis ty: * ... * tyu

e Otherwise the formal return type is rty.
6. Check and elaborate argument expressions. If arg is present:

e Check and elaborate each unnamed actual argument expression arg:. Use the
corresponding type in ActualArgTypes as the initial type.

e Check and elaborate each named actual argument expression arg:. Use the corresponding
type in ActualArgTypes as the initial type.

7. Choose a unique Myossinie according to the following rules:

e For each Myossinie, determine whether the method is applicable by attempting to assert
Mpossible @s described in step 4a). If the actions in step 4a detect an inconsistent constraint
set (§14.5), the method is not applicable. Regardless, the overall constraint set is left
unchanged as a result of determining the applicability of each Myossibie.

e Ifaunique applicable Mpossivie exists, choose that method. Otherwise, choose the unique
best Myossivie by applying the following criteria, in order:

1) Prefer candidates whose use does not constrain the use of a user-introduced generic
type annotation to be equal to another type.

2) Prefer candidates that do not use ParamArray conversion. If two candidates both use
ParamArray conversion with types pty; and pty., and pty; feasibly subsumes pty.,
prefer the second; that is, use the candidate that has the more precise type.
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3) Prefer candidates that do not have ImplicitlyReturnedFormalArgs.
4) Prefer candidates that do not have ImplicitlySuppliedFormalArgs.

5) If two candidates have unnamed actual argument types t Vi1 ... tyi, and tyog ... tVay,
and each ty;; either

a. feasibly subsumes ty.;, or
b. ty.iisaSystem.Func type and ty:i is some other delegate type,

then prefer the second candidate. That is, prefer any candidate that has the more
specific actual argument types, and consider any System. Func type to be more specific
than any other delegate type.

6) Prefer candidates that are not extension members over candidates that are.

7) To choose between two extension members, prefer the one that results from the most
recent use of open.

8) Prefer candidates that are not generic over candidates that are generic—that is, prefer
candidates that have empty ActualArgTypes.

Report an error if steps 1) through 8) do not result in the selection of a unique better method.
8. Once a unique best Myossinie is chosen, commit that method.
9. Apply attribute checks.
10. Build the resulting elaborated expression by following these steps:

a. Ifthetype of obj is a variable type or a value type, take the address of obj by using the
AddressOf(obj, PossiblyMutates) operation (§6.9.4).

b. Build the argument list by:

e Passing each argument corresponding to an UnamedFormalArgs where the argument
is an optional argument as a Some value.

e Passing a None value for each argument that corresponds to an
ImplicitlySuppliedFormalArgs.

e Applying coercion to arguments.

c. Bind ImplicitlyReturnedFormalArgs arguments by introducing mutable temporaries
for each argument, passing them as byref parameters, and building a tuple from these
mutable temporaries and any method return value as the overall result.

d. For each NamedActualArgs whose target is a settable property or field, assign the value
into the property.

e. If argisnot present, return a function expression that represents a first class function value.

Two additional rules apply when checking arguments (see §8.13.7 for examples):
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e If aformal parameter has delegate type D, an actual argument farg has known type
ty: -> ... -> ty, -> rty, andthe number of arguments of the Invoke method of delegate
type D is precisely n, interpret the formal parameter in the same way as the following:

new D(fun arg: ... argn -> farg arg: ... argn).

For more information on the conversions that are automatically applied to arguments, see
§8.13.6.

e If aformal parameter is an “out” parameter of type byref<ty>, and an actual argument type is
not a byref type, interpret the actual parameter in the same way as type ref<ty>. Thatis, an F#
reference cell can be passed where a byref<ty> is expected.

One effect of these additional rules is that a method that is used as a first class function value can
resolve even if a method is overloaded and no further information is available. For example:

let r = new Random()
let roll = r.Next;;

Method Application Resolution results in the following, despite the fact that in the standard CLI
library, System.Random.Next is overloaded:

val roll : int -> int

The reason is that if the initial type contains no information about the expected number of
arguments, the F# compiler assumes that the method has one argument.

14.4.1 Additional Propagation of Known Type Information in F# 3.1

In the above descreiption of F# overload resolution, the argument expressions of a call to an
overloaded set of methods

callerObjArgTy .Method(callerArgExprl, .. callerArgExprN)
calling
calledObjArgTy .Method(calledArgTyl, .. calledArgTyN)

In F# 3.1 and subsequently, immediately prior to checking argument expressions, each argument
position of the unnamed caller arguments for the method call is analysed to propagate type
information extracted from method overloads to the expected types of lambda expressions. The
new rule is applied when

e the candidates are overloaded

e the caller argument at the given unnamed argument position is a syntactic lambda, possible
parenthesized

o all the corresponding formal called arguments have cal LedArgTy either of
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o function type “calledArgDomainTyl -> .. -> calledArgDomainTyN ->
calledArgRangeTy" (after taking into account “function to delegate”
adjustments), or

o some other type which would cause an overload to be discarded

e at least one overload has enough curried lambda arguments for it corresponding expected
function type

In this case, for each unnamed argument position, then for each overload:

e Attempt to solve “cal lerObjArgTy =calledObjArgTy” for the overload, if the overload is
for an instance member. When making this application, only solve type inference variables
present inthe cal LedObjArgTy. If any of these conversions fail, then skip the overload for the
purposes of this rule

e Attemptto solve “callerArgTy = (calledArgDomainTyl -> .. ->
calledArgDomainTyN -> ?)”.If this fails, then skip the overload for the purposes of this rule

14.4.2 Conditional Compilation of Member Calls
If a member definition has the System.Diagnostics.Conditional attribute, then any
application of the member is adjusted as follows:

e The Conditional("symbol") attribute may apply to methods only.

e Methods that have the Conditional attribute must have return type unit. The return type
may be checked either on use of the method or definition of the method.

o If symbol is not in the current set of conditional compilation symbols, the compiler eliminates
application expressions that resolve to calls to members that have the Conditional attribute
and ensures that arguments are not evaluated. Elimination of such expressions proceed:s first
with static members and then with instance members, as follows:

e Static members: Type.M(args) = ()

e Instance members: expr.M(args) =2 ()

14.4.3 Implicit Insertion of Flexibility for Uses of Functions and Members

At each use of a data constructor, named function, or member that forms an expression, flexibility is
implicitly added to the expression. This flexibility is associated with the use of the function or
member, according to the inferred type of the expression. The added flexibility allows the item to
accept arguments that are statically known to be subtypes of argument types to a function without
requiring explicit upcasts

The flexibility is added by adjusting each expression expr which represents a use of a function or
member as follows:

e The type of the function or member is decomposed to the following form:

tyir * o0 ¥ty -> o0 => tym * ... ¥ tym -> rty

e If the type does not decompose to this form, no flexibility is added.
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e The positions tyi are called the “parameter positions” for the type. For each parameter
position where tyiis not a sealed type, and is not a variable type, the type is replaced by a
fresh type variable ty 'i; with a coercion constraint ty "ij : > tyij.

e After the addition of flexibility, the expression elaborates to an expression of type
ty'ss ¥ oo0 Fty'nn > o0 > ty'm Fooos K ty'w > rty

but otherwise is semantically equivalent to expr by creating an anonymous function expression
and inserting appropariate coercions on arguments where necessary.

This means that F# functions whose inferred type includes an unsealed type in argument position
may be passed subtypes when called, without the need for explicit upcasts. For example:

type Base() =
member b.X = 1

type Derived(i : int) =
inherit Base()
member d.Y = i

let d = new Derived(7)
let £ (b : Base) = b.X

// Call f: Base -> int with an instance of type Derived
let res = £ d

// Use f as a first-class function value of type : Derived -> int
let res2 = (f : Derived -> int)

The F# compiler determines whether to insert flexibility after explicit instantiation, but before any
arguments are checked. For example, given the following:

let M<'b>(c :'b, d :'b) =1
let obj = new obj()
let str = ""

these expressions pass type-checking:

M<obj>(obj, str)
M<obj>(str, obj)
M<ob3j>(obj, obj)
M<obj>(str, str)
M(ob3j, obj)
M(str, str)

These expressions do not, because the target type is a variable type:
M(obj, str)
M(str, obj)
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14.5 Constraint Solving

Constraint solving involves processing (“solving”) non-primitive constraints to reduce them to
primitive, normalized constraints on type variables. The F# compiler invokes constraint solving every
time it adds a constraint to the set of current inference constraints at any point during type
checking.

Given a type inference environment, the normalized form of constraints is a list of the following
primitive constraints where typar is a type inference variable:

typar :> type

typar : null

(type or ... or type) : (member-sig)
typar : (new : unit -> 'T)
typar : struct

typar : unmanaged

typar : comparison

typar : equality

typar : not struct

typar : enum<type>

typar : delegate<type, type>

Each newly introduced constraint is solved as described in the following sections.

14.5.1 Solving Equational Constraints

New equational constraints in the form typar = type or type = typar, where typar is a type
inference variable, cause type to replace typar in the constraint problem; typar is eliminated.
Other constraints that are associated with typar are then no longer primitive and are solved again.

New equational constraints of the form type<tyargi:, ..., tyarg.,> = type<tyarg,...,
tyarg.,> are reduced to a series of constraints tyarg:: = tyarg.: onidentical named types and
solved again.

14.5.2 Solving Subtype Constraints
Primitive constraints in the form typar :> obj are discarded.

New constraints in the form type: :> type,, where type; is a sealed type, are reduced to the
constraint type: = type,and solved again.

New constraints in either of these two forms are reduced to the constraints tyarg:: = tyarg::
tyargi:, = tyarg.,and solved again:

type<tyargii, ..., tyargn> :> type<tyargz,..., tyarga>
type<tyargii, ..., tyargi.> = type<tyargs,..., tyargm:m>
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Note: F# generic types do not support covariance or contravariance. That is, although
single-dimensional array types in the CLI are effectively covariant, F# treats these types
as invariant during constraint solving. Likewise, F# considers CLI delegate types as
invariant and ignores any CLI variance type annotations on generic interface types and
generic delegate types.

New constraints of the form type:<tyargii, ..., tyarg,> :> type<tyarg,...,
tyarg.,> where type; and type; are hierarchically related, are reduced to an equational
constraint on two instantiations of type, according to the subtype relation between type; and
type,, and solved again.

For example, if MySubClass< ' T> is derived from MyBaseClass<list<'T>>, then the constraint
MySubClass<'T> :> MyBaseClass<int>

is reduced to the constraint
MyBaseClass<list<'T>> :> MyBaseClass<list<int>>

and solved again, so that the constraint 'T = int will eventually be derived.

Note: Subtype constraints on single-dimensional array types ty[ ] :> ty are reduced
to residual constraints, because these types are considered to be subtypes of
System.Array, System.Collections.Generic.IList<'T>,
System.Collections.Generic.ICollection<'T>, and
System.Collections.Generic.IEnumerable<'T>. Multidimensional array types
ty[,.., ] arealsosubtypes of System.Array.

Types from other CLI languages may, in theory, support multiple instantiations of the
same interface type, suchas C : I<int>, I<string>.Consequently, itis more
difficult to solve a constraint suchas C :> I<'T>.Such constraints are rarely used in
practice in F# coding. To solve this constraint, the F# compiler reduces it to a constraint
C :> I<'T>,where I<'T> isthe firstinterface type that occurs in the tree of
supported interface types, when the tree is ordered from most derived to least derived,
and iterated left-to-right in the order of the declarations in the CLI metadata.

The F# compiler ignores CLI variance type annotations on interfaces.

New constraints of the form type :> 'b are solved againas type = 'b.

Note: Such constraints typically occur only in calls to generic code from other CLI
languages where a method accepts a parameter of a “naked” variable type—for
example, a C# 2.0 function with a signature suchas T Choose<'T>(T x, T vy).

14.5.3 Solving Nullness, Struct, and Other Simple Constraints
New constraints in any of the following forms, where type is not a variable type, are reduced to
further constraints:

type : null
type : (new : unit -> 'T)
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type : struct

type : not struct

type : enum<type>

type : delegate<type, type>
type : unmanaged

The compiler then resolves them according to the requirements for each kind of constraint listed in
§5.2 and §5.4.8.

14.5.4 Solving Member Constraints
New constraints in the following form ) are solved as member constraints (§5.2.3):

(typel or ... or typen) : (member-sig)

A member constraint is satisfied if one of the types in the support set type; ... type, satisfies the
member constraint. A static type type satisfies a member constraint in the form

(staticopt member ident : arg-type: * ... * arg-type, -> ret-type)

if all of the following are true:

e typeisanamed type whose type definition contains the following member, which takes n
arguments:
staticer member ident : formal-arg-type: * ... * formal-arg-type., ->
ret-type
e The type and the constraint are both marked static or neither is marked static.

e The assertion of type inference constraints on the arguments and return types does not result in
a type inference error.

As mentioned in §5.2.3, a type variable may not be involved in the support set of more than one
member constraint that has the same name, staticness, argument arity, and support set. If a type
variable is in the support set of more than one such constraint, the argument and return types are
themselves constrained to be equal.

14.5.4.1 Simulation of Solutions for Member Constraints

Certain types are assumed to implicitly define static members even though the actual CLI metadata
for types does not define these operators. This mechanism is used to implement the extensible
conversion and math functions of the F# library including sin, cos, int, float, (+),and (-). The
following table shows the static members that are implicitly defined for various types.

Type Implicitly defined static members
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Type

Implicitly defined static members

Integral types:
byte, sbyte, int16, uintl6, int32, uint32,
int64, uint64, nativeint, unativeint

Signed integral CLI types:
sbyte, int16, int32, int64 and nativeint

Floating-point CLI types:
float32 and float

decimal type

Note: The decimal type is included only for the Sign
static member. This is deliberate: in the CLI,
System.Decimal includes the definition of static
members such as op_Addition and the F# compiler
does not need to simulate the existence of these
methods.

String type string

op_BitwiseAnd, op_BitwiseOr,
op_ExclusiveOr, op_LeftShift,
op_RightShift, op_UnaryPlus,
op_UnaryNegation, op_Increment,
op_Decrement, op_LogicalNot,
op_OnesComplement

op_Addition, op_Subtraction, op_Multiply,
op_Division, op_Modulus, op_UnaryPlus
op_Explicit: takes the type as an argument and
returns byte, sbyte, intl6, uintl6, int32,
uint32, int64, uint64, float32, float,
decimal, nativeint, orunativeint
op_UnaryNegation

Sign

Abs

Sin, Cos, Tan, Sinh, Cosh, Tanh, Atan, Acos,
Asin, Exp, Ceiling, Floor, Round, Log19, Log,
Sqgrt, Atan2, Pow

op_Addition, op_Subtraction,op_Multiply,
op_Division, op_Modulus, op_UnaryPlus
op_UnaryNegation

Sign

Abs
op_Explicit: takes the type as an argument and
returns byte, sbyte, intl6, uintl6, int32,
uint32, int64, uint64, float32, float,
decimal, nativeint, orunativeint

Sign

op_Addition
op_Explicit: takes the type as an argument and
return byte, sbyte, intl6, uintl6, int32,
uint32, int64, uint64, float32, float or
decimal.

14.5.5 Over-constrained User Type Annotations
An implementation of F# must give a warning if a type inference variable that results from a user

type annotation is constrained to be a type other than another type inference variable. For example,

the following results in a warning because ' T has been constrained to be precisely string:

let £ (x:'T) = (x:string)

During the resolution of overloaded methods, resolutions that do not give such a warning are

preferred over resolutions that do give such a warning.
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14.6 Checking and Elaborating Function, Value, and Member
Definitions

This section describes how function, value, and member definitions are checked, generalized, and
elaborated. These definitions occur in the following contexts:

e Module declarations

e (Class type declarations

e Expressions

e Computation expressions

Recursive definitions can also occur in each of these locations. In addition, member definitions in a
mutually recursive group of type declarations are implicitly recursive.

Each definition is one of the following:

e A function definition :
inlinegt ident; pat: ... pat, :opt return-typeqpt = rhs-expr

e Avalue definition, which defines one or more values by matching a pattern against an
expression:

mutablegr pat :opt typeopt = rhs-expr

e A member definition:

staticot member ident,: ident pat; ... pat, = expr
For a function, value, or member definition in a class:

1. If the definition is an instance function, value or member, checking uses an environment to
which both of the following have been added:

e The instance variable for the class, if one is present.
e All previous function and value definitions for the type, whether static or instance.

2. |If the definition is static (that is, a static function, value or member defeinition), checking uses an
environment to which all previous static function, value, and member definitions for the type
have been added.

14.6.1 Ambiguities in Function and Value Definitions

In one case, an ambiguity exists between the syntax for function and value definitions. In particular,
ident pat = expr can be interpreted as either a function or value definition. For example,
consider the following:

type Onelnteger = Id of int
let Id x = x

In this case, the ambiguity is whether Id x is a pattern that matches values of type OneInteger or
is the function name and argument list of a function called Id. In F# this ambiguity is always resolved
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as a function definition. In this case, to make a value definition, use the following syntax in which the
ambiguous pattern is enclosed in parentheses:

let v = if 3 = 4 then Id "yes" else Id "no"
let (Id answer) = v

14.6.2 Mutable Value Definitions
Value definitions may be marked as mutable. For example:

let mutable v = ©
while v < 10 do
V<-vVv+1
printfn "v = %d" v

These variables are implicitly dereferenced when used.
14.6.3 Processing Value Definitions
A value definition pat = rhs-expr with optional pattern type type is processed as follows:

1. The pattern pat is checked against a fresh initial type ty (or type if such a type is present). This
check results in zero or more identifiers ident; ... ident,, eachoftype ty: ... tyn.

2. The expression rhs-expr is checked against initial type ty, resulting in an elaborated form

3. Each ident; (of type ty:) is then generalized (§14.6.7) and yields generic parameters
<typars;>.

4. The following rules are checked:

o All ident; must be distinct.

e Value definitions may not be inline.
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14.6.4 Processing Function Definitions
A function definition ident; pat: ... pat, = rhs-expris processed as follows:

1. If ident; is an active pattern identifier then active pattern result tags are added to the
environment (§10.2.4).

2. The expression (fun pat: ... pat, : return-type -> rhs-expr) is checked against a

definition does not specify it.

3. The ident:; (of type ty:)is then generalized (§14.6.7) and yields generic parameters
<typarsi>.

4. The following rules are checked:

e Function definitions may not be mutable. Mutable function values should be written as
follows:
let mutable f = (fun args -> ...)

e The patterns of functions may not include optional arguments (§8.13.6).

5. The resulting elaborated definition is:

14.6.5 Processing Recursive Groups of Definitions

A group of functions and values may be declared recursive through the use of 1let rec. Groups of
members in a recursive set of type definitions are also implicitly recursive. In this case, the defined
values are available for use within their own definitions—that is, within all the expressions on the
right-hand side of the definitions.

For example:

let rec twoForward count =
printfn "at %d, taking two steps forward" count
if count = 1000 then "got there!"”
else oneBack (count + 2)

and oneBack count =
printfn "at %d, taking one step back " count
twoForward (count - 1)

When one or more definitions specifies a value, the recursive expressions are analyzed for safety
(§14.6.6). This analysis may result in warnings—including some reported at compile time—and
runtime checks.

Within recursive groups, each definition in the group is checked (§14.6.7) and then the definitions
are generalized incrementally. In addition, any use of an ungeneralized recursive definition results in
immediate constraints on the recursively defined construct. For example, consider the following
declaration:

let rec countDown count x =
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if count > @ then
let a = countDown (count - 1) 1 // constrains "x" to be
of type int
let b = countDown (count - 1) "Hello" // constrains "x" to be
of type string
a+b
else
1

In this example, the definition is not valid because the recursive uses of f result in inconsistent
constraints on x.

If a definition has a full signature, early generalization applies and recursive calls at different types
are permitted (§14.6.7). For example:

module M =
let rec f<'T> (x:'T) : 'T =
leta=f1
let b = f "Hello"
X

In this example, the definition is valid because f is subject to early generalization, and so the
recursive uses of ¥ do not result in inconsistent constraints on x.

14.6.6 Recursive Safety Analysis
A set of recursive definitions may include value definitions. For example:

type Reactor = React of (int -> React) * int

let rec zero = React((fun ¢ -> zero), 0)

let const n =
let rec r = React((fun ¢ -> r), n)
P

Recursive value definitions may result in invalid recursive cycles, such as the following:
let rec x = x + 1

The Recursive Safety Analysis process partially checks the safety of these definitions and convert
thems to a form that uses lazy initialization, where runtime checks are inserted to check
initialization.

A right-hand side expression is safe if it is any of the following:

e A function expression, including those whose bodies include references to variables that are
defined recursively.

e An object expression that implements an interface, including interfaces whose member bodies
include references to variables that are being defined recursively.

e A lazy delayed expression.
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e Arecord, tuple, list, or data construction expression whose field initialization expressions are all

safe.

e Avalue that is not being recursively bound.

e Avalue that is being recursively bound and appears in one of the following positions:
e As a field initializer for a field of a record type where the field is marked mutable.

e As afield initializer for an immutable field of a record type that is defined in the current
assembly.

If record fields contain recursive references to values being bound, the record fields must be
initialized in the same order as their declared type, as described later in this section.

e Any expression that refers only to earlier variables defined by the sequence of recursive
definitions.
Other right-hand side expressions are elaborated by adding a new definition. If the original definition
is
u = expr

then a fresh value (say V) is generated with the definition:

v = lazy expr

and occurrences of the original variable u on the right-hand side are replaced by Lazy.force v.
The following definition is then added at the end of the definition list:

u = v.Force()

Note: This specification implies that recursive value definitions are executed as an
initialization graph of delayed computations. Some recursive references may be checked
at runtime because the computations that are involved in evaluating the definitions
might actually execute the delayed computations. The F# compiler gives a warning for
recursive value definitions that might involve a runtime check. If runtime self-reference
does occur then an exception will be raised.

Recursive value definitions that involve computation are useful when defining objects
such as forms, controls, and services that respond to various inputs. For example, GUI
elements that store and retrieve the state of the GUI elements as part of their
specification typically involve recursive value definitions. A simple example is the
following menu item, which prints out part of its state when invoked:

open System.Windows.Form
let rec menultem : MenuItem =
new MenuItem("&Say Hello",
new EventHandler(fun sender e ->
printfn "Text = %s" menultem.Text),

Shortcut.CtrlH)
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This code results in a compiler warning because, in theory, the

new MenuItem(...) constructor might evaluate the callback as part of the
construction process. However, because the System.Windows.Forms library is well
designed, in this example this does not happen in practice, and so the warning can be
suppressed or ignored by using compiler options.

The F# compiler performs a simple approximate static analysis to determine whether immediate
cyclic dependencies are certain to occur during the evaluation of a set of recursive value definitions.
The compiler creates a graph of definite references and reports an error if such a dependency cycle
exists. All references within function expressions, object expressions, or delayed expressions are
assumed to be indefinite, which makes the analysis an under-approximation. As a result, this check
catches naive and direct immediate recursion dependencies, such as the following:

let rec A=B + 1
and B = A+ 1

Here, a compile-time error is reported. This check is necessarily approximate because dependencies
under function expressions are assumed to be delayed, and in this case the use of a lazy initialization
means that runtime checks and forces are inserted.
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Note: In F# 3.1 this check does not apply to value definitions that are generic through
generalization because a generic value definition is not executed immediately, but is
instead represented as a generic method. For example, the following value definitions
are generic because each right-hand-side is generalizable:

let rec a = b
and b = a

In compiled code they are represented as a pair of generic methods, as if the code had
been written as follows:

let rec a<'T>() = b<'T>()
and b<'T>() = a<'T>()

As a result, the definitions are not executed immediately unless the functions are called.
Such definitions indicate a programmer error, because executing such generic,
immediately recursive definitions results in an infinite loop or an exception. In practice
these definitions only occur in pathological examples, because value definitions are
generalizable only when the right-hand-side is very simple, such as a single value. Where
this issue is a concern, type annotations can be added to existing value definitions to
ensure they are not generic. For example:

let rec a : int = b
and b : int = a

In this case, the definitions are not generic. The compiler performs immediate
dependency analysis and reports an error. In addition, record fields in recursive data
expressions must be initialized in the order they are declared. For example:

type Foo = {
X: int
y: int

parent: Foo option
children: Foo list

}

let rec parent = { x = @; y = 0; parent = None; children =
children }
and children = [{ x = 1; y = 1; parent = Some parent; children =

[1 }]

printf "%A" parent

Here, if the order of the fields x and y is swapped, a type-checking error occurs.

14.6.7 Generalization
Generalization is the process of inferring a generic type for a definition where possible, thereby

making the construct reusable with multiple different types. Generalization is applied by default at

all function, value, and member definitions, except where listed later in this section. Generalization

also applies to member definitions that implement generic virtual methods in object expressions.
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Generalization is applied incrementally to items in a recursive group after each item is checked.

Generalization takes a set of ungeneralized but type-checked definitions checked-defns that form
part of a recursive group, plus a set of unchecked definitions unchecked-defns that have not yet
been checked in the recursive group, and an environment env. Generalization involves the following
steps:

1. Choose asubset generalizable-defns of checked-defns to generalize.

A definition can be generalized if its inferred type is closed with respect to any inference
variables that are present in the types of the unchecked-defns that are in the recursive group
and that are not yet checked or which, in turn, cannot be generalized. A greatest-fixed-point
computation repeatedly removes definitions from the set of checked-defns until a stable set
of generalizable definitions remains.

2. Generalize all type inference variables that are not otherwise ungeneralizable and for which any
of the following is true:

e The variable is present in the inferred types of one or more of generalizable-defns.

e The variable is a type parameter copied from the enclosing type definition (for members and
“let” definitions in classes).

e The variable is explicitly declared as a generic parameter on an item.

The following type inference variables cannot be generalized:

e Atypeinference variable “typar that is part of the inferred or declared type of a definition,
unless the definition is marked inline.

e Atypeinference variable in an inferred type in the Expritems or Patitems tables of env, or in
an inferred type of a module in the ModulesAndNamespaces table in env.

e Atypeinference variable that is part of the inferred or declared type of a definition in which
the elaborated right-hand side of the definition is not a generalizable expression, as
described later in this section.

e Atypeinference variable that appears in a constraint that itself refers to an ungeneralizable
type variable.

Generalizable type variables are computed by a greatest-fixed-point computation, as follows:
1. Start with all variables that are candidates for generalization.

2. Determine a set of variables U that cannot be generalized because they are free in the
environment or present in ungeneralizable definitions.

3. Remove the variables in U from consideration.
4. Addto U any inference variables that have a constraint that involves a variable in U.

5. Repeat steps 2 through 4.
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Informally, generalizable expressions represent a subset of expressions that can be freely copied and
instantiated at multiple types without affecting the typical semantics of an F# program. The
following expressions are generalizable:

e A function expression

e An object expression that implements an interface

e Adelegate expression

o A “let” definition expression in which both the right-hand side of the definition and the body of
the expression are generalizable

o A “let rec” definition expression in which the right-hand sides of all the definitions and the body
of the expression are generalizable

o Atuple expression, all of whose elements are generalizable

e Arecord expression, all of whose elements are generalizable, where the record contains no
mutable fields

e Aunion case expression, all of whose arguments are generalizable
e An exception expression, all of whose arguments are generalizable
e An empty array expression

e Asimple constant expression

e An application of a type function that has the GeneralizableValue attribute.

Explicit type parameter definitions on value and member definitions can affect the process of type
inference and generalization. In particular, a declaration that includes explicit generic parameters
will not be generalized beyond those generic parameters. For example, consider this function:

let f<'T> (x : 'T) y = X

During type inference, this will result in a function of the following type, where ' b is a type
inference variable that is yet to be resolved.

f<'T> : 'T ->"'"b ->"Db

To permit generalization at these definitions, either remove the explicit generic parameters (if they
can be inferred), or use the required number of parameters, as the following example shows:

let throw<'T,'U> (x:'T) (y:'U) = x

14.6.8 Condensation of Generalized Types

After a function or member definition is generalized, its type is condensed by removing generic type
parameters that apply subtype constraints to argument positions. (The removed flexibility is
implicitly reintroduced at each use of the defined function; see §14.4.3).

Condensation decomposes the type of a value or member to the following form:

tynn * .0 F tym -> .0 > tym ¥ ... F tym -> rty
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The positions ty;; are called the parameter positions for the type.
Condensation applies to a type parameter ' a if all of the following are true:

e 'aisnot an explicit type parameter.
e 'aoccurs at exactly one tyi; parameter position.

e 'ahas asingle coercion constraint 'a : > ty and no other constraints. However, one additional
nullness constraint is permitted if ty satisfies the nullness constraint.

e 'adoes not occurin any other tyij, norin rty.

e 'adoes not occur in the constraints of any condensed typar.

Condensation is a greatest-fixed-point computation that initially assumes all generalized type
parameters are condensed, and then progressively removes type parameters until a minimal set
remains that satisfies the above rules.

The compiler removes all condensed type parameters and replaces them with their subtype
constraint ty. For example:

let F x = (x :> System.IComparable).CompareTo(x)
After generalization, the function is inferred to have the following type:
F : 'a -> int when 'a :> System.IComparable
In this case, the actual inferred, generalized type for F is condensed to:
F : System.IComparable -> R
Condensation does not apply to arguments of unconstrained variable type. For example:
let ignore x = ()
with type
ignore: 'a -> unit
In particular, this is not condensed to
ignore: obj -> unit

In rare cases, condensation affects the points at which value types are boxed. In the following
example, the value 3 is now boxed at uses of the function:

F 3
If a function is not generalized, condensation is not applied. For example, consider the following:

let testl =
let ff = Seq.map id >> Seq.length
(ff [1], £f [| 12 |]) // error here
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In this example, ¥ is not generalized, because it is not defined by using a generalizable expression—
computed functions such as Seq.map id >> Seq.length are not generalizable. This means that
its inferred type, after processing the definition, is

F : '_a->int when '_a :> seq<'_b>

where the type variables are not generalized and are unsolved inference variables. The application
of ffto [1] equates 'a with int 1list, making the following the type of F:

F : int list -> int

The application of £ to an array type then causes an error. This is similar to the error returned by
the following:

let testl =
let ff = Seqg.map id >> Seq.length
(ff [1], ff ["one"]) // error here

Again, T is not generalized, and its use with arguments of type int list and string listis not
permitted.

14.7 Dispatch Slot Inference

The F# compiler applies Dispatch Slot Inference to object expressions and type definitions before it
processes their members. For both object expressions and type definitions, the following are input
to Dispatch Slot Inference:

e Atype tyothatis being implemented.

o Asetof membersoverride x.M(arg;...argy).

o Aset of additional interface types ty; ... tyn.

e Afurther set of members override x.M(arg:...argy) foreach ty;.

Dispatch slot inference associates each member with a unique abstract member or interface
member that the collected types ty: define or inherit.

The types tyo ... ty, together imply a collection of required types R, each of which has a set of
required dispatch slots Slotsg of the form abstract M : aty:...atyy -> atyr:. Each dispatch
slot is placed under the most-specific ty relevant to that dispatch slot. If there is no most-specific
type for a dispatch slot, an error occurs.

For example, assume the following definitions:

type IA = interface abstract P : int end
type IB = interface inherit IA end
type ID = interface inherit IB end
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With these definitions, the following object expression is legal. Type IB is the most-specific
implemented type that encompasses IA, and therefore the implementation mapping for P must be
listed under IB:

let x = { new ID
interface IB with
member x.P = 2 }

But given:
type IA = interface abstract P : int end
type IB = interface inherit IA end
type IC = interface inherit IB end
type ID = interface inherit IB inherit IC end

then the following object expression causes an error, because both 1B and IC include the interface
IA, and consequently the implementation mapping for P is ambiguous.

let x = { new ID
interface IB with
member x.P = 2
interface IC with
member x.P = 2 }

The ambiguity can be resolved by explicitly implementing interface IA.

After dispatch slots are assigned to types, the compiler tries to associate each member with a
dispatch slot based on name and number of arguments. This is called dispatch slot inference, and it
proceeds as follows:

e Foreachmember x.M(arg:...argy) intype ty, attempt to find a single dispatch slot in the
form

abstract M : aty:...atyw -> rty

with name M, argument count N, and most-specific implementing type ty.

e To determine the argument counts, analyze the syntax of patterns and look specifically for
tuple and unit patterns. Thus, the following members have argument count 1, even though
the argument type is unit:

member obj.ToString(() | ())

member obj.ToString(():unit) ..
member obj.ToString(_:unit) = ...

e A member may have a return type, which is ignored when determining argument counts:

member obj.ToString() : string =
For example, given

let objl1 =
{ new System.Collections.Generic.IComparer<int> with
member x.Compare(a,b) = compare (a % 7) (b % 7) }
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the types of a and b are inferred by looking at the signature of the implemented dispatch slot, and
are hence both inferred to be int.

14.8 Dispatch Slot Checking

Dispatch Slot Checking is applied to object expressions and type definitions to check consistency
properties, such as ensuring that all abstract members are implemented.

After the compiler checks all bodies of all methods, it checks that a one-to-one mapping exists
between dispatch slots and implementing members based on exact signature matching.

The interface methods and abstract method slots of a type are collectively known as dispatch slots.
Each object expression and type definition results in an elaborated dispatch map. This map is keyed
by dispatch slots, which are qualified by the declaring type of the slot. This means that a type that
supports two interfaces I and 12, both of which contain the method m, may supply different
implementations for I.m() and I2.m().

The construction of the dispatch map for any particular type is as follows:
e |[f the type definition or extension has an implementation of an interface, mappings are added

for each member of the interface,

e |[f the type definition or extension has a default or override member, a mapping is added for
the associated abstract member slot.

14.9 Byref Safety Analysis

Byref arguments are pointers that can be stack-bound and are used to pass values by reference to
procedures in CLI languages, often to simulate multiple return values. Byref pointers are not often
used in F#; more typically, tuple values are used for multiple return values. However, a byref value
can result from calling or overriding a CLI method that has a signature that involves one or more
byref values.

To ensure the safety of byref arguments, the following checks are made:

e Byref types may not be used as generic arguments.

e Byref values may not be used in any of the following:
e The argument types or body of function expressions (fun .. -> ..).
e The member implementations of object expressions.
e The signature or body of let-bound functions in classes.

e The signature or body of let-bound functions in expressions.

Note that function expressions occur in:

e The elaborated form of sequence expressions.
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o The elaborated form of computation expressions.

e The elaborated form of partial applications of module-bound functions and members.

In addition:

e A generic type cannot be instantiated by a byref type.
e An object field cannot have a byref type.

e Astatic field or module-bound value cannot have a byref type.

As a result, a byref-typed expression can occur only in these situations:

e Asan argument to a call to a module-defined function or class-defined function.

e On the right-hand-side of a value definition for a byref-typed local.

These restrictions also apply to uses of the prefix && operator for generating native pointer values.

14.10 Promotion of Escaping Mutable Locals to Objects
Value definitions whose byref address would be subject to the restrictions on byref<_> listed in
§14.9 are treated as implicit declarations of reference cells. For example

let sumSquares n =
let mutable total = ©
[ 1..n1] |>Seqg.iter (fun x -> total <- total + x*x)
total

is considered equivalent to the following definition:

let sumSquares n =
let total = ref ©
[ 1..n1] |> Seqg.iter
(fun x -> total.contents <- total.contents + x*x)
total.contents

because the following would be subject to byref safety analysis:

let sumSquares n =
let mutable total = ©
&total

14.11 Arity Inference

During checking, members within types and function definitions within modules are inferred to have
an arity. An arity includes both of the following:

e The number of iterated (curried) arguments n
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e Atuple length for these arguments [A;; ... ;A,]. Atuple length of zero indicates that the
corresponding argument is of type unit.

Arities are inferred as follows. A function definition of the following form is given arity [A:; ... ;A.],
where each A; is derived from the tuple length for the final inferred types of the patterns:

let ident pat; ... pat, = ...
For example, the following is given arity [1; 2]:
let £ x (y,z) =X +y + z

Arities are also inferred from function expressions that appear on the immediate right of a value
definition. For example, the following has an arity of [1]:

let f = fun x -> x + 1
Similarly, the following has an arity of [1;1]:

let f x =funy -> x +y

Arity inference is applied partly to help define the elaborated form of a function definition. This is
the form that other CLI languages see. In particular:

e Afunction value F in a module that has arity [A1; . .. ;A,] and the type
tys,1 ¥ o0 ¥ tyia -> o0 >ty ¥ oo F tynan -> rty
elaborates to a CLI static method definition with signature
rty F(tyis,1, «-«s t¥ia1, eeey t¥n1s «eey tVn,an).
e F#instance (respectively static) methods that have arity [A:; ... ;A,] and type
tys, 2 ¥ oo0 F tysa -> o0 => tyn,s ¥ oo F tynan -> rty
elaborate to a CLI instance (respectively static) method definition with signature
rty F(tys,1, ..., tyia1),subjectto the syntactic restrictions that result from the patterns
that define the member, as described later in this section.

For example, consider a function in a module with the following definition:
let AddThemUp x (y, z) = X +y + z

This function compiles to a CLI static method with the following C# signature:
int AddThemUp(int x, int y, int z);

Arity inference applies differently to function and member definitions. Arity inference on function
definitions is fully type-directed. Arity inference on members is limited if parentheses or other
patterns are used to specify the member arguments. For example:

module Foo =
// compiles as a static method taking 3 arguments
let testl (al: int, a2: float, a3: string) = ()

// compiles as a static method taking 3 arguments
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let test2 (aTuple : int * float * string) = ()

// compiles as a static method taking 3 arguments
let test3 ( (aTuple : int * float * string) ) = ()

// compiles as a static method taking 3 arguments
let test4 ( (al: int, a2: float, a3: string) ) = ()

// compiles as a static method taking 3 arguments
let test5 (al, a2, a3 : int * float * string) = ()

type Bar() =
// compiles as a static method taking 3 arguments
static member Testl (al: int, a2: float, a3: string) = ()

// compiles as a static method taking 1 tupled argument
static member Test2 (aTuple : int * float * string) = ()

// compiles as a static method taking 1 tupled argument
static member Test3 ( (aTuple : int * float * string) ) = ()

// compiles as a static method taking 1 tupled argument
static member Test4 ( (al: int, a2: float, a3: string) ) = ()

// compiles as a static method taking 1 tupled argument
static member Test5 (al, a2, a3 : int * float * string) = ()

14.12 Additional Constraints on CLI Methods

F# treats some CLI methods and types specially, because they are common in F# programming and
cause extremely difficult-to-find bugs. For each use of the following constructs, the F# compiler
imposes additional ad hoc constraints

x.Equals(yobj) requires type ty : equality for the static type of x
x.GetHashCode() requires type ty : equality for the static type of x

new Dictionary<A,B>() requires A : equality, for any overload that does not take an
IEqualityComparer<T>

No constraints are added for the following operations. Consider writing wrappers around these
functions to improve the type safety of the operations.

System.Array.BinarySearch<T>(array,value) requiring C : comparison, for any overload that
does not take an IComparer<T>

System.Array.IndexOf requiring C : equality
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System.Array.LastIndexOf(array,T) requiring C : equality

System.Array.Sort<'T>(array) requiring C : comparison, for any overload that does not take an
IEqualityComparer<T>

new SortedlList<A,B>() requiring A : comparison, for any overload that does not take an
IEqualityComparer<T>

new SortedDictionary<A,B>() requiring C : comparison, for any overload that does not take an
IEqualityComparer<_>
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15. Lexical Filtering

15.1 Lightweight Syntax

F# supports lightweight syntax, in which whitespace makes indentation significant.

The lightweight syntax option is a conservative extension of the explicit language syntax, in the sense
that it simply lets you leave out certain tokens such as in and ; ; because the parser takes
indentation into account. Indentation can make a surprising difference in the readability of code.
Compiling your code with the indentation-aware syntax option is useful even if you continue to use
explicit tokens, because the compiler reports many indentation problems with your code and
ensures a regular, clear formatting style.

In the processing of lightweight syntax, comments are considered pure whitespace. This means that
the compiler ignores the indentation position of comments. Comments act as if they were replaced
by whitespace characters. Tab characters cannot be used in F# files.

15.1.1 Basic Lightweight Syntax Rules by Example
The basic rules that the F# compiler applies when it processes lightweight syntax are shown below,
illustrated by example.

;; delimiter

When the lightweight syntax option is enabled, top level expressions do not require the ; ; delimiter
because every construct that starts in the first column is implicitly a new declaration. The ; ;
delimiter is still required to terminate interactive entries to fsi.exe, but not when using F# Interactive
from Visual Studio.

Lightweight Syntax Normal Syntax
printf "Hello" printf "Hello";;
printf "World" printf "World";;
in keyword

When the lightweight syntax option is enabled, the in keyword is optional. The token after the
in a 'let' definition begins a new block, and the pre-parser inserts an implicit separating in token
between each definition that begins at the same column as that token.

Lightweight Syntax Normal Syntax

let SimpleSample() = #indent "off"
let x =10 + 12 - 3 let SimpleSample() =
lety =x *2+ 1 let x = 10 + 12 - 3 in
let rl,r2 = x/3, x%3 lety =x * 2+ 1 in
(x,y,rl,r2) let ri,r2 = x/3, x%3 in

(x,y,rl,r2)
done keyword
When the lightweight syntax option is enabled, the done keyword is optional. Indentation
establishes the scope of structured constructs such as match, for,while and if/then/else.

Lightweight Syntax Normal Syntax
let FunctionSample() = #indent "off"
let tick x = printfn "tick %d" x let FunctionSample() =
let tock x = printfn "tock %d" x let tick x = printfn "tick %d" x in
let choose f g h x = let tock x = printfn "tock %d" x in
if £ x then g x else h x let choose f g h x =
for i = @ to 10 do if f x then g x else h x in

choose (fun n -> n%2 = @) tick tock i for i = @ to 10 do



printfn "done!" choose (fun n -> n%2 = @) tick tock i
done;
printfn "done!"

if/then/else Scope

When the lightweight syntax option is enabled, the scope of if/then/else is implicit from
indentation. Without the lightweight syntax option, begin/end or parentheses are often required
to delimit such constructs.

Lightweight Syntax Normal Syntax
let ArraySample() = #indent "off"
let numLetters = 26 let ArraySample() =
let results = Array.create numLetters © let numLetters = 26 in
let data = "The quick brown fox" let results = Array.create numLetters 0 in
for i = © to data.Length - 1 do let data = "The quick brown fox" in
let ¢ = data.Chars(i) for i = @ to data.Length - 1 do
let ¢ = Char.ToUpper(c) let ¢ = data.Chars(i) in
if ¢ >= 'A" & ¢ <= 'Z"' then let c = Char.ToUpper(c) in
let i = Char.code ¢ - Char.code 'A’ if ¢ >= 'A" & c <= 'Z' then begin
results.[i] <- results.[i] + 1 let i = Char.code c - Char.code 'A' in
printfn "done!" results.[i] <- results.[i] + 1
end
done;

printfn "done!"

15.1.2 Inserted Tokens
Lexical filtering inserts the following hidden tokens :

token $in // Note: also called ODECLEND
token $done // Note: also called ODECLEND
token $begin // Note: also called OBLOCKBEGIN

token $end // Note: also called OEND, OBLOCKEND and
ORIGHT_BLOCK_END

token $sep // Note: also called OBLOCKSEP

token $app // Note: also called HIGH_PRECEDENCE_APP

token $tyapp // Note: also called HIGH_PRECEDENCE_TYAPP

Note: The following tokens are also used in the Microsoft F# implementation. They are
translations of the corresponding input tokens and help provide better error messages
for lightweight syntax code:

tokens $let $use $let! $use! $do $do! $then $else $with
$function $fun

15.1.3 Grammar Rules Including Inserted Tokens
Additional grammar rules take into account the token transformations performed by lexical filtering:

expr +:=
| let function-defn $in expr
| let value-defn $in expr
| let rec function-or-value-defns $in expr
| while expr do expr $done
| if expr then $begin expr $end
| for pat in expr do expr $done
| for expr to expr do expr $done
| try expr $end with expr $done
| try expr $end finally expr $done
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expr $app expr // equivalent to "expr(expr)

|

| expr $sep expr // equivalent to "expr; expr"
| expr $tyapp < types >// equivalent to "expr<types>"

| $begin expr $end // equivalent to “expr”

elif-branch +:=
| elif expr then $begin expr $end

else-branch +:=
| else $begin expr $end

class-or-struct-type-body +:=
| $begin class-or-struct-type-body $end
// equivalent to class-or-struct-type-
body

module-elems +:=
| $begin module-elem ... module-elem $end

module-abbrev +:=
| module ident = $begin Long-ident $end

module-defn +:=
| module ident = $begin module-defn-body $end

module-signature-elements +:=
| $begin module-signature-element ... module-signature-element $end

module-signature +:=
| module ident = $begin module-signature-body $end

15.1.4 Offside Lines

Lightweight syntax is sometimes called the “offside rule”. In F# code, offside lines occur at column
positions. For example, an = token associated with 1et introduces an offside line at the column of
the first non-whitespace token after the = token.

Other structured constructs also introduce offside lines at the following places:

e The column of the first token after then in an if/then/else construct.

e The column of the first token after try, else, ->, with (inamatch/with or try/with), or
with (in a type extension).

e The column of the first token of a (, { or begin token.

e Thestartofa let, if or module token.

Here are some examples of how the offside rule applies to F# code. In the first example, let and
type declarations are not properly aligned, which causes F# to generate a warning.

// "let" and "type" declarations in
// modules must be precisely aligned.
let x =1
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let y = 2 <-- unmatched 'let'
let z = 3 <-- warning FS0058: possible
incorrect indentation: this token is offside of
context at position (2:1)

In the second example, the | markers in the match patterns do not align properly:

// The "|" markers in patterns must align.
// The first "|" should always be inserted.
let £ () =

match 1+1 with
| 2 -> printf "ok"
| _ -> failwith "no!"™ <-- syntax error

15.1.5 The Pre-Parse Stack

F# implements the lightweight syntax option by preparsing the token stream that results from a
lexical analysis of the input text according to the lexical rules in §15.1.3. Pre-parsing for lightweight
syntax uses a stack of contexts.

e When a column position becomes an offside line, a context is pushed.

e The closing bracketing tokens ), }, and end terminate offside contexts up to and including the
context that the corresponding opening token introduced.

15.1.6 Full List of Offside Contexts
This section describes the full list of offside contexts that is kept on the pre-parse stack.

The SeqBlock context is the primary context of the analysis.It indicates a sequence of items that
must be column-aligned. Where necessary for parsing, the compiler automatically inserts a delimiter
that replaces the regular in and ; tokens between the syntax elements. The SeqBlock context is
pushed at the following times:

e Immediately after the start of a file, excluding lexical directives such as #i-.

e Immediately after an = token is encountered in a Let or Member context.

e Immediately after a Paren, Then, Else, WithAugment, Try, Finally, Do context is pushed.
e Immediately after an infix token is encountered.

e Immediately after a - > token is encountered in a MatchClauses context.

e Immediately after an interface, class, or struct token is encountered in a type
declaration.

e Immediately after an = token is encountered in a record expression when the subsequent token
either (a) occurs on the next line or (b) is one of try, match, if, let, for, while or use.

e Immediately after a <- token is encoutered when the subsequent token either (a) does not occur
on the same line or (b) is one of try, match, if, let, for, while or use.

Here “immediately after” refers to the fact that the column position associated with the SeqBlock is
the first token following the significant token.
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In the last two rules, a new line is significant. For example, the following do not start a SeqBlock on
the right-hand side of the “<-“ token, so it does not parse correctly:

let mutable x = 1
// The subsequent token occurs on the same line.
X <- printfn "hello"

2 + 2

To start a SegBlock on the right, either parentheses or a new line should be used:

// The subsequent token does not occur on the same line, so a SeqBlock

is pushed.

X <-
printfn "hello"
2 + 2

The following contexts are associated with nested constructs that are introduced by the specified

keywords:

Context Pushed when the token stream contains...

Let The let keyword

If The if or elif keyword

Try The try keyword

Lazy The lazy keyword

Fun The fun keyword

Function The function keyword

WithLet The with keyword as part of a record expression or an object expression whose
members use the syntax{ new Foo with M() = 1 and N() = 2 }

WithAugment The with keyword as part of an extension, interface, or object expression whose
members use the syntax { new Foo member x.M() = 1 member x. N() = 2 }

Match the match keyword

For the for keyword

While The while keyword

Then The then keyword

Else The else keyword

Do The do keyword

Type The type keyword

Namespace The namespace keyword

Module The module keyword

Member = The member, abstract, default, or override keyword, if the Member context

is not already active, because multiple tokens may be present.

—or—

= ( is the next token after the new keyword. This distinguishes the member
declaration new(x) = ... from the expression new x()
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Context Pushed when the token stream contains...

Paren(token) (, begin, struct, sig, {, [, [|,or quote-op-Left
MatchClauses The with keyword in a Try or Match context immediately after a function keyword.
Vanilla An otherwise unprocessed keyword in a SeqBlock context.

15.1.7 Balancing Rules

When the compiler processes certain tokens, it pops contexts off the offside stack until the stack
reaches a particular condition. When it pops a context, the compiler may insert extra tokens to
indicate the end of the construct. This procedure is called balancing the stack.

The following table lists the contexts that the compiler pops and the balancing condition for each:

Token Contexts Popped and Balancing Conditions:
End Enclosing context is one of the following:
=WithAugment

=Paren(interface)
=Paren(class)
=Paren(sig)
=Paren(struct)
=Paren(begin)

55 Pop all contexts from stack
else If

elif If

done Do

in For or Let

eith Match, Member, Interface, Try, Type
finally Try

) Paren(()

} Paren({)

] Paren([)

1] Paren([])
quote-op-right Paren(quote-op-left)

15.1.8 Offside Tokens, Token Insertions, and Closing Contexts
The offside limit for the current offside stack is the rightmost offside line for the offside contexts on
the context stack. The following figure shows the offside limits:

let FunctionSample() =

let tick x = printfn "tick %d" x

let tock x = printfn "tock %d" x

let thoose f g h x =

. if f x then g x else h x

for i = @ to 10 do

E ;hoose (fun n -> n%2 = @) tick tock i
printfn "done!"

\\\\::\\ Offside limit for inner 1et and for contexts

Offside limit for outer 1let context
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When a token occurs on or before the offside limit for the current offside stack, and a permitted

undentation does not apply, enclosing contexts are closed until the token is no longer offside. This

may result in the insertion of extra delimiting tokens.

Contexts are closed as follows:

When a Fun context is closed, the $end token is inserted.

When a SeqBlock, MatchClauses, Let, or Do context is closed, the $end token is inserted, with
the exception of the first SeqBlock pushed for the start of the file.

When a While or For context is closed, and the offside token that forced the close is not done,
the $done token is inserted.

When a Member context is closed, the $end token is inserted.

When a WithAugment context is closed, the $end token is inserted.

If a token is offside and a context cannot be closed, then an “undentation” warning or error is issued
to indicate that the construct is badly formatted.

Tokens are also inserted in the following situations:

When a SegBlock context is pushed, the $begin token is inserted, with the exception of the first
SeqBlock pushed for the start of the file.

When a token other than and appears directly on the offside line of Let context, and the next
surrounding context is a SeqBlock, the $in token is inserted.

When a token occurs directly on the offside line of a SeqBlock on the second or subsequent lines
of the block, the $sep token is inserted. This token plays the same role as ; in the grammar
rules.

For example, consider this source text:

let x = 1
X

The raw token stream contains let, x, =, 1, x and the end-of-file marker eof. An initial SeqBlock
is pushed immediately after the start of the file, at the first token in the file, with an offside line
on column 0. The let token pushes a Let context. The = token in a Let context pushes a SeqBlock
context and inserts a $begin token. The 1 pushes a Vanilla context. The final token, X, is offside
from the Vanilla context, which pops that context. It is also offside from the SeqBlock context,
which pops the context and inserts $end. It is also offside from the Let context, which inserts
another $end token. It is directly aligned with the SegBlock context, so a $seq token is inserted.

15.1.9 Exceptions to the Offside Rules
The compiler makes some exceptions to the offside rules when it analyzes a token to determine

whether it is offside from the current context. The following table summarizes the exceptions and

shows examples of each.

Context Exception Example
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Context Exception Example
SeqBlock An infix token may be offside by the let x =
size of the token plus one. expr + expr
+ expr + expr
let x =
expr
|> f expr
|> f expr
SeqBlock An infix token may align precisely let someFunction(someCollection) =
with the offside line of the SeqBlock. someCollection
|> List.map (fun x -> x + 1)
SeqBlock The infix | > token that begins the last = new MenuItem("&Open...",
line is not considered as a new new EventHandler(fun _ _ ->
element in the sequence block on the
right-hand side of the definition. The ))
same also applies to end, and, with,
then, and right-parenthesis
operators.
In the example, the first ) token does
not indicate a new element in a
sequence of items, even though it
aligns precisely with the sequence
block that starts at the beginning of
the argument list.
Let The and token may align precisely let rec x =1
with the let keyword. and y = 2
X +y
Type The }, end, and, and | tokens may type X =
align precisely with the type | A
keyword. | B
with
member x.Seven = 21 / 3
end
and Y = {
X : int
}
and Z() = class
member x.Eight = 4 + 4
end
For The done token may align precisely for i =1 to 3 do
with the for keyword. expr
done
SeqBlock; On the right-hand side of an arrow for  match x with
Match a match expression, a token may align | Some(_) -> 1
precisely with the match keyword. | None ->
This exception allows the last match y with
expression to align with the match, so | Some(_) -> 2
that a long series of matches does not | None ->
increase indentation. 3
Interface | The end token may align precisely interface IDisposable with
with the interface keyword. member x.Dispose() = printfn
disposing!"
end
If The then, elif, and else tokens if big
may align precisely with the if then callSomeFunction()
keyword. elif small

then callSomeOtherFunction()
else doSomeCleanup()
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Context Exception Example

Try The finally and with tokens may Example 1:
align precisely with the try keyword. try
callSomeFunction()
finally
doSomeCleanup()
Example 2:
try
callSomeFunction()
with Failure(s) ->

doSomeCleanup()
Do The done token may align precisely for i =1 to 3
with the do keyword. do
expr
done

15.1.10 Permitted Undentations

As a general rule, incremental indentation requires that nested expressions occur at increasing
column positions in indentation-aware code. Warnings or syntax errors are issued when this is not
the case. However, undentation is permitted for the following constructs:

e Bodies of function expressions
e Branches of if/then/else expressions

e Bodies of modules and module types

15.1.10.1Undentation of Bodies of Function Expressions
The bodies of functions may be undented from the fun or function symbol. As a result, the compiler

ignores the symbol when determining whether the body of the function satisfies the incremental
indentation rule. For example, the printf expression in the following example is undented from
the fun symbol that delimits the function definition:

let HashSample(tab: Collections.HashTable< , >) =
tab.Iterate (fun c v ->
printfn "Entry (%0,%0)" c v)

However, the block must not undent past other offside lines. Thefollowing is not permitted because
the second line breaks the offside line established by the = in the first line:

let x = (function (s, n) ->
(fun z ->
S+n+z))

Constructs enclosed in brackets may be undented.

15.1.10.2 Undentation of Branches of If/Then/Else Expressions

The body of a (... ) or begin ... end block in an if/then/else expression may be undented when
the body of the block follows the then or else keyword but may not undent further than the if
keyword. In this example, the parenthesized block follows then, so the body can be undented to the
offside line established by if:

let IfSample(day: System.DayOfWeek) =
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if day = System.DayOfWeek.Monday then (
printf "I don't like Mondays"

)

15.1.10.3Undentation of Bodies of Modules and Module Types

The bodies of modules and module types that are delimited by begin and end may be undented
For example, in the following example the two let statements that comprise the module body are
undented from the =.

module MyNestedModule = begin
let one = 1
let two = 2

end

Similarly, the bodies of classes, interfaces, and structs delimited by { ... }, class ... end, struct ...
end, or interface ... end may be undented to the offside line established by the type keyword.
For example:

type MyNestedModule = interface
abstract P : int
end

15.2 High Precedence Application

The entry ¥ x in the precedence table in §4.4.2 refers to a function application in which the function
and argument are separated by spaces. The entry "f(x)" indicates that in expressions and patterns,
identifiers that are followed immediately by a left parenthesis without intervening whitespace form
a “high precedence” application. Such expressions are parsed with higher precedence than prefix
and dot-notation operators. Conceptually this means that

Example 1: B(e)
is analyzed lexically as
Example 1: B $app (e)

where $app is an internal symbol inserted by lexical analysis. We do not show this symbol in the
remainder of this specification and simply show the original source text.

This means that the following two statements

Example 1: B(e).C
Example 2: B (e).C

are parsed as

Example 1: (B(e)).C
Example 2: B ((e).C)

respectively.
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Furthermore, arbitrary chains of method applications, property lookups, indexer lookups (. [ ]), field
lookups, and function applications can be used in sequence if the arguments of method applications
are parenthesized and immediately follow the method name, with no intervening spaces. For
example:

e.Methl(argl,arg2).Propl.[3].Prop2.Meth2()

Although the grammar and these precedence rules technically allow the use of high-precedence
application expressions as direct arguments, an additional check prevents such use. Instead, such
expressions must be surrounded by parentheses. For example,

f e.Methl(argl,arg2) e.Meth2(argl,arg2)
must be written
f (e.Methl(argl,arg2)) (e.Meth2(argl,arg2))

However, indexer, field, and property dot-notation lookups may be used as arguments without
adding parentheses. For example:

f e.Propl e.Prop2.[3]

15.3 Lexical Analysis of Type Applications

The entry f<types> xinthe precedence table (§4.4.2) refers to any identifier that is followed
immediately by a < symbol and a sequence of all of the following:

° , 5, 5 ', [, ], whitespace, or identifier tokens.

e Aparentheses ( or < token followed by any tokens until a matching parentheses ) or > is
encountered.

e Afinal > token.

During this analysis, any token that is composed only of the > character (such as >, >>, or >>>) is
treated as a series of individual > tokens. Likewise, any token composed only of > characters
followed by a period (such as >., >>., or >>>.) is treated as a series of individual > tokens followed
by a period.

If such a sequence of tokens follows an identifier, lexical analysis marks the construct as a high
precedence type application and subsequent grammar rules ensure that the enclosed text is parsed
as a type. Conceptually this means that

Example 1: B<int>.C<int>(e).C
is returned as the following stream of tokens:
Example 1: B $app <int> .C $app <int>(e).C

where $app is an internal symbol inserted by lexical analysis. We do not show this symbol elsewhere
in this specification and simply show the original source text.
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The lexical analysis of type applications does not apply to the character sequence “<>”. A character
sequence such as “< >” with intervening whitespace should be used to indicate an empty list of
generic arguments.

type Foo() =

member this.Value = 1
let b = new Foo< >() // valid
let ¢ = new Foo<>() // invalid
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16. Provided Types

Type providers are extensions provided to an F# compiler or interpreter which provide information
about types available in the environment for the F# code being analysed.

The compilation context is augmented with a set of type provider instances. A type provider insance
is interrogated for information through type provider invocations (TP1). Type provider invocations
are all executed at compile-time. The type provider instance is not required at runtime.

Wherever an operation on a provided namespace, provided type definition or provided
member is mentioned in this section, it is assumed to be a compile-time type provider
invocation.

The exact protocol used to implement type provider invocations and communicate
between an F# compiler/interpreter and type provider instances is implementation
dependent.

As of this release of F#,

- atype provideris a .NET 4.x binary component referenced as an imported asssembly
reference. The assembly should have a TypeProviderAssemblyAttribute, with
at least one component marked with TypeProviderAttribute.

- atype provider instance is an object created for a component marked with
TypeProviderAttribute.

- provided type definitions are System. Type objects returned by a type provider
instance.

- provided methods are System.Reflection.MethodInfo objects returned by a
type provider instance.

- provided constructors are System.Reflection.ConstructorInfo objects
returned by a type provider instance.

- provided properties are System.Reflection.PropertyInfo objects returned
by a type provider instance.

- provided events are System.Reflection.EventInfo objects returned by a type
provider instance.

- provided literal fields are System.Reflection.FieldInfo objects returned by a
type provider instance.

- provided parameters are System.Reflection.ParameterInfo objects returned
by a type provider instance.

- provided static parameters are System.Reflection.ParameterInfo objects
returned by a type provider instance.

- provided attributes are attribute value objects returned by a type provider instance.




16.1 Static Parameters

The syntax of types in F# is expanded to include static parameters, including named static
parameters:

type-arg =
static-parameter

static-parameter =
static-parameter-value
id = static-parameter-value

static-parameter-value =
const expr
simple-constant-expression

References to provided types may include static parameters, e.g.
type SomeService = ODataService<"http://some.url.org/service">

Static parameters which are constant expressions, but not simple literal constants, may be specified
using the const keyword, e.g.

type SomeService = CsvFile<const (__ _SOURCE_DIRECTORY_ _ + "/a.csv")>

Parentheses are needed around any simple contanst expressions after “const” that are not simple
literal constants, e.g.

type K = N.T< const (+1) >

During checking of a type A<type-args>, where A'is a provided type, the TPM
GetStaticParameters is invoked to determine the static parameters for the type A if any. If the
static parameters exist and are of the correct kinds, the TPM ApplyStaticArguments is invoked
to apply the static arguments to the provided type.

During checking of a method M<type-args>, where M is a provided method definition, the TPM
GetStaticParametersForMethod is invoked to determine the static parameters if any. If the
static parameters exist and are of the correct kinds, the TPM ApplyStaticArgumentsForMethod
is invoked to apply the static arguments to the provided method.

In both cases a static parameter value must be given for each non-optional static parameter.
16.1.1 Mangling of Static Parameter Values

Static parameter values are encoded into the names used for types and methods within F#
metadata. The encoding scheme used is

encoding(A<argl,...,argN>) =
typeOrMethodName,ParamNamel=encoding(argl),..., ParamNameN=encoding(argN)

encoding(v) ="s
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where s is the result applying the F# ‘string’ operator to v (using invariant numeric
formatting), and in the result " is replaced by \" and \ by \\

16.2 Provided Namespace

Each type provider instance in the assembly context reports a collection of provided namespaces
though the GetNamespaces type provider method. Each provided namespace can in turn report
further namespaces through the GetNestedNamespaces type provider method.

16.3 Provided Type Definitions

Each provided namespace reports provided type definitions though the GetTypes and
ResolveTypeName type provider methods. The type provider is obliged to ensure that these two
methods return consistent results.

Name resolution for unqualified identifiers may return provided type definitions if no other
resolution is available.

16.3.1 Generated v. Erased Types

Each provided type definition may be generated or erased. In this case, the types and method calls
are removed entirely during compilation and replaced with other representations. When an erased
type is used, the compiler will replace it with the first concrete type in its inheritance chain as
returned by the TPM type.BaseType. The erasure of an erased interface type is “object”.

> Ifit has a type definition under a path D.E.F, and the .Assembly of that type is in a different
assembly A to the provider’s assembly, then that type definition is a “generated” type
definition. Otherwise it is an erased type definition.

» Erased type definitions must return TypeAttributes with the IsErased flag set, value
0x40000000 and given by the F# literal TypeProviderTypeAttributes.IsErased.

» When a provided type definition is generated, its reported assembly A is treated as an
injected assembly which is statically linked into the resulting assembly.

» Concrete type definitions (both provided and F#-authored) and object expressions may not
inherit from erased types

> Concrete type definitions (both provided and F#-authored) and object expressions may not
implement erased interfaces

> If an erased type definition reports an interface, its erasure must implement the erasure of
that interface. The interfaces reported by an erased type definition must be unique up to

erasure.

» Erased types may not be used as the target type of a runtime type test of runtime coercion.
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» When determining uniqueness for F#-declared methods, uniqueness is determined after
erasure of both provided types and units of measure.

» The elaborated form of F# expressions is after erasure of provided types.

» Two generated type definitions are equivalent if and only if they have the same F# path and
name in the same assembly, once they are rooted according to their corresponding
generative type definition.

» Two erased type definitions are only equivalent if they are provided by the same provider,

using the same type name, with the same static arguments.

16.3.2 Type References

The elements of provided type definitions may reference other provided type definitions, and types
from imported assemblies referenced in the compilation context. They may not reference type
defined in the F# code currently being compiled.

16.3.3 Static Parameters
A provided type definition may report a set of static parameters. For such a definition, all other
provided contents are ignored.

A provided method definition may also report a set of static parameters. For such a definition, all
other provided contents are ignored.

Static parameters may be optional and/or named, indicated by the Attributes property of the
static parameter. For a given set of static parameters, no two static parameters may have the same
name and named static arguments must come after all other arguments.

16.3.4 Kind

» Provided type definitions may be classes.

This includes both erased and concrete types. This corresponds to the type.lsClass property
returning true for the provided type definition.

> Provided type definitions may be interfaces.

This includes both erased and concrete types. This corresponds to the type.IsInterface
property returning true. Only one of IsInterface, IsClass, IsStruct, IsEnum,
IsDelegate, IsArray may return true.

> Provided type definitions may be static classes.
This includes both erased and concrete types.
> Provided type definitions may be sealed.

» Provided type definitions may not be arrays. This means the type.lsArray property must
always return false. Provided types used in return types and argument positions may be
array “symbol” types, see below.
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> By default provided type definitions which are reference types are considered to support
null literals.

A provided type definition may have the AllowNullLiteralAttribute with value false
in which case the type is considered to have null as an abnormal value.

16.3.5 Inheritance

» Provided type definitions may report base types.
» Provided type definition may report interfaces.

16.3.6 Members

» Provided type definitions may report methods.

This corresponds to non-null results from the type.GetMethod and type.GetMethods of the
provided type definition. The results returned by these methods must be consistent.

o Provided methods may be static, instance and abstract

o Provided methods may not be class constructors (.cctor). By .NET rules these would
have to be private anyway.

o Provided methods may be operators such as op_Addition.
» Provided type definitions may report properties.

This corresponds to non-null results from the type.GetProperty and type.GetProperties of the
provided type definition. The results returned by these methods must be consistent.

o Provided properties may be static or instance

o Provided properties may be indexers. This corresponds to reporting methods with
name Item, or as identified by DefaultMemberAttribute non-null results from the
type.GetEvent and type.GetEvents of the provided type definition. The results
returned by these methods must be consistent. This include 1D, 2D, 3D and 4D
indexer access notation in F# (corresponding to different numbers of parameters to
the indexer property).

> Provided type definitions may report constructors.

This corresponds to non-null results from the type.GetConstructor and type.GetConstructors of
the provided type definition. The results returned by these methods must be consistent.

> Provided type definitions may report events.

This corresponds to non-null results from the type.GetEvent and type.GetEvents of the
provided type definition. The results returned by these methods must be consistent.

> Provided type definitions may report nested types.
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This corresponds to non-null results from the type.GetNestedType and type.GetNestedTypes of
the provided type definition. The results returned by these methods must be consistent.

o The nested types of an erased type may be generated types in a generated
assembly. The type.DeclaringType property of the nested type need not report the
erased type.

Provided type definitions may report literal (constant) fields.

This corresponds to non-null results from the type.GetField and type.GetFields of
the provided type definition, and is related to the fact that provided types may be
enumerations. The results returned by these methods must be consistent.

Provided type definitions may not report non-literal (i.e. non-const) fields

This is a deliberate feature limitation, because in .NET, non-literal fields should not appear in
public API surface area.

16.3.7 Attributes

>

Provided type definitions, properties, constructors, events and methods may report
attributes.

This includes ObsoleteAttribute and ParamArrayAttribute attributes

16.3.8 Accessibility

>

All erased provided type definitions must be public

However, concrete provided types are each in an assembly A that gets statically linked into
the resulting F## component. These assemblies may contain private types and methods.
These types are not directly “provided” types, since they are not returned to the compiler by
the API, but they are part of the closure of the types that are being embedded.

16.3.9 Elaborated Code
Elaborated uses of provided methods are erased to elaborated expressions returned by the TPM

GetInvokerExpression. Inthe current release of F#, replacement elaborated expressions are

specified via F# quotation values composed of quotations constructed with respect to the

referenced assemblies in the compilation context according to the following quotation library calls:

>

VvV V V V V V V

Expr.NewArray
Expr.NewObject
Expr.WhileLoop
Expr.NewDelegate
Expr.ForintegerRangelLoop
Expr.Sequential
Expr.TryWith

Expr.TryFinally
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Expr.Lambda
Expr.Call
Expr.Constant
Expr.DefaultValue
Expr.NewTuple
Expr.TupleGet
Expr.TypeAs
Expr.TypeTest
Expr.Let
Expr.VarSet
Expr.IfThenElse

V V V V V V VYV V V V V V

Expr.Var

The type of the quotation expression returned by GetInvokerExpression must be an erased
type. The type provider is obliged to ensure that this type is equivalent to the erased type of the
expression it is replacing.

16.3.10 Further Restrictions

> If a provided type definition reports a member with ExtensionAttribute, itis not
treated as an extension member

> Provided type and method definitions may not be generic
This corresponds to
- GetGenericArguments returning length O

- For type definitions, IsGenericType and IsGenericTypeDefinition returning
false

- For method definitions, IsGenericMethod and IsGenericMethodDefinition
returning false
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17.

Special Attributes and Types

This chapter describes attributes and types that have special significance to the F# compiler.

17.1 Custom Attributes Recognized by F#

The following custom attributes have special meanings recognized by the F# compiler. Except where

indicated, the attributes may be used in F# code, in referenced assemblies authored in F#, or in

assemblies that are authored in other CLI languages.

Attribute

Description

System.ObsoleteAttribute
[<Obsolete(...)>]

System.ParamArrayAttribute
[<ParamArray(...)>]

System.ThreadStaticAttribute
[<ThreadStatic(...)>]

System.ContextStaticAttribute
[<ContextStatic(...)>]

System.AttributeUsageAttribute
[<AttributeUsage(...)>]

System.Diagnostics.ConditionalAttribute
[<Conditional(...)>]

System.Reflection.AssemblyInformationalVersionA
ttribute
[<AssemblyInformationalVersion(...)>]

System.Reflection.AssemblyFileVersionAttribute
[<AssemblyFileVersion(...)>]

Indicates that the construct is obsolete and
gives a warning or error depending on the
settings in the attribute.

This attribute may be used in both F# and
imported assemblies.

When applied to an argument of a method,
indicates that the method can accept a
variable number of arguments.

This attribute may be used in both F# and
imported assemblies.

Marks a mutable static value in a class as
thread static.

This attribute may be used in both F# and
imported assemblies.

Marks a mutable static value in a class as
context static.

This attribute may be used in both F# and
imported assemblies.

Specifies the attribute usage targets for an
attribute.

This attribute may be used in both F# and
imported assemblies.

Emits code to call the method only if the

corresponding conditional compilation symbol

is defined.

This attribute may be used in both F# and
imported assemblies.

Attaches additional version metadata to the
compiled form of the assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches file version metadata to the compiled

form of the assembly.
This attribute may be used in both F# and
imported assemblies.
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Attribute

Description

System.Reflection.AssemblyDescriptionAttribute
[<AssemblyDescription(...)>]

System.Reflection.AssemblyTitleAttribute
[<AssemblyTitle(...)>]

System.Reflection.AssemblyCopyrightAttribute
[<AssemblyCopyright(...)>]

System.Reflection.AssemblyTrademarkAttribute
[<AssemblyTrademark(...)>]

System.Reflection.AssemblyCompanyAttribute
[<AssemblyCompany(...)>]

System.Reflection.AssemblyProductAttribute
[<AssemblyProduct(...)>]

System.Reflection.AssemblyKeyFileAttribute
[<AssemblyKeyFile(...)>]

System.Reflection.DefaultMemberAttribute
[<DefaultMember(...)>]

System.Runtime.CompilerServices.InternalsVisibl
eToAttribute
[<InternalsVisibleTo(...)>]

System.Runtime.CompilerServices.TypeForwardedTo
Attribute
[<TypeForwardedTo(...)>]

Attaches descriptive metadata to the compiled
form of the assembly, such as the “Comments”
attribute in the Win32 version resource for the
assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches title metadata to the compiled form
of the assembly, such as the “ProductName”
attribute in the Win32 version resource for the
assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches copyright metadata to the compiled
form of the assembly, such as the
“LegalCopyright” attribute in the Win32
version resource for the assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches trademark metadata to the compiled
form of the assembly, such as the
“LegalTrademarks” attribute in the Win32
version resource for the assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches company name metadata to the
compiled form of the assembly, such as the
“CompanyName” attribute in the Win32
version resource for the assembly.

This attribute may be used in both F# and
imported assemblies.

Attaches product name metadata to the
compiled form of the assembly, such as the
“ProductName” attribute in the Win32 version
resource for the assembly.

This attribute may be used in both F# and
imported assemblies.

Indicates to the F# compiler how to sign an
assembly.

This attribute may be used in both F# and
imported assemblies.

When applied to a type, specifies the name of
the indexer property for that type.

This attribute may be used in both F# and
imported assemblies.

Directs the F# compiler to permit access to the
internals of the assembly.

This attribute may be used in both F# and
imported assemblies.
Indicates a type redirection.

This attribute may be used only in imported
non-F# assemblies. It is not permitted in F#
code.

299



Attribute

Description

System.Runtime.

ute

[<Extension(...

System.Runtime.

te

[<D11Import(...

System.Runtime.

te

[<MarshalAs(...

System.Runtime.

[<In>]

System.Runtime.

[<Out>]

System.Runtime
e

CompilerServices.ExtensionAttrib

)>]

InteropServices.

)>]

InteropServices.

)>]

InteropServices.

InteropServices

InteropServices.

[<Optional(...)>]

System.Runtime.

bute

[<FieldOffset(.

InteropServices.

o)>]

System.NonSerializedAttribute
[<NonSerialized>]

DllImportAttribu

MarshalAsAttribu

InAttribute

.OutAttribute

OptionalAttribut

FieldOffsetAttri

System.Runtime.InteropServices.StructLayoutAttr

ibute

[<StructLayout(...)>]

FSharp.Core.AutoSerializableAttribute
[<AutoSerializable(false)>]

Indicates the compiled form of a C# extension
member.

This attribute may be used only in imported
non-F# assemblies. It is not permitted in F#
code.

When applied to a function definition in a
module, causes the F# compiler to ignore the
implementation of the definition, and instead
compile it as a CLI P/Invoke stub declaration.
This attribute may be used in both F# and
imported assemblies.

When applied to a parameter or return type,
specifies the marshalling attribute for a CLI
P/Invoke stub declaration.

This attribute may be used in both F# and
imported assemblies. However, F# does not
support the specification of "custom"
marshallers.

When applied to a parameter, specifies the CLI
In attribute.

This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding
attribute in the CLI compiled form.

When applied to a parameter, specifies the CLI
Out attribute.

This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding attribute
in the CLI compiled form.

When applied to a parameter, specifies the CLI
Optional attribute.

This attribute may be used in both F# and
imported assemblies. However, in F# its only
effect is to change the corresponding attribute
in the CLI compiled form.

When applied to a field, specifies the field
offset of the underlying CLI field.

This attribute may be used in both F# and
imported assemblies.

When applied to a field, sets the "not
serialized" bit for the underlying CLI field.
This attribute may be used in both F# and
imported assemblies.

Specifies the layout of a CLI type.

This attribute may be used in both F# and
imported assemblies.

When added to a type with value false,
disables default serialization, so that F# does
not make the type serializable.

This attribute should be used only in F#
assembilies.
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Attribute

Description

FSharp.Core.CLIMutableAttribute
[<CLIMutable>]

FSharp.Core.AutoOpenAttribute
[<AutoOpen>]

FSharp.Core.
CompilationRepresentationAttribute
[<CompilationRepresentation(...)>]
FSharp.Core.CompiledNameAttribute
[<CompiledName(...)>]

FSharp.Core.CustomComparisonAttribute
[<CustomComparison>]

FSharp.Core.CustomEqualityAttribute
[<CustomEquality>]

FSharp.Core.DefaultAugmentationAttribute

[<DefaultAugmentation(...)>]

FSharp.Core.DefaultValueAttribute
[<DefaultValue(...)>]

FSharp.Core.GeneralizableValueAttribute

[<GeneralizableValue>]

When specified, a record type is compiled to a
CLl representation with a default constructor
with property getters and setters.

This attribute should be used only in F#
assemblies.

When applied to an assembly and given a
string argument, causes the namespace or
module to be opened automatically when the
assembly is referenced.

When applied to a module without a string
argument, causes the module to be opened
automatically when the enclosing namespace
or module is opened.

This attribute should be used only in F#
assemblies.

Adjusts the runtime representation of a type .
This attribute should be used only in F#
assemblies.

Changes the compiled name of an F# language
construct.

This attribute should be used only in F#
assemblies.

When applied to an F# structural type,
indicates that the type has a user-specified
comparison implementation.

This attribute should be used only in F#
assemblies.

When applied to an F# structural type,
indicates that the type has a user-defined
equality implementation.

This attribute should be used only in F#
assemblies.

When applied to an F# discriminated union
type with value false, turns off the generation
of standard helper member tester, constructor
and accessor members for the generated CLI
class for that type.

This attribute should be used only in F#
assemblies.

When added to a field declaration, specifies
that the field is not initialized. During type
checking, a constraint is asserted that the field
type supports null. If the argument to the
attribute is false, the constraint is not
asserted.

This attribute should be used only in F#
assemblies.

When applied to an F# value, indicates that
uses of the attribute can result in generic code
through the process of type inference. For
example, Set.empty. The value must typically
be a type function whose implementation has
no observable side effects.

This attribute should be used only in F#
assemblies.
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Attribute

Description

FSharp.Core.LiteralAttribute
[<Literal>]

FSharp.Core.NoDynamicInvocationAttribute
[<NoDynamicInvocation>]

FSharp.Core.CompilerMessageAttribute
[<CompilerMessage(...)>]

FSharp.Core.StructAttribute
[<Struct>]

FSharp.Core.ClassAttribute
[<Class>]

FSharp.Core.InterfaceAttribute
[<Interface>]

FSharp.Core.MeasureAttribute
[<Measure>]

FSharp.Core.ReferenceEqualityAttribute
[<ReferenceEquality>]

FSharp.Core.ReflectedDefinitionAttribute
[<ReflectedDefinition>]

FSharp.Core.
RequireQualifiedAccessAttribute
[<RequireQualifiedAccess>]

When applied to a value, compiles the value as
a CLl literal.

This attribute should be used only in F#
assemblies.

When applied to an inline function or member
definition, replaces the generated code with a
stub that throws an exception at runtime. This
attribute is used to replace the default
generated implementation of unverifiable
inline members with a verifiable stub.

This attribute should be used only in F#
assemblies.

When applied to an F# construct, indicates
that the F# compiler should report a message
when the construct is used.

This attribute should be used only in F#
assemblies.

Indicates that a type is a struct type.

This attribute should be used only in F#
assemblies.

Indicates that a type is a class type.

This attribute should be used only in F#
assemblies.

Indicates that a type is an interface type.
This attribute should be used only in F#
assemblies.

Indicates that a type or generic parameter is a
unit of measure definition or annotation.

This attribute should be used only in F#
assembilies.

When applied to an F# record or union type,
indicates that the type should use reference
equality for its default equality
implementation.

This attribute should be used only in F#
assembilies.

Makes the quotation form of a definition
available at runtime through the
FSharp.Quotations.
Expr.GetReflectedDefinition method
This attribute should be used only in F#
assemblies.

When applied to an F# module, warns if an
attempt is made to open the module name.
When applied to an F# union or record type,
indicates that the field labels or union cases
must be referenced by using a qualified path
that includes the type name.

This attribute should be used only in F#
assemblies.
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Attribute

Description

FSharp.Core.
RequiresExplicitTypeArgumentsAttribute
[<RequiresExplicitTypeArguments>]

FSharp.Core.StructuralComparisonAttribute
[<StructuralComparison>]

FSharp.Core.StructuralEqualityAttribute
[<StructuralEquality>]

FSharp.Core.VolatileFieldAttribute
[<VolatileField>]

FSharp.Core.TypeProviderXmlDocAttribute

FSharp.Core.TypeProviderDefinitionLocationAttri
bute

When applied to an F# function or method,
indicates that the function or method must be
invoked with explicit type arguments, such as
typeof<int>.

This attribute should be used only in F#
assemblies.

When added to a record, union, exception, or
structure type, confirms the automatic
generation of implementations for
IComparable for the type.

This attribute should only be used in F#
assemblies.

When added to a record, union, or struct type,
confirms the automatic generation of
overrides for Equals and GetHashCode for the
type.

This attribute should be used only in F#
assemblies.

When applied to an F# field or mutable value
definition, controls whether the CLI volatile
prefix is emitted before accesses to the field.
This attribute should be used only in F#
assemblies.

Specifies documentation for provided type
definitions and provided members

Specifies location information for provided
type definitions and provided members

17.2 Custom Attributes Emitted by F#

The F# compiler can emit the following custom attributes:

Attribute

Description

System.Diagnostics.DebuggableAttribute
System.Diagnostics.DebuggerHiddenAttribute
System.Diagnostics.DebuggerDisplayAttribute
System.Diagnostics.DebuggerBrowsableAttribute
System.Runtime.CompilerServices.
CompilationRelaxationsAttribute
System.Runtime.CompilerServices.
CompilerGeneratedAttribute

System.Reflection.DefaultMemberAttribute

FSharp.Core.CompilationMappingAttribute

FSharp.Core.FSharpInterfaceDataVersionAttribute

Improves debuggability of F# code.
Improves debuggability of F# code.
Improves debuggability of F# code.
Improves debuggability of F# code.
Enables extra JIT optimizations.

Indicates that a method, type, or
property is generated by the F#
compiler, and does not correspond
directly to user source code.

Specifies the name of the indexer
property for a class.

Indicates how a CLI construct
corresponds to an F# source language
construct.

Defines the schema number for the
embedded binary resource for F#-
specific interface and optimization data.
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Attribute Description
FSharp.Core.OptionalArgumentAttribute Indicates optional arguments to F#
members.

17.3 Custom Attributes Not Recognized by F#

The following custom attributes are defined in some CLI implementations and may appear to be

relevant to F#. However, they either do not affect the behavior of the F# compiler, or result in an

error when used in in F# code.

Attribute

Description

System.Runtime.CompilerServices.DecimalConstantAttrib
ute

System.Runtime.CompilerServices.RequiredAttributeAttr
ibute

System.Runtime.InteropServices.
DefaultParameterValueAttribute

System.Runtime.InteropServices.
UnmanagedFunctionPointerAttribute

System.Runtime.CompilerServices.FixedBufferAttribute

System.Runtime.CompilerServices.UnsafeValueTypeAttrib
ute

System.Runtime.CompilerServices.SpecialNameAttribute

The F# compiler ignores this attribute.
However, if used in F# code, it can
cause some other CLI languages to
interpret a decimal constant as a
compile-time literal.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

Do not use this attribute in F# code.
The F# compiler ignores it or returns
an error.

17.4 Exceptions Thrown by F# Language Primitives

Certain F# language and primitive library operations throw the following exceptions.

Attribute Description

System.ArithmeticException

An arithmetic operation failed. This is the base class for exceptions

such as System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchExcepti

An attempt to store an element in an array failed because the

on runtime type of the stored element is incompatible with the

runtime type of the array.
System.DivideByZeroException
System.IndexOutOfRangeException

An attempt to divide an integral value by zero occurred.
An attempt to index an array failed because the index is less than

zero or outside the bounds of the array.

System.InvalidCastException
type failed at run time.

An explicit conversion from a base type or interface to a derived
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Attribute

Description

System.NullReferenceException

System.OutOfMemoryException
System.OverflowException
System.StackOverflowException

System.TypeInitializationExcept
ion

A null reference was used in a way that caused the referenced
object to be required.

An attempt to use new to allocate memory failed.

An arithmetic operation in a checked context overflowed.

The execution stack was exhausted because of too many pending
method calls, which typically indicates deep or unbounded
recursion.

F# initialization code for a type threw an exception that was not
caught.
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18. The F# Library FSharp.Core.dll

All compilations reference the following two base libraries:

e The CLl base library mscorlib.dl1.
e The F# base library FSharp.Core.d11

The following namespaces are automatically opened for all F# code:

open FSharp

open FSharp.Core

open FSharp.Core.LanguagePrimitives
open FSharp.Core.Operators

open FSharp.Text

open FSharp.Collections

open FSharp.Core.ExtraTopLevelOperators

A compilation may open additional namespaces may be opened if the referenced F# DLLs contain
AutoOpenAttribute declarations.

See also the online documentation at http://msdn.com/library/ee353567.aspx.

18.1 Basic Types (FSharp.Core)

This section provides details about the basic types that are defined in FSharp.Core.

18.1.1 Basic Type Abbreviations

Type Name Description

obj System.Object
exn System.Exception
nativeint System.IntPtr
unativeint System.UIntPtr
string System.String
float32, single System.Single
float, double System.Double
sbyte, int8 System.SByte
byte, uint8 System.Byte
intl6 System.Intl6
uintl6 System.UInt16
int32, int System.Int32
uint32 System.UInt32
int64 System.Int64
uinte64 System.UInt64
char System.Char
bool System.Boolean

decimal System.Decimal



http://msdn.microsoft.com/library/ee353567.aspx

18.1.2 Basic Types that Accept Unit of Measure Annotations

Type Name Description

sbyte< > Underlying representation System.SByte, but accepts a unit of measure.
intle<_> Underlying representation System.Int1l6, but accepts a unit of measure.
int32< > Underlying representation System.Int32, but accepts a unit of measure.
int64<_> Underlying representation System.Int64, but accepts a unit of measure.
float32<_ > Underlying representation System.Single, but accepts a unit of measure.
float< > Underlying representation System.Double, but accepts a unit of measure.
decimal<_> Underlying representation System.Decimal, but accepts a unit of measure.

18.1.3 The nativeptr<_> Type
When the nativeptr<type> is used in method argument or return position, it is represented in
compiled CIL code as either:

e ACLI pointer type type*, if type does not contain any generic type parameters.

e TCLltype System.IntPtr otherwise.

Note: CLI pointer types are rarely used. In CLI metadata, pointer types sometimes
appear in CLI metadata unsafe object constructors for the CLI type System.String.

You can convert between System.UIntPtr and nativeptr<'T> by using the inlined
unverifiable functions in FSharp.NativeInterop.NativePtr.

nativeptr< > compiles in different ways because CLI restricts where pointer types can
appear.

18.2 Basic Operators and Functions (FSharp.Core.Operators)

18.2.1 Basic Arithmetic Operators
The following operators are defined in FSharp.Core.Operators:

Operator or Function Expression Form Description

Name

(+) X +y Overloaded addition.

(-) X -y Overloaded subtraction.
(*) X *y Overloaded multiplication.
(/) X /'y Overloaded division.

For negative numbers, the behavior of this operator
follows the definition of the corresponding operator in
the C# specification.
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Operator or Function Expression Form Description
Name

(%) X %Yy Overloaded remainder.
For integer types, the result of x % v is the value
produced by x - (x / y) * y.Ifyiszero,
System.DivideByZeroException is thrown. The
remainder operator never causes an overflow. This
follows the definition of the remainder operator in the C#
specification.
For floating-point types, the behavior of this operator
also follows the definition of the remainder operator in
the C# specification.

(~-) -X Overloaded unary negation.

not not x Boolean negation.

18.2.2 Generic Equality and Comparison Operators
The following operators are defined in FSharp.Core.Operators:

Operator or Function Expression Form Description

Name

(<) X <y Generic less-than

(<=) X <=y Generic less-than-or-equal
(>) X >y Generic greater-than

(>=) X >=y Generic greater-than-or-equal
(=) X =y Generic equality

(<>) X <>y Generic disequality

max max X y Generic maximum

min min x y Generic minimum

18.2.3 Bitwise Operators
The following operators are defined in FSharp.Core.Operators:

Operator or Function Expression Form Description

Name

(<<x) X K<<y Overloaded bitwise left-shift

(>>>) X >>>y Overloaded bitwise arithmetic right-shift
(") X ANy Overloaded bitwise exclusive or (XOR)
(&&&) X &&& y Overloaded bitwise and

(ip x |||y Overloaded bitwise or

(~~n) ~r X Overloaded bitwise negation

18.2.4 Math Operators
The following operators are defined in FSharp.Core.Operators:

Operator or Function Expression Form Description

Name

abs abs x Overloaded absolute value

acos acos x Overloaded inverse cosine

asin asin x Overloaded inverse sine

atan atan x Overloaded inverse tangent
atan2 atan2 x y Overloaded inverse tangent of x/y
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Operator or Function
Name

Expression Form

Description

ceil
cos
cosh
exp
floor
log
logile
(**)
pown
round
sign
sin
sinh
sqrt
tan
tanh

ceil x
cos X
cosh x
exp X
floor x
log x
loglo x
X ** y
pown X Yy
round x
sign x
sin x
sinh x
sqrt x
tan x
tanh x

Overloaded floating-point ceiling
Overloaded cosine

Overloaded hyperbolic cosine
Overloaded exponent

Overloaded floating-point floor
Overloaded natural logarithm
Overloaded base-10 logarithm
Overloaded exponential
Overloaded integer exponential
Overloaded rounding
Overloaded sign function
Overloaded sine function
Overloaded hyperbolic sine function
Overloaded square root function
Overloaded tangent function
Overloaded hyperbolic tangent function

18.2.5 Function Pipelining and Composition Operators
The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form

Description

(1>)
(>>)
(<1
(<<)

ignore

g << f

ignore x

Pipelines the value x to the function ¥ (forward
pipelining)

Composes two functions, so that they are applied in order
from left to right

Pipelines the value x to the function f (backward
pipelining)

Composes two functions, so that they are applied in order
from right to left (backward function composition)
Computes and discards a value

18.2.6 Object Transformation Operators
The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form

Description

box
hash
sizeof
typeof

typedefof

unbox
ref

)

box x
hash x
sizeof<type>
typeof<type>

typedefof<type>
unbox X

ref x
I'x

Converts to object representation.

Generates a hash value.

Computes the size of a value of the given type.

Computes the System. Type representation of the given
type.

Computes the System. Type representation of type and
calls GetGenericTypeDefinition ifitis a generic type.
Converts from object representation.

Allocates a mutable reference cell.

Reads a mutable reference cell.
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18.2.7 Pair Operators
The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form

Description

fst
snd

fst p
snd p

Returns the first element of a pair.
Returns the second element of a pair

18.2.8 Exception Operators
The following operators are defined in FSharp.Core.Operators:

Operator/Function
Name

Expression Form

Description

failwith
invalidArg
raise
reraise

failwith x
invalidArg x
raise x
reraise()

Raises a FailureException exception.
Raises an ArgumentException exception.
Raises an exception.

Rethrows the current exception.

18.2.9 Input/Output Handles
The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form

Description

stdin Stdin Computes System.Console.In
stdout Stdout Computes System.Console.Out.
stderr Stderr Computes System.Console.Error.
18.2.10 Overloaded Conversion Functions

The following operators are defined in FSharp.Core.Operators:

Operator or Function
Name

Expression Form

Description

byte

sbyte
intil6
uintie
int32, int

uint32

inte4

uinte4
nativeint
unativeint
float, double

float32, single
decimal

char
enum

byte x
sbyte x
intle x
uintl6 x
int32 x

int x
uint32 x
int64 x
uinté64 x
nativeint x
unativeint x
float x
double x
float32 x
single x
decimal x
char x

enum X

Overloaded conversion to a byte

Overloaded conversion to a signed byte

Overloaded conversion to a 16-bit integer
Overloaded conversion to an unsigned 16-bit integer
Overloaded conversion to a 32-bit integer

Overloaded conversion to an unsigned 32-bit integer
Overloaded conversion to a 64-bit integer
Overloaded conversion to an unsigned 64-bit integer
Overloaded conversion to an native integer
Overloaded conversion to an unsigned native integer
Overloaded conversion to a 64-bit IEEE floating-point
number

Overloaded conversion to a 32-bit IEEE floating-point
number

Overloaded conversion to a System.Decimal number
Overloaded conversion to a System.Char value
Overloaded conversion to a typed enumeration value
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18.3 Checked Arithmetic Operators

The module FSharp.Core.Operators.Checked defines runtime-overflow-checked versions of

the following operators:

Operator or Function Expression Form Description

Name

(+) X +y Checked overloaded addition

(-) X -y Checked overloaded subtraction

(*) x *y Checked overloaded multiplication

(~-) -X Checked overloaded unary negation

byte byte x Checked overloaded conversion to a byte

sbyte sbyte x Checked overloaded conversion to a signed byte

intle intl6 x Checked overloaded conversion to a 16-bit integer

uintle uintl6é x Checked overloaded conversion to an unsigned 16-bit
integer

int32, int int32 x Checked overloaded conversion to a 32-bit integer

int x

uint32 uint32 x Checked overloaded conversion to an unsigned 32-bit
integer

inte4 int64 x Checked overloaded conversion to a 64-bit integer

uinte4 uint64 x Checked overloaded conversion to an unsigned 64-bit
integer

nativeint nativeint x Checked overloaded conversion to an native integer

unativeint unativeint x Checked overloaded conversion to an unsigned native
integer

char char x Checked overloaded conversion to a System.Char value

18.4 List and Option Types

18.4.1 The List Type

The following shows the elements of the F# type FSharp.Collections. list referred to in this

specification:

type 'T list =
| ([])
| (:2)
static
member
member
member
member
member

of 'T *
member Empty
Length int
IsEmpty : bool
Head : 'T
Tail 'T list

'T list

'T list

Item :int -> 'T with get

static member Cons 'T * 'T list -> 'T list

interface System.Collections.Generic.IEnumerable<'T>
interface System.Collections.IEnumerable
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18.4.2 The Option Type
The following shows the elements of the F# type FSharp.Core.option referred to in this
specification:

[<DefaultAugmentation(false)>]
[<CompilationRepresentation(CompilationRepresentationFlags.UseNullAsT
rueValue)>] type 'T option =

| None

| Some of 'T

static member None : 'T option
static member Some : 'T -> 'T option

[<CompilationRepresentation(CompilationRepresentationFlags.Instance)>
]

member Value : 'T

member IsSome : bool

member IsNone : bool

18.5 Lazy Computations (Lazy)

See http://msdn.microsoft.com/library/ee353813.aspx

18.6 Asynchronous Computations (Async)
See http://msdn.microsoft.com/library/ee370232.aspx

18.7 Query Expressions
See http://msdn.microsoft.com/library/hh698410

18.8 Agents (MailboxProcessor)

See http://msdn.microsoft.com/library/ee370357.aspx

18.9 Event Types

See http://msdn.microsoft.com/library/ee370608.aspx

18.10 Immutable Collection Types (Map, Set)

See http://msdn.microsoft.com/library/ee353413.aspx
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18.11 Text Formatting (Printf)

See http://msdn.microsoft.com/library/ee370560.aspx

18.12 Reflection

See http://msdn.microsoft.com/library/ee353491.aspx

18.13 Quotations

See http://msdn.microsoft.com/library/ee370558.aspx

18.14 Native Pointer Operations
The FSharp.Core.NativeIntrop namespace contains functionality for interoperating with
native code.

Use of these functions is unsafe, and incorrect use may generate invalid IL code.

Operator or Function Name Description

NativePtr.ofNativeInt | Returnsa typed native pointer for a machine address.
NativePtr.toNativeInt | Returnsa machine address for a typed native pointer.

NativePtr.add Computes an indexed offset from the input pointer.
NativePtr.read Reads the memory that the input pointer references.
NativePtr.write Writes to the memory that the input pointer references.
NativePtr.get Reads the memory at an indexed offset from the input pointer.
NativePtr.set Writes the memory at an indexed offset from the input pointer.

NativePtr.stackalloc | Allocates a region of memory on the stack.

18.14.1 Stack Allocation
The NativePtr.stackalloc function works as follows. Given

stackalloc<ty> n

the unmanaged type ty specifies the type of the items that will be stored in the newly allocated
location, and n indicates the number of these items. Taken together, these establish the required
allocation size.

The stackalloc function allocates n * sizeof<ty> bytes from the call stack and returns a
pointer of type nativeptr<ty> to the newly allocated block. The content of the newly allocated

memory is undefined. If n is a negative value, the behavior of the function is undefined. If n is zero,

no allocation is made, and the returned pointer is implementation-defined. If insufficient memory is

available to allocate a block of the requested size, the System.StackOverflowException is
thrown.
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Use of this function is unsafe, and incorrect use might generate invalid IL code. For example, the
function should not be used in with or finally blocks in try/with or try/finally expressions.
These conditions are not checked by the F# compiler, because this primitive is rarely used from F#
code.

There is no way to explicitly free memory that is allocated using stackalloc. All stack-allocated
memory blocks that are created during the execution of a function or member are automatically
discarded when that function or member returns. This behavior is similar to that of the alloca
function, an extension commonly found in C and C++ implementations.
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19. Features for ML Compatibility

F# has its roots in the Caml family of programming languages and its core constructs are similar to
some other ML-family languages. As a result, F# supports some constructs for compatibility with
other implementations of ML-family languages.

19.1 Conditional Compilation for ML Compatibility

F# supports the following constructs for conditional compilation:

token start-fsharp-token = "(*IF-FSHARP" | "(*F#"
token end-fsharp-token = "ENDIF-FSHARP*)" | "F#*)"
token start-ml-token = "(*IF-OCAML*)"
token end-ml-token = "(*ENDIF-OCAML*)"

F# ignores the start-fsharp-token and end-fsharp-token tokens. This means that sections
marked

(*IF-FSHARP ... ENDIF-FSHARP*)
(*F# .. FiF)

are included during tokenization when compiling with the F# compiler. The intervening text is
tokenized and returned in the token stream as normal.

In addition, the start-ml-token token is discarded and the following text is tokenized as string,
_ (any character), and end-ml-token until an end-mL-token is reached. Comments are not
treated as special during this process and are simply processed as “other text”. This means that text
surrounded by the following is excluded when compiling with the F# compiler:

(*IF-CAML*) ... (*ENDIF-CAML*)
or (*IF-OCAML*) ... (*ENDIF-OCAML*)
The intervening text is tokenized as “strings and other text” and the tokens are discarded until the

corresponding end token is reached. Comments are not treated as special during this process and
are simply processed as “other text.”

The converse holds when programs are compiled using a typical ML compiler.

19.2 Extra Syntactic Forms for ML Compatibility

The following identifiers are also keywords primarily because they are keywords in OCaml. Although
F# reserves several OCaml keywords for future use, the /mlcompatibility option enables the use
of these keywords as identifiers.



token ocaml-ident-keyword =
asr land lor 1sl lsr lxor mod

Note: In F# the following alternatives are available. The precedence of these operators
differs from the precedence that OCaml uses.

asr  >>> (on signed type)

land &&&

lor |||

Isl <<«

Isr  >>> (on unsigned type)
lxor ~nn

mod %

sig begin (that is, begin/end may be used instead of sig/end)

F# includes the following additional syntactic forms for ML compatibility:

expr :=

| ...
| expr. (expr) // array lookup
| expr.(expr) <- expr // array assignment

| (type,...,type) long-ident // generic type instantiation

module-implementation :=

| module ident = struct ... end

module-signature :=

| module ident : sig ... end

An ML compatibility warning occurs when these constructs are used.

Note that the for-expression form for var = expr: downto expr, do exprs isalso
permitted for ML compatibility.

The following expression forms

expr :=

| ..
| expr.(expr) // array lookup
| expr.(expr) <- expr // array assignment

Are equivalent to the following uses of library-defined operators:
er. (ez) > (.()) e: ez

e1.(e2) <- €3 > (()(-) e; ey é3
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19.3 Extra Operators

F# defines the following two additional shortcut operators:

e; or ey > (or) e; e
e; & e, - (&) e; e

19.4 File Extensions and Lexical Matters

F# supports the use of the.m1 and .m1i extensions on the command line. The “indentation
awareness off” syntax option is implicitly enabled when using either of these filename extensions.

Lightweight syntax can be explicitly disabled in . fs, .fsi, .fsx, and . fsscript files by specifying
#indent "off" asthe first declaration in a file:

‘#indent "off" |

When lightweight syntax is disabled, whitespace can include tab characters:

‘r‘egexp whitespace = [ ' ' "\t' ]+ |
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Appendix A: F# Grammar Summary

This appendix summarizes the grammar of the F# language. The following table describes the

notation conventions used in the grammar.

Notation Conventions in Grammar Rules

Notation Description Example
element-nameqpt The opt subscript indicates that element- let recqpt

name is optional.

An ellipsis indicates that the preceding non- expr '," ... ',' expr

terminal construct and the separator token

can repeat any number of times.

Boldface type identifies a language keyword
that must appear verbatim.

Italics identify an element that is defined in

the grammar.

keyword

element-name

[ charl - char2 ] All ASCII characters in the range from charl
to char2, inclusive.

[ ~ charl - char2 All ASCI characters except those in the

] specified range.

‘symbol’ or The literal symbol is used in the grammar.

“symbol”

(spec) Parentheses enclose required individual
grammar elements.

$token Lexical analysis inserts Stoken as a hidden

symbol.

module Llong-ident module-
elems

script-fragment :
module-elems

[a-2z]

[ ~A-Z]

l(l) lli_Fll

(+1-)

$app

A.1 Lexical Grammar

A.1.1 Whitespace

whitespace : +

newline
l\nl
l\r‘l l\nl

whitespace-or-newline

whitespace
newline
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A.1.2 Comments

block-comment-start : "(*"
block-comment-end : "*)"
end-of-Lline-comment : "//" [~'\n' '\r']*

A.1.3 Conditional Compilation

if-directive : "#if" whitespace ident-text
else-directive : "#else"
endif-directive : "#endif"

A.1.4 Identifiers and Keywords

A.1.4.1 ldentifiers
digit-char : [0-9]

Letter-char :

"\Lu"

'\L1"

Lt

‘\Lm"

‘\Lo"

*\N1"
connecting-char : '\Pc'

combining-char :
I\Mnl
I\Mcl

formatting-char : '\Cf'

ident-start-char :
letter-char

ident-char :
Letter-char
digit-char
connecting-char
combining-char
formatting-char

ident-text : 1ident-start-char ident-char*
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ident :

ident-text

I G e L e O A S D
A.1.4.2 Long ldentifiers
long-ident : 1ident '.' ... '.' 1ident
Long-ident-or-op :

long-ident '.' ident-or-op

ident-or-op

A.1.4.3 Keywords

ident-keyword : one of
abstract and as assert base begin class default delegate do done
downcast downto elif else end exception extern false finally for
fun function global if in inherit inline interface internal lazy let
match member module mutable namespace new null of open or
override private public rec return sig static struct then to
true try type upcast use val void when while with yield

reserved-ident-keyword : one of
atomic break checked component const constraint constructor
continue eager fixed fori functor include
measure method mixin object parallel params process protected pure
recursive sealed tailcall trait virtual volatile

reserved-ident-formats :
ident-text ( '!' | '#")

A.1.4.4 Symbolic Keywords

symbolic-keyword : one of
let! use! do! yield! return!
| =><- o () LT I<>I 01 114{}
CHOI?> R > L. o=y =

_ 222 (%) <@ @> <@@ @@>

reserved-symbolic-sequence :

~

A.1.5 Strings and Characters
escape-char : '\' ["\'ntbr]

non-escape-chars : '\' [*"\'ntbr]

simple-char-char : any char except
“\n' \tT "A\r' "\bT T\
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unicodegraph-short : '\' 'u' hexdigit hexdigit hexdigit hexdigit

unicodegraph-Llong : '\' 'U' hexdigit hexdigit hexdigit hexdigit
hexdigit hexdigit hexdigit hexdigit

char-char :
simple-char-char
escape-char
trigraph
unicodegraph-short

string-char :
simple-string-char
escape-char
non-escape-chars
trigraph
unicodegraph-short
unicodegraph-Long
newline

string-elem :
string-char
'"\' newline whitespace* string-elem

char : char-char

string : string-char* "

verbatim-string-char :
simple-string-char
non-escape-chars
newline

\

verbatim-string : @" verbatim-string-char*

bytechar simple-or-escape-char 'B

bytearray string-char* "B

verbatim-bytearray : @" verbatim-string-char* "B
simple-or-escape-char :
escape-char

simple-char

simple-char : any char except
newline, return, tab, backspace,',\,"
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triple-quoted-string :

A.1.6 Numeric Literals
digit : [0-9]

hexdigit
digit
[A-F]
[a-f]

octaldigit : [0-7]

bitdigit : [0-1]

int : digit+

xint :
9 (x|X) hexdigit+
@ (0|0) octaldigit+
0 (b|B) bitdigit+

sbyte : (int|xint) 'y’

byte (int|xint) 'uy

int16 : (int|xint) 's

uintlé : (int|xint) 'us'

int32 : (int|xint) '1'
uint32 :
(int|xint) 'ul'
(int|xint) 'u’

nativeint : (int|xint) 'n

unativeint : (int|xint)

int64 : (int|xint) 'L’
uinteé4 :
(int|xint) 'UL'
(int|xint) 'ulL'

ieee32 :
float [Ff]

simple-or-escape-char* """

lunl
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xint '1f'

ieeeb4 :
float
xint 'LF'
bignum : int ('Q' | 'R* | 'z | 'I' | 'N' | 'G")

decimal : (float|int) [Mm]

float :
digit+ . digit*
digit+ (. digit* )? (e|E) (+|-)? digit+

reserved-Lliteral -formats

A.1.7 Line Directives
Line-directive :

# int

# int string

# int verbatim-string

#line int

#line int string

#line int verbatim-string

A.1.8 ldentifier Replacements
__SOURCE_DIRECTORY__
__SOURCE_FILE__

__LINE__

A.1.9 Operators

A.1.9.1 Operator Names
ident-or-op :
ident
( op-name )
(*)
op-name :
symbolic-op
range-op-name

active-pattern-op-name

range-op-name :
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active-pattern-op-name :
| ident | ... | ident |
| ident | ... | ident | _ |

A.1.9.2 Symbolic Operators
first-op-char : one of
1%&*+- . /<=>@" |~

op-char :
first-op-char
?

quote-op-left :
<@ <@@

quote-op-right :
@> @@>

symbolic-op:
?
?<-
first-op-char op-char*
quote-op-left
quote-op-right

A.1.9.3 Infix and Prefix Operators
The OP marker represents all symbol1ic-op tokens that begin with the indicated prefix, except for

tokens that appear elsewhere in the table.

infix-or-prefix-op : one of
+, -, +., -., %, &, &&

prefix-op :

infix-or-prefix-op

~ s (and any repetitions of ~)

10P (all tokens that begin with ! except !=)
infix-op :

infix-or-prefix-op
-OP +OP || <OP >OP = |OP &0OP ~OP *OP /OP %OP !=
(or any of these preceded by one or more ¢.”)

or

A.1.9.4 Constants
const :
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sbyte

intl6

int32

int64

byte

uintie

uint32

int

uinte4

ieee32

leee64

bignum

char

string
verbatim-string
triple-quoted-string
bytestring
verbatim-bytearray
bytechar

false

true

0

A.2 Syntactic Grammar

In general, this syntax summary describes full syntax. By default, however, .fs, .fsi, .fsx, and
.fsscript files support lightweight syntax, in which indentation replaces begin/end and done
tokens. This appendix uses begingp:, endopt, and done.: to indicate that these tokens are omitted
in lightweight syntax. Complete rules for lightweight syntax appear in §15.1.

To disable lightweight syntax:
#indent "off"
When lightweight syntax is disabled, whitespace can include tab characters:
whitespace : [ " " "\t' ]+
A.2.1 Program Format
implementation-file :
namespace-decl-group ... namespace-decl-group

named-module
anonynmous -module

script-file : implementation-file

signature-file:
namespace-decl-group-signature ... namespace-decl-group-signature
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anonynmous -module-signature
named-module-signature

named-module : module long-ident module-elems

anonymous-module : module-elems

named-module-signature : module Long-ident module-signature-elements
anonymous-module-signature : module-signature-elements

script-fragment : module-elems

A.2.1.1 Namespaces and Modules
namespace-decl-group :
namespace long-ident module-elems
namespace global module-elems

module-defn : attributes.,: module accessq,,+ ident = begine,t module-defn-
body endqp

module-defn-body : begin module-elems.,: end

module-elem :
module-function-or-value-defn
type-defns
exception-defn
module-defn
module-abbrev
import-decl
compiler-directive-decl

module-function-or-value-defn :
attributesq,: let function-defn
attributeso: let value-defn
attributesq,: let recq: function-or-value-defns
attributesq,: do expr

import-decl : open long-ident

module-abbrev : module ident = long-ident

compiler-directive-decl : # ident string ... string
module-elems : module-elem ... module-elem
access :

private

internal
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public

A.2.1.2 Namespace and Module Signatures
namespace-decl-group-signature : namespace long-ident module-signature-
elements

module-signature : module ident = beging: module-signature-body endopt

module-signature-element :
val mutable,: curried-sig
val value-defn
type type-signatures
exception exception-signature
module-signature
module-abbrev
import-decl

module-signature-elements
beging: module-signature-element ... module-signature-element endopt

module-signature-body : begin module-signature-elements end

type-signature :

abbrev-type-signature
record-type-signature
union-type-signature
anon-type-signature
class-type-signature
struct-type-signature
interface-type-signature
enum-type-signature
delegate-type-signature
type-extension-signature

type-signatures : type-signature ... and ... type-signature

type-signature-element :
attributes,: accesSq: hew : uncurried-sig
attributes,,: member access,,: member-sig
attributes,,: abstract accessq,: member-sig
attributes,: override member-sig
attributes,,: default member-sig
attributesq,: static member access.,: member-sig
interface type

abbrev-type-signature : type-name '=' type

union-type-signature : type-name '=' union-type-cases type-extension-
elements-signaturept
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record-type-signature :

type-name '=' '{' record-fields '}' type-extension-elements-
signaturegpt
anon-type-signature : type-name '=' begin type-elements-signature end
class-type-signature : type-name '=' class type-elements-signature end
struct-type-signature : type-name '=' struct type-elements-signature end
interface-type-signature . type-name '=' interface type-elements-signature
end
enum-type-signature : type-name '=' enum-type-cases
delegate-type-signature : type-name '=' delegate-sig

type-extension-signature : type-name type-extension-elements-signature

type-extension-elements-signature : with type-elements-signature end

A.2.2 Types and Type Constraints

type :
( type )
type -> type
type * ... * type
typar
Long-1ident
Llong-ident<type-args>
Long-ident< >
type Llong-ident
type[ , ..., 1]
type typar-defns
typar :> type
#type

type-args := type-arg, ..., type-arg

type-arg :=
type
measure
static-parameter

atomic-type :

type : one of
#type typar ( type ) long-ident Long-ident<types>)
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typar :

"ident

~dent
constraint :

typar :> type

typar : null

static-typars : (member-sig)
typar : (new : unit -> 'T)
typar : struct

typar : not struct

typar : enum<type>

typar : unmanaged

typar . delegate<type, type>

typar-defn : attributesq,: typar

typar-defns : < typar-defn, ..., typar-defn typar-constraintsce >

typar-constraints : when constraint and ...

static-typars :
~dent
(~ident or ... or “~ident)

A.2.2.1 Equality and Comparison Constraints

typar : equality
typar : comparison

A.2.2.2 Type Providers

static-parameter =
static-parameter-value
id = static-parameter-value

static-parameter-value =
const
const expr

A.2.3 Expressions
expr :
const
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( expr )

begin expr end
Llong-ident-or-op

expr '.' long-ident-or-op
expr expr

expr(expr)

expr<types>

expr infix-op expr
prefix-op expr

expr.[expr]
expr.[slice-ranges]

expr <- expr

expr , ... , expr

new type expr

{ new base-call object-members interface-impls }
{ field-initializers }

{ expr with field-initializers }
[ expr ; ... ; expr ]

[| expr ; ... ; expr |]
expr { comp-or-range-expr }
[ comp-or-range-expr]

[| comp-or-range-expr |]

lazy expr
null

expr : type
expr :> type
expr :? type

expr :?> type
upcast expr
downcast expr

In the following four expression forms, the in token is optional if expr appears on a subsequent line
and is aligned with the /et token.

let function-defn in expr

let value-defn in expr

let rec function-or-value-defns in expr
use ident = expr in expr

fun argument-pats -> expr

function rules

match expr with rules

try expr with rules

try expr finally expr

if expr then expr elif-branches.: else-branchgp
while expr do expr donegpt

for ident = expr to expr do expr donegpt

for pat in expr-or-range-expr do expr donegpt
assert expr
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<@ expr @>

<@@ expr @@>

%expr

kkexpr

(static-typars : (member-sig) expr)

expr $app expr // equivalent to "expr(expr)"
expr $sep expr // equivalent to "expr; expr"

expr $tyapp < types > // equivalent to "expr<types>"
expr< >
exprs : expr '," ... ', expr
expr-or-range-expr :
expr
range-expr
elif-branches : elif-branch ... elif-branch
elif-branch : elif expr then expr

else-branch : else expr

function-or-value-defn :
function-defn
value-defn

function-defn :

inlinegp: accessqpt ident-or-op typar-defns.: argument-pats return-
typeopt = expr
value-defn :

mutable,: accessq: pat typar-defnsqp,: return-typeo,: = expr

return-type :
¢ type

function-or-value-defns :
function-or-value-defn and ... and function-or-value-defn

argument-pats: atomic-pat ... atomic-pat
field-initializer : long-ident = expr

field- initializer s : field-
initializer ; ... ; field-initializer

object-construction :

type expr
type
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base-call
object-construction
object-construction as ident

interface-impls : interface-impl ... 1interface-impl
interface-impl : interface type object-membersqp:
object-members : with member-defns end

member-defns : member-defn ... member-defn

A.2.3.1 Computation and Range Expressions

comp-or-range-expr :
comp-expr
short-comp-expr
range-expr

comp-expr :
let! pat = expr in comp-expr
let pat = expr in comp-expr
do! expr in comp-expr
do expr in comp-expr
use! pat = expr in comp-expr
use pat = expr in comp-expr
yield! expr
yield expr
return! expr
return expr
if expr then comp-expr
if expr then comp-expr else comp-expr
match expr with comp-rules
try comp-expr with comp-rules
try comp-expr finally expr
while expr do expr donegpt
for ident = expr to expr do comp-expr donegpt
for pat in expr-or-range-expr do comp-expr donegpt
comp-expr; comp-expr
expr

comp-rule : pat pattern-guard.: -> comp-expr
comp-rules : '|'opt comp-rule '|' ... '|' comp-rule
short-comp-expr : for pat in expr-or-range-expr -> expr

range-expr :
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expr .. expr
expr .. expr .. expr

slice-ranges : slice-range , .. , slice-range

slice-range :
expr
expr. .
..expr

expr..expr
I*l

A.2.3.2 Computation Expressions

expr { for ... }
expr { let ... }
expr { let! ... }
expr { use ... }
expr { while ... }
expr { yield ... }
expr { yield! ... }
expr { try ... }
expr { return ... }
expr { return! ... }

A.2.3.3 Sequence Expressions

seq { comp-expr }
seq { short-comp-expr }

A.2.3.4 Range Expressions

seq { e1 .. e2 }
seq { el .. e2 .. e3 }

A.2.3.5 Copy and Update Record Expression

{ expr with field-label; = expr; ; .. ; field-label, = expr, }

A.2.3.6 Dynamic Operator Expressions

expr ? 1ident

exprl ? (expr2)

exprl ? ident <- expr2
exprl ? (expr2) <- expr3

(?) expr "ident"

(?) exprl expr2

(?<-) exprl "ident" expr2
(?<-) exprl expr2 expr3

L 200 R N 4

"ident" is a string literal that contains the text of ident.

A.2.3.7 AddressOf Operators

&expr
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&kexpr

A.2.3.8 Lookup Expressions

el.[eargs] > el.get_Item(eargs)
el.[eargs] <- e3 > el.set_Item(eargs, e3)

A.2.3.9 Slice Expressions

el.[sliceArgl, ,,, sliceArgN] > el.GetSlice( argsi,..,argsN)
el.[sliceArgl, ,,, sliceArgN] <- expr -» el.SetSlice( argsi,..,argsN, expr)

where each sliceArgN is a slice-range and translated to argsN (giving one or two args) as follows:

*

- None, None
el.. - Some el, None
..e2 -» None, Some e2
el..e2 - Some el, Some e2
idx > 1dx

A.2.3.10 Shortcut Operator Expressions

exprl && expr2 -» if exprl then expr2 else false
exprl || expr2 > if exprl then true else expr2

A.2.3.11 Deterministic Disposal Expressions

use ident = exprl in expr2

A.2.4 Patterns
rule : pat pattern-guarde: -> expr
pattern-guard : when expr

pat :
const
Long-ident pat-paramep: patopt

pat as 1ident

pat '|' pat
pat '&"' pat
pat :: pat
pat : type
pat,...,pat
(pat)
list-pat
array-pat
record-pat
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:? atomic-type

:? atomic-type as ident
null

attributes pat

List-pat :

[1]

[ pat ; ... ; pat ]
array-pat :

[l

[| pat 5 ... ; pat |]

record-pat : { field-pat ;

atomic-pat :

pat one of
const Llong-ident List-pat
:? atomic-type
null
field-pat : long-ident = pat
pat-param :
const
Long-1ident

[ pat-param ; ... ; pat-param ]
( pat-param, ..., pat-param )
Long-1ident pat-param

pat-param : type

<@ expr @>

<@@ expr @@>

null
pats : pat , . , pat
field-pats : field-pat ; . ; field-pat
rules : '|'opt rule "|" "|' rule

A.2.5 Type Definitions

type-defn :
abbrev-type-defn
record-type-defn
union-type-defn
anon-type-defn
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class-type-defn
struct-type-defn
interface-type-defn
enum-type-defn
delegate-type-defn
type-extension

type-name : attributes.,: accessqpt ident typar-defnsopt

abbrev-type-defn : type-name = type

union-type-defn : type-name '=' union-type-cases type-extension-elementsgpt
union-type-cases : '|'opt union-type-case '|' ... '|' union-type-case

union-type-case : attributes.,: union-type-case-data

union-type-case-data :

ident -- nullary union case

ident of union-type-field * ... * union-type-field -- n-ary union
case

ident : uncurried-sig -- n-ary union case

union-type-field :
type -- unnamed union type field
ident : type -- named union type field

anon-type-defn :

type-name primary-constr-argsq: object-vale: '=' begin class-type-
body end
record-type-defn : type-name = '{' record-fields '}' type-extension-
elementsqpt
record-fields : record-field ; ... ; record-field ;o
record-field : attributes,: mutabley,: accessq,: ident : type

class-type-defn :
type-name primary-constr-args.: object-valo: '=' class class-type-
body end

as-defn : as ident
class-type-body :

begin.t class-inherits-declop: class-function-or-value-defnsq.: type-
defn-elementsgyt endopt

class-inherits-decl : inherit type exprop:
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class-function-or-value-defn :
attributesqp: staticq: let recg: function-or-value-defns
attributesq: staticy: do expr

struct-type-defn :
type-name primary-constr-args.: as-defno: '=' struct struct-type-body
end

struct-type-body : type-defn-elements

interface-type-defn : type-name '=' interface interface-type-body end
interface-type-body : type-defn-elements

exception-defn :

attributes.,,: exception union-type-case-data
attributeso,,: exception ident = long-ident

enum-type-defn . type-name '=' enum-type-cases

enum-type-cases : '|'opt enum-type-case |’ "|' enum-type-case
enum-type-case : ident '=' const

delegate-type-defn : type-name '=' delegate-sig

delegate-sig : delegate of uncurried-sig
type-extension : type-name type-extension-elements
type-extension-elements : with type-defn-elements end
type-defn-element :

member-defn

interface-impl
interface-signature

type-defn-elements : type-defn-element ... type-defn-element
primary-constr-args : attributes.: accesscpt (simple-pat, ... , simplepat)
simple-pat :

| ident

| simple-pat : type

additional -constr-defn :
attributes,: dccessq,: new pat as-defn = additional-constr-expr
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additional -constr-expr :
stmt ';' additional-constr-expr
additional -constr-expr then expr
if expr then additional-constr-expr else additional-constr-expr
let val-decls in additional-constr-expr
additional -constr-init-expr

additional-constr-init-expr :
"{" class-inherits-decl field-initializers '}’
new type expr

member-defn :
attributeso: statico,: member accesso,: method-or-prop-defn
attributes,: abstract member.,: access,,: member-sig
attributesq,,: override access.,,: method-or-prop-defn
attributesq,: default access.,: method-or-prop-defn
attributesq: statico: val mutableo,: accesso: ident : type
additional -constr-defn

method-or-prop-defn :
identopt function-defn
identopt value-defn
identot ident with function-or-value-defns
member ident = exp
member ident = exp with get
member ident = exp with set
member ident = exp with get,set
member ident = exp with set,get

member-sig :
ident typar-defns.: : curried-sig
ident typar-defns.: : curried-sig with get
ident typar-defns.: : curried-sig with set
ident typar-defns.: : curried-sig with get,set
ident typar-defns.: : curried-sig with set,get
curried-sig : args-spec -> ... -> args-spec -> type
uncurried-sig : args-spec -> type
args-spec . arg-spec * ... * arg-spec
arg-spec : attributesq.,+ arg-name-specop: type

arg-name-spec : ?.t ldent :

interface-spec : interface type
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A.2.5.1 Property Members

staticet member ident..,: ident = expr

staticepr member ident..: ident with get pat = expr

staticepr member ident.,: ident with set pat..: pat= expr

staticepr member ident..: ident with get pat = expr and set pate: pat
expr

staticopt member ident..,: ident with set pat.: pat = expr and get pat
expr

A.2.5.2 Method Members

staticq,+ member ident.,: ident patl ... patn = expr

A.2.5.3 Abstract Members
abstract accessq+ member-sig

member-sig :
ident typar-defnso.: : curried-sig
ident typar-defns.: : curried-sig with get
ident typar-defns.: : curried-sig with set
ident typar-defns.,: : curried-sig with get, set
ident typar-defns.: : curried-sig with set, get

curried-sig : args-spec; -> ... -> args-spec, -> type

A.25.4 Implementation Members

override 1ident.ident patl ... patn = expr
default 1ident.ident patl ... patn = expr

A.2.6 Units Of Measure

measure-Literal-atom :
long-ident
( measure-lLiteral-simp )

measure-Literal -power :
measure-Literal -atom
measure-Literal-atom ~ int32

measure-Lliteral-seq :

measure-Literal -power
measure-Literal -power measure-Lliteral-seq
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measure-Literal-simp
measure-Literal -seq
measure-Literal-simp * measure-literal-simp
measure-Literal-simp / measure-literal-simp
/ measure-literal-simp
1

measure-Lliteral
measure-Literal-simp
const

sbyte < measure-literal
intl6 < measure-literal
int32 < measure-Lliteral
int64 < measure-Lliteral
ieee32 < measure-Lliteral >
ieee64 < measure-literal >
decimal < measure-lLiteral >

vV VvV VvV Vv

measure-atom
typar
Long-1ident
( measure-simp )

medsure-power
measure-atom
measure-atom ~ int32

measure-seq
measure-power
measure-power measure-seq

measure-simp
measure-seq
measure-simp * measure-simp
measure-simp / measure-simp
/ measure-simp
1

measure

measure-simp

A.2.7 Custom Attributes and Reflection

attribute : attribute-target:.,+ object-construction
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attribute-set : [< attribute ; ... ; attribute >]
attributes : attribute-set ... attribute-set

attribute-target :
assembly
module
return
field
property
param
type
constructor
event

A.2.8 Compiler Directives
Compiler directives in non-nested modules or namespace declaration groups:

# 1d string ... string

A.3 ML Compatibility Features

A.3.1 Conditional Compilation
start-fsharp-token :
"(*IF-FSHARP"
" OFF#"
end-fsharp-token :
"ENDIF-FSHARP*)"
"EHR)"
start-ml-token : "(*IF-OCAML*)"
end-ml-token : "(*ENDIF-OCAML*)"

A.3.2 Extra Syntactic Forms

ocaml-ident-keyword : one of
asr land lor 1lsl l1lsr 1lxor mod

expr :

expr. (expr) // array lookup
expr.(expr) <- expr // array assignment

type :

(type,...,type) long-ident // generic type instantiation
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module-implementation :
module ident = struct ... end
module-signature :

module ident : sig ... end

A.3.3 Extra Operators
e; or e; - (or) e; e
e; & e - (&) e1 ez
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Glossary

This section contains terminology that is specific to F#. It provides a reference for terms that are
used elsewhere in this document.

A

abstract member
A member in a type that represents a promise that an object will provide an implementation for

a dispatch slot.

accessibility
The program text that has access to a particular declaration element or member. You can specify
accessibilities on declaration elements in namespace declaration groups and modules, and on
members in types. F# supports public, private, and internal accessibility.

and pattern
A pattern that consists of two patterns joined by an ampersand (&). An and pattern matches the
input against both patterns and binds any variables that appear in either pattern.

anonymous implementation file
A file that lacks either a leading module or namespace declaration. Only the scripts and the last
file within an implementation group for an executable image can be anonymous. An anonymous
implementation file can contain module definitions that are implicitly placed in a module, the
name of which is implicit from the name of the source file that contains the module.

anonymous variable type with a subtype constraint
A type in the form #type. This is equivalent to 'a when

a :> type where "ais afresh type

inference variable.

anonymous signature file
A signature file that does not have either a leading module or namespace declaration. The
name of the implied module signature is derived from the file name of the signature file.

anonymous variable type
A typein the form _.

application expression
An expression that involves variable names, dot-notation lookups, function applications, method

applications, type applications, and item lookups

assignment expression
An expression in the form expr.: <- expr..

arity
The number of arguments to a method or function.

array expression
An expression in the form [ |expri;...; expr. |].

array pattern
The pattern [ |pat ; ... ; pat|], which matches arrays of a specified length.

346



array sequence expression
An expression that describes a series of elements in an array, in one of the following forms:
[| comp-expr |]
[| short-comp-expr |]
[| range-expr |]

as pattern
A pattern in the form pat as ident. The as pattern binds the name ident to the input value and

matches the input against the pattern.

automatic generalization
A technique that, during type inference, automatically makes code generic when possible, which
means that the code can be used on many types of data.

B

base type declarations
A declaration that represents an additional, encapsulated type that is supported by any values

that are formed by using the type definition.

block comments
Comments that are delimited by (* and *), can span more than one line, and can be nested.

block expression
An expression in the form begin expr end.

C

class type definition
The definition of a type that encapsulates values that are themselves constructed by using one

or more object constructors. A class type typically describes an object that can have properties,
methods, and events.

coercion
The changing of data from one type to another.

comparison constraint
A constraint of the form typar : comparison.

compiled name
The name that appears in the compiled form of an F# program for a symbolic operator or certain

symbolic keywords.

conditional expression
An expression in the following form

if expria then exprip
elif exprs,then expra

elif exprn.then exprn
else expriast

347



The eLif and else branches are optional.

cons pattern
The pattern pat :: pat, which is used to decompose a list into two parts: the head, which
consists of the first element, and the tail, which contains the remaining elements.

constraint
See type constraint.

constraint solving
The process of reducing constraints to a normalized form so that variables can be solved by
deducing equations.

copy-and-update record expression
An expression in the following form:

{ expr with field-label: = expr: ; .. ; field-Llabel, = expr, }

current inference constraints
The set of type constraints that are in effect at a particular point in the program as a result of

type checking and elaboration.

curried method members
Arguments to a method that are written in an interated form.

custom attribute
A class that encapsulates information, often metadata that describes or supplements an F#
declaration. Custom attributes derive from System.Attribute in the .NET framework and can be
used in any language that targets the common language runtime.

D

default constructor constraint
A constraint of the form typar : (new : unit -> 'T).

default initialization
The practice of setting the values of particular types to zero at the beginning of execution. Unlike
many programming languages, F# performs default initialization in only limited circumstances.
definitely equivalent types
Static types that match exactly in definition, form, and number; or variable types that refer to
the same declaration or are the same type inference variable.
delayed expression
An expression in the form lazy expr, which is evaluated on demand in response to a .Value
operation on the lazy value.

delegate constraint.
A constraint of the form typar : delegate<tupled-arg-type, return-type>.

dispatch slot
A key representing part of the contract of an interface or class type. Each object that implements

the type provides a dictionary mapping dispatch slots to member implementations.
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E

F

dynamic type test pattern
The patterns : ? type and :? type as 1ident, which match any value whose runtime type is

the given type or a subtype of the given type.

elaborated expression
An expression that the F# compiler generates in a simpler, reduced language. An elaborated

expression contains a fully resolved and annotated form of the source expression and carries
more explicit information than the source expression.

enumerable extraction
The process of getting sequential values of a static type by using CLI library functions that
retrieve individual, enumerable values.

enumeration constraint
A constraint in the form typar : enum<underlying-type>, which limits the type to an
enumeration of the specified underlying type.

equality constraint.
A constraint in the form typar : equality, which limits the type to one that supports
equality operations.

event
A configurable object that has a set of callbacks that can be triggered, often by some external
action such as a mouse click or timer tick. The F# library supports the
FSharp.Control.IEvent< , > typeandthe FSharp.Control.Event module to support
the use of events.

F# Interactive
An F# dynamic compiler that runs in a command window and executes script fragments as well

as complete programs.

feasible coercion
Indicates that one type either coerces to another, or could become coercible through the
addition of further constraints to the current inference constraints.

feasibly equivalent types
Types that are not definitely equivalent but could become so by the addition of further

constraints to the current inference constraints.

floating type variable environment
The set of types that are currently defined, for use during type inference.

fresh type
A static type that is formed from a fresh type inference variable.

fresh type inference variable
A variable that is created during type inference and has a unique identity.
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function expression
An expression of the form fun pat:; ... pat, -> expr.

function value
The value that results at runtime from the evaluation of function expressions.

G

generic type definition
A type definition that has one or more generic type parameters. For example:
System.Collections.Generic.Dictionary<'Key, 'Value>.

guarded pattern matching rule
A rule of the form pat when expr that occurs as part of a pattern matching expression such as
match expre with rule; -> expr: | .. | rule, -> expr,. The guard expression expr
is executed only if the value of exprs successfully matches the pattern pat.

identifier
A sequence of characters that is enclosed in =~~~ double-backtick marks, excluding newlines,
tabs, and double-backtick pairs themselves.

immutable value
A named value that cannot be changed.

imperative programming
One of several primary programming paradigms; others include declarative, functional,
procedural, among others. An imperative program consists of a sequence of actions for the
computer to perform, and the statements change the state of the program.

implementation member
An abstract member that implements a dispatch slot or CLI property.

import declaration
A declaration that makes the elements of another namespace’s declarations and modules
accessible by the use of unqualified names. Import definitions can appear in namespace
declaration groups and module definitions.

inference type variable
A type variable that does not have a declaration site.

initialization constant expression
An expression whose elaborated form is determined to cause no observable initialization effect.

instance member
A member that is declared without static.

interface type definition
A declaration that represents an encapsulated type that specifies groups of related members

that other classes implement.
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K

keyword
A word that has a defined meaning in F# and is used as part of the language itself.

L
lambda expression
See function expression.
lightweight syntax
A simplified, indentation-aware syntax in which lines of code that form a sequence of
declarations are aligned on the same column, and the in and ;; separators can be omitted.
Lightweight syntax is the default for all F# code in files with extension .fs, . fsx, .fsi and
.fsscript.
list
An F# data structure that consists of a sequence of items. Each item contains a pointer to the
next item in the sequence.
list expression
An expression of the form [expri;...; expr,].
list pattern
A data recognizer pattern that describes a list. Examples are pat :: pat, which matches the
'cons' case of F# list values; [ |, which matches the empty list; and [pat ; ... ; pat], which
represents a series of : : and empty list patterns.
list sequence expression
An expression that evaluates to a sequence that is essentially a list. List sequence expressions
can have the following forms:
[ comp-expr ]
[ short-comp-expr ]
[ range-expr ]
literal constant expression
An expression that consists of a simple constant expression or a simple compile-time
computation.
M
member

A function that is associated with a type definition or with a value of a particular type. Member
definitions can be used in type definitions. F# supports property members and method
members.

member constraint
A constraint that specifies the signature that is required for a particular member function.

Member constraints have the form (typar or ... or typar) : (member-sig).

351



member signature
The “footprint” of a property or method that is visible outside the defining module.

method member
An operation that is associated with a type or an object.

module
A named collection of declarations such as values, types, and function values.

module abbreviation
A statement that defines a local name for a long identifier in a module. For example:

module Ops = FSharp.Core.Operators

modaule signature
A description of the contents of a module that the F# compiler generates during type inference.

The module signature describes the externally visible elements of the module.

N

name resolution environment
The collection of names that have been defined at the current point, which F# can use in furthy

type inference and checking. The name resolution environment includes namespace declaration
groups from imported namespaces in addition to names that have been defined in the current
code.

named type
A type that has a name, in the form Long-ident<tys,.., ty,>, where Long-ident resolves

to a a type definition that has formal generic parameters and formal constraints.

namespace
A way of organizing the modules and types in an F# program, so that they form logical groups

that are associated with a name. Identifiers must be unique within a namespace.

namespace declaration group
The basic declaration unit within an F# implementation file. It contains a series of module and
type definitions that contribute to the indicated namespace. An implementation can contain
multiple namespace declaration groups.

namespace declaration group signature
The “footprint” of a namespace declaration group, which describes the externally visible
elements of the group.

null expression
An expression of the form null.

nullness constraint
A constraint in the form typar: null, which indicates that the type must support the Null

literal.

null pattern
The pattern null, which matches the values that the CLI value null represents.

numeric literal
A sequence of Unicode characters or an unsigned byte array that represents a numeric value.
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o

object construction expression
An expression in the form new ty(el ... en), which constructs a new instance of a type,
usually by calling a constructor method on the type.

object constructor
A member of a class that can create a value of the type and partially initialize an object. The

primary constructor contains function and value definitions that appear at the start of the class
definition, and its parameters appear in parentheses immediately after the type name. Any
additional object constructors are specified with the new keyword, and they must call the
primary constructor.

object expression
An expression that creates a new instance of a dynamically created, anonymous object type that
is based on an existing base type, interface, or set of interfaces.

offside lines
Lines that occur at column positions in lightweight syntax. Offside lines are introduced by other
structured constructs, such asthe = token associated with 1et, and the first token after then in
an if/then/else construct.

offside rule
Another term for lightweight or indentation-aware syntax.

P

parenthesized expression
An expression in the form (expr).

pattern matching
A switch construct that supports branched control flow and the definition of new values.

pipeline operator
The |> operator, which directs the value of one function to be input to the next functionin a
pipeline.

property member
A function in a type that gets or sets data about the type.

Q

quoted expression
An expression that is delimited in such a way that it is not compiled as part of your program, but
instead is compiled into an object that represents an F# expression.

R

range expression
An expression that generates a sequence over a given range of values.
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record construction expression
An expression that builds a record, in the form { field-initializer;; .. ; field-

initializer, }.

record pattern
The pattern { Long-ident; = pat;; ... ; Llong-ident, = pat,}.

recursive definition
A definition in which the bound functions and values can be used within their own definitions.

reference type constraint
A constraint of the form typar : not struct.

reference type
A class, interface delegate, function, tuple, record, or union type. A type is a reference type if its
outermost named type definition is a reference type, after expanding type definitions.

referenced assemblies
The existing assemblies to which an F# program makes static references.

rigid type variable
A type variable that refers to one or more explicit type parameter definitions.

runtime type
An object of type System. Type that is the runtime representation of some or all of the
information carried in type definitions and static types. The runtime type associated with an
objects is accessed by using the obj.GetType () method, which is available on all F# values.

S

script
A fragment of an F# program that can be run in F# Interactive.

sealed type definition
A type definition that is concrete and cannot be extended. Record, union, function, tuple, struct,
delegate, enum, and array types are all sealed types, as are class types marked with the
SealedAttribute attribute.

sequence expression
An expression that evaluates to a sequence of values, in one of the following forms

seq { comp-expr }
seq { short-comp-expr }

sequential execution expression
An expression that represents the sequential execution of one statement followed by another.

The expression has the form expri; expr,.

signature file
A file that contains information about the public signatures and accessibility of a set of F#

program elements.

simple constant expressions
A numeric, string, Boolean, or unit constant.
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single-line comments
A comment that begins with // and extends to the end of a line.

slice expression
An expression that describes a subset of an array.

static type
The type that is inferred for an expression as the result of type checking, constraint solving, and
inference.

static member
A member that is prefixed by static and is associated with the type, rather than with any
particular object.

statically resolved type variable
A type parameter in the form ~ident. Such a parameter is replaced with an actual type at
compile time instead of runtime.

string
A type that represents immutable text as a sequence of Unicode characters.

string literal
A Unicode string or an unsigned byte array that is treated as a string.

strong name
A cryptographic signature for an assembly that provides a unique name, guarantees the
publisher over subsequent versions, and ensures the integrity of the contents.

subtype constraint
A constraint of the form typar :> type, which limits the type of typar to the specified
type, or to a type that is derived from that type. If type is an interface, typar must
implement the interface.

symbolic keyword
A symbolic or partially symbolic character sequence that is treated as a keyword.

structural type
A record, union, struct, or exception type definition.

symbolic operator
A user-defined or library-defined function that has one or more symbols as a name.

syntactic sugar
Syntax that makes code easier to read or express; often a shortcut way of expressing a more
complicated relationship for which one or more other syntactic options exist.

syntactic type
The form of a type specification that appears in program source code, such as the text
“option<_ >”.Syntactic types are converted to static types during the process of type checking
and inference.

T

tuple
An ordered collection of values that is treated as an atomic unit. A tuple allows you to keep data

organized by grouping related values together, without introducing a new type.
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tuple expression
An expression in the form expr., ..., expr, which describes a tuple value.

tuple type
Atypeintheformty; * ... * ty,, which defines a tuple. The elaborated form of a tuple
type is shorthand for a use of the family of F# library types System.Tuple< , ..., >.

type abbreviation
An alias or alternative name for a type.

type annotation
An addition to an expression that specifies the type of the expression. A type annotation has the
formexpr : type.

type constraint
A restriction on a generic type parameter or type variable that limits the types that may be used
to instantiate that parameter. Example type constraint include subtype constraints, null
constraints, value type constraints, comparison constraints and equality constraints.

type definition kind
A class, interface, delegate, struct, record, union, enum, measure, or abstract type.
The kind of type refers to the kind of its outermost named type definition, after expanding
abbreviations.

type extension
A definition that associates additional dot-notation members with an existing type.

type function
A value that has explicit generic parameters but arity [ | —that is, it has no explicit function
parameters.

type inference
A feature of F# that determines the type of a language construct when the type is not specified
in the source code.

type inference environment
The set of definitions and constraints that F# uses to infer the type of a value, variable, function,
or parameter, or similar language construct.

type parameter definition
In a generic function, method, or type, a placeholder for a specific type that is specified when
the generic function, method, or type is instantiated.

type provider
A component that provides new types and methods that are based on the schemas of external
information sources.

type variable
A variable that represents a type, rather than data.

U

undentation
The opposite of indentation.
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underlying type
The type of the constant values of an enumeration. The underlying type of an enum must be

sbyte, int16, int32, int64, byte, uint16, uint32, uint64, or char.

union pattern
The pattern pat | pat attempts to match the input value against the first pattern, and if that
fails matches instead the second pattern. Both patterns must bind the same set of variables with
the same types.

union type
A type that can hold a value that satisfies one of a number of named cases.

unit of measure
A construct similar to a type that represents a measure, such as kilogram or meters per second.
Like types, measures can appear as parameters to other types and values, can contain variables,
and are checked for consistency by the type-checker. Unlike types, however, measures are
erased at runtime, have special equivalence rules, and are supported by special syntax.
unmanaged type
The primitive types (sbyte, byte, char, nativeint, unativeint, float32, float, int1s,
uintl6, int32,uint32, int64, uint64, and decimal), enumeration types, and
nativeptr< >, or a non-generic structure whose fields are all unmanaged types.

unmanaged constraint
An addition to a type parameter that limits the type to an unmanaged type.

Vv

value signature
The “footprint” of a value in a module, which indicates that the value exists and is externally

visible.

value type
A type that is allocated on the stack or inline in an object or array. Value types include primitive

integers, floating-point numbers, and any value of a struct type.

value type constraint
A constraint of the form typar : struct, which limits the type of typar toa.NET value

type.

variable type
A type of the form ' ident, which represents the name of another type.

W

wildcard pattern
The underscore character _, which matches any input.
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Index

# flexible type symbol, 150
#tindent, 317

#load directive, 224

#nowarn directive, 224

% operator, 116

%% operator, 116

& byref address-of operator, 98
& conjunctive patterns, 136

&& native pointer address-of operator, 98

&& operator, 105
fs extension, 23, 224
fsi extension, 23
fsscript extension, 23, 224
.fsx extension, 23, 224
.ml extension, 317
.mli extension, 317
:: cons pattern, 136
; token, 104
_ wildcard pattern, 135
__LINE_, 33
__SOURCE_DIRECTORY__, 33
__SOURCE_FILE__, 33
| | operator, 105
= function, 193
abstract members, 183
abstract types, 53
AbstractClass attribute, 183
accessibilities

annotations for, 211

default annotation for modules, 208

location of modifiers, 212
active pattern functions, 133
active pattern results, 96
address-of expressions, 98
AddressOf expressions, 120, 125
agents, 311
AllowlIntoPattern, 81
AllowNullLiteral attribute, 57
anonymous variable type, 46
application expressions, 94, 244
arguments

CLl optional, 178

named, 175

optional, 176

required unnamed, 176
arity, 274

conformance in value signatures, 218
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array expressions, 71, 122
array sequence expression, 92
array type, 46
assemblies
contents of, 221
referenced, 221
assert, 109
assertion expression, 109
assignment expression, 102
asynchronous computations, 311
attributes
AbstractClass, 183
AllowNullLiteral, 57
AttributeUsage, 231
AutoOpen, 221
AutoOpenAttribute, 305
CLIEvent, 181, 186
CLIMutable, 152
comparison, 190
CompilationRepresentation, 182, 206
conditional compilation, 255
ContextStatic, 110, 208
custom, 53, 231, 296
custom operation, 80
DefaultValue, 161
emitted by F# compiler, 301
EntryPoint, 229
equality, 189
GeneralizableValue, 209
grammar of, 231
in type definitions, 145
InternalsVisibleTo, 212
Literal, 208
mapping to CLI metadata, 232
Measure, 146, 196, 200
MeasureAnnotatedAbbreviation, 201
NoEquality, 51
OptionalArgument, 178
ReflectedDefinition, 115
RequireQualifiedAccess, 237
RequiresExplicitTypeArguments, 209
RequiresQualifiedAccess, 166
SealedAttribute, 54
ThreadStatic, 110, 208
unrecognized by F#, 302
VolatileField, 118
AttributeUsage attribute, 231



automatic generalization, 13
AutoOpen attribute, 221
AutoOpenAttribute, 305
AutoSerializable attribute, 151, 153, 155
base type, 55
basic types
abbreviations for, 305
block expressions, 104
bprintf function, 93
byref arguments, 273
byref pointers, 67
byref-address-of expression, 98
case names, 152
characters, 28
class types, 155
additional fields in, 161
members in, 159
class/end tokens, 155
classes, 53
CLI methods, 276
CLI pointer types, 306
CLIEvent attribute, 181, 186
CLIMutable, 152
comments, 25, 277
compare function, 193
CompareTo, 192
comparison attributes, 190
comparison constraint, 51
ComparisonConditionalOn constraint
dependency, 190
compatibility features, 315
compilation order, 222
CompilationRepresentation attribute, 182,
206
COMPILED compilation symbol, 23, 224
compiler directives, 225
computation expression, 76
condensation, 269
Conditional attribute, 255
conditional compilation, 26, 255
ML compatibility and, 315
conditional expressions, 104
constant expressions, 68
constants with measure annotations, 197
constrained types, 47
constraints, 47
comparison, 51
current inference, 45
default constructor, 49
delegate, 50
dependency of, 190
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enumeration, 50

equality, 51

equational, 257

explicit declaration of, 52

flexible type, 113

inflexible type, 113

member, 259

member, 48

nullness, 48, 58, 93, 258

reference type, 50

simple, 258

solving, 257

struct, 49, 258

subtype, 47, 257

unmanaged, 51
ContextStatic attribute, 110, 208
control flow expressions, 104
copy-and-update record expression, 72
curried form, 175
custom attributes

effect on signature checking, 233

in type definitions, 145
CustomComparison attribute, 190
CustomEquality attribute, 189
CustomOperationAttribute, 80
declarations

base type, 54

interface, 54
default initialization, 58
DefaultValue attribute, 161
definition expressions, 109
definitions

recursive, 261
delayed expression, 76
delegate constraint, 50
delegate implementation expression, 96
delegate type, 166
delegates, 53
deterministic disposal expression, 112
directives

#load, 224

#nowarn, 224

compiler, 225

lexical, 225

line, 33

preprocessing, 26
dispatch slot checking, 75, 273
dispatch slot inference, 75, 271
dispatch slots, 273
do statements, 157

in modules, 210



static, 158
done token, 108
dynamic coercion expressions, 114, 124
dynamic type-test expressions, 113, 123
elif branch, 105
else branch, 105
entry points, 229
EntryPoint attribute, 229
enum types, 165
enumerable extraction, 106
enums, 53
equality attributes, 189
equality constraint, 51
EqualityConditionalOn constraint
dependency, 190
evaluation
of active pattern results, 96
of AddressOf expressions, 125
of array expressions, 122
of definition expressions, 123
of dynamic coercion expressions, 124
of dynamic type-test expressions, 123
of field lookups, 121
of for loops, 123
of function applications, 121
of function expressions, 122
of method applications, 121
of object expressions, 122
of record expressions, 122

of sequential execution expressions, 124

of try-finally expressions, 125
of try-with expressions, 125
of union cases, 121
of value references, 120
of while loops, 123
event types, 311
events, 180
exception definitions, 166
exceptions, 302
execution of F# code, 226
expression splices, 116
expressions
address-of, 98
application, 94
array. See array expression
array sequence, 92
assertion, 109
assignment, 102
block, 104
builder, 76
checking of, 65
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computation, 65, 76
conditional, 104
constant, 68
delayed, 76
delegate implementation, 96
deterministic disposal, 112
dynamic coercion, 114
dynamic type-test, 113
elaborated, 66
evaluation of, 117
for loop, 107
function, 73
function and value definitions, 109
list, 70
list sequence, 92
lookup, 99
member constraint invocation, 101
name resolution in, 237
null, 93
object. See object expressions
object construction, 96
operator, 97, 98
parenthesized, 104
pattern-matching, 105
precedence in, 41
quoted, 67, 114
range, 65, 91
record construction, 71
recursive, 112
reraise, 108
sequence, 90
sequence iteration, 106
sequential conditional, 105
sequential execution, 104
shortcut and, 105
shortcut or, 105
slice, 100
static coercion, 113
syntactical elements of, 61
try-finally, 108
try-with, 108
tuple, 69
type-annotated, 113
while-loop, 107
extension members, 168
defined by C#, 169
field lookups, 121
fields
additional, in classes, 161
name resolution for labels, 243
filename extensions, 23



ML compatibility and, 317 inference

files arity, 274
implementation, 222 dispatch slot, 271
signature. See signature files inference variables, 55
flexibility, 255 infix operators, 41
flexible types, 150 Information-rich Programming, 19
floating type variable environment, 45 inherit declaration, 156, 162
for loop, 107 initialization, 58
forloops, 123 of objects, 155
format strings, 93 static, 226
fprintf function, 93 instance members, 171
fresh type, 45 compilation as static method, 182
function applications, 121 integer literals, 69
function definition expressions, 109 INTERACTIVE compilation symbol, 23, 224
function definitions, 157, 261, 263 interface type definitions, 162
ambiguous, 261 interface types, 56, 186
in modules, 207 interface/end tokens, 162
static, 158 interfaces, 53
function expressions, 73, 122 internal accessibility, 211
function values, 14 internal type abbreviations, 150
functions InternalsVisibleTo attribute, 212
active pattern, 133 intrinsic extensions, 168
undentation of, 285 IsLikeGrouplJoin, 81
GeneralizableValue attribute, 209 IsLikeJoin, 81
generalization, 55, 267 JoinConditionWord, 81
generic types, 267 keywords
GetHashCode, 192 OCaml, 315
GetSlice, 100 symbolic, 30
guarded rules, 139 kind
hash function, 193 anonymous, 148
hashing, 188 kind of type definition, 53
hidden tokens, 278 lazy computations, 311
identifiers, 26 libraries
local names for, 211 CLI base, 305
long, 39 F# base, 305
OCaml keywords as, 315 lightweight syntax, 11, 277
replacement of, 33 balancing rules for, 282
if statement, 104 disabling, 317
if/then/else expression parsing, 280
undentation of body, 285 rules for, 277
immutability, 13 line directives, 33
immutable collection types, 311 list expression, 70
implementation files list sequence expression, 92
anonymous, 223 list type, 310
contents of, 222 Literal attribute, 208
implementation members, 183 literals
import declarations, 210 integer, 69
in token, 109 numeric, 31
indentation, 277 string, 28
incremental, 285 lookup
indexer properties, 173 expression-qualified, 247
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item-qualified, 245

unqualified, 244
lookup expressions, 99
mailbox processor, 311
MaintainsVariableSpace, 80
MaintainsVariableSpaceUsingBind, 81
measure annotated base types, 201
Measure attribute, 17, 196, 200
measure parameters, 146

defining, 200

erasing of, 200

MeasureAnnotatedAbbreviation attribute,

201
measures, 53
basic types and annotations for, 306
building blocks of, 197
constraints on, 199
defined, 195
defining, 199
generalization of, 199
relations on, 198
type definitions with, 201

member constraint invocation expressions,

101
member definitions, 261
member signatures, 217
members, 170

extension, 168

intrinsic, 168

name resolution for, 241

naming restrictions for, 180

processing of definitions, 261

signature conformance for, 220
method applications, 121
method calls

conditional compilation of, 255
method members, 170, 174

curried, 175

named arguments to, 175

optional arguments to, 176
methods

overloading of, 180

overriding, 75
Microsoft.FSharp.Collections.list, 310
Microsoft.FSharp.Core, 305
Microsoft.FSharp.Core.Nativelntrop, 312
Microsoft.FSharp.Core.Operators, 306
Microsoft.FSharp.Core.option, 311
mlcompatibility option, 315
module declaration, 222
modules
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abbreviations for, 211
active pattern definitions in, 210
defining, 206
do statements in, 210
function definitions in, 207
name resolution in, 236
signature of, 206
undentation of, 286
value definitions in, 207
mscorlib.dll, 305
mutable, 150, 157
mutable value definitions, 262
mutable values, 103
name environment, 235
adding items to, 236
name resolution, 45, 46, 235
namespace declaration, 223
namespace declaration groups, 204
namespaces, 204
grammar of, 203
name resolution in, 236
opened for F# code, 305
native pointer operations, 312
nativeptr type, 306
nativeptr-address-of expression, 98
NoComparison attribute, 190
NoEquality attribute, 189
null, 57
null expression, 93
NullReferenceException, 121
numeric literals, 31
object construction expression, 96
object constructors, 155
additional, 159
primary, 155
object expressions, 74, 122
Object.Equals, 191
objects
initialization of, 155
physical identity of, 126
references to, 126
offside contexts, 280
offside limit, 283
offside lines, 279
offside rule, 279
exceptions to, 283
operations
underspecified results of, 126
operator expressions, 97
operators
address-of, 98



basic arithmetic, 306

bitwise, 307

checked arithmetic, 310

default definition of, 97

exception, 309

function pipelining and composition, 308

generic equality and comparison, 307

infix, 41

input and output handles, 309

math, 307

ML compatibility and, 317

names of, 35

object transformation, 308

overloaded conversion functions, 309

pair, 309

precedence of, 41

prefix, 41

splicing, 116

symbolic, 30, 40
option type, 311
OptionalArgument attribute, 178
overflow checking, 310
parallel execution, 118
ParamArray conversion, 251
parenthesized expressions, 104
pattern matching, 14
pattern-matching expression, 105
pattern-matching function, 106
patterns, 129

active, 133

array, 138

as, 135

conjunctive, 136

cons, 136

dynamic type-test, 137

guarded rules for, 139

literal, 132

name resolution for, 241

named, 131

null, 139

record, 138

simple constant, 130

type-annotated, 136

union case, 131

variable, 131

wildcard, 135
pointer, byref, 67
precedence

differences from OCaml, 316

of function applications, 286

of type applications, 287

363

prefix operators, 41
preprocessing directives, 26
printf, 312
printf function, 93
private accessibility, 211
private type abbreviations, 150
ProjectionParameterAttribute, 81
properties

custom operation, 80
property members, 170, 172, 183
public accessibility, 208, 211
quotations, 312
guoted expression, 114
guoted expressions, 67
range expressions, 91
rec, 157
record construction expression, 71
record expressions

evaluation of, 122
record expressionss

copy-and-update, 72
record types

automatically implemented interfaces in,

151

members in, 151

scope of field labels, 151
record types, 150
records, 53
recursive definitions, 261, 263
recursive function definition, 112
recursive safety analysis, 264
recursive value definition, 112
reference types

zero value of, 119
ReferenceEquality attribute, 189
reflected forms, 233
ReflectedDefinition attribute, 115
reflection, 312
RequireQualifiedAccess attribute, 236

RequiresExplicitTypeArguments attribute, 209

RequiresQualifiedAccess attribute, 166
reraise expressions, 108
resolution

function application, 248

method application, 249
script files, 224
Sealed attribute, 151
SealedAttribute attribute, 54
sequence expression, 90
sequence iteration expression, 106
sequential conditional expressions, 105
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shortcut and expression, 105
shortcut or expression, 105
signature elements, 217
signature files, 215
anonymous, 224
compilation order of, 222
contents of, 223
signatures
conformance of, 218
declarations of, 216
member, 217
module, 206
of namespace declaration groups, 205
type definition, 217
value, 217
slice expressions, 100
source code files, 23
sprintf function, 93
stack allocation, 312
static coercion expressions, 113
static initializer
execution of, 226
static initializers, 158
static members, 170
static types, 44
strings, 28
format, 93
newlines in, 29
triple-quoted, 29
strongly typed quoted expressions, 115
struct types
default constructor in, 164
struct/end tokens, 163
structs, 53
structural equality, 188
structural types, 189
StructuralComparison attribute, 190
StructuralEquality attribute, 189
symbolic operators, 30, 40
syntactic types, 44
System.Object, 75
System.Reflection objects, 233
System.Tuple, 69
System.Type objects, 233
text formatting, 312
ThreadStatic attribute, 110, 208
tokens
hidden, 33, 278
try-finally expressions, 108
evaluation of, 125
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try-with expressions, 108, 125
tuple type, 46
type

fresh, 45

meanings of, 43

named, 45

statically resolved variable, 46
type abbreviations, 53, 149
type annotations

over-constrained, 260
type applications

lexical analysis of, 287
type definition group, 145
type definition signatures, 217
type definitions, 43, 53

abstract members in, 183

checking of, 146

delegate, 166

enum, 165

exception, 166

generic, 53

grammar of, 141

interface, 162

interfaces in, 186

kinds of, 144

location of, 144

reference, 54

sealed, 54

struct, 163
type extensions, 167
type functions, 207

signature conformance for, 220
type inference, 13, 45
type inference environment, 45
type kind inference, 148
type parameter definitions, 52
type providers, 19
type variable

definition site, 55
type variables, 43

name resolution for, 243

rigid, 55
type-annotated expressions, 113
type-annotated patterns, 136
typedefof operator, 233
type-directed conversions, 178
typeof operator, 233
types

anonymous variable. See anonymous

variable type
array. See array type



base, 55

class, 53, 155

coercion of, 56

comparison of, 188

condensation of generalized function types,
269

constrained, 47

conversion of, 178

delegate, 96, 166

dynamic conversion of, 58

enum, 165

equivalence of, 56

exn (exception), 166

flexible, 150

implicit static members of, 259

initial, 66

interface types of. See interface types

logical properties of, 53

name resolution for, 242

nativeptr, 306

partial static, 55

record, 150

reference, 54

renaming, 149

runtime, 43

static, 43

structural, 189

syntactic, 43

tuple. See tuple type

union, 152

unit, 107

unmanaged, 51

value, 54

variable, 45

zero value of, 119

undentation, 283, 285
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union cases, 121
union types, 152
automatically implemented interfaces for,
153
compiled, 154
members in, 153
unions, 53
unit type, 57, 107
units of measure. See measures
unmanaged constraint, 51
val specification, 161
value definition expressions, 109
value definitions, 157, 261
in modules, 207
static, 158
value references, 120
value signatures, 217
value types
zero value of, 119
values
arity conformance for, 218
processing of definitions, 262
runtime, 117
signature conformance for, 218
verbatim strings, 29
virtual methods, 184
VolatileField attribute, 118
weakly typed quoted expression, 116
while loops, 123
while-loop expression, 107
whitespace, 25
significance in lightweight syntax, 277
with/end tokens, 151, 153
XML documentation tokens, 25
zero value, 119
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